Triose phosphate translocator (TPT) is located in the inner membrane of plant chloroplasts. It catalyzes the counter exchange of those phosphate/3-phosphoglycerate and phosphate. To obtain the basic information on the...Triose phosphate translocator (TPT) is located in the inner membrane of plant chloroplasts. It catalyzes the counter exchange of those phosphate/3-phosphoglycerate and phosphate. To obtain the basic information on the structure-function relation, a cDNA encoding the complete precursor of the triose phosphate translocator has been isolated from wheat (Triticum aestivum L.) by RACE ( rapid amplification of cDNA ends) strategies. The wheat TPT cDNA encodes a precursor protein of 402 amino acid residues with a deduced molecular weight of 43 kD. A putative processing site between Ala-78 and Ala-79 of the precursor protein is suggested by comparison with those of the TPTs from spinach (Spinacia oleracea Mill.) and maize (Zea mays L.). The mature part of wheat TPT consists of 324 amino acid with a molecular weight of 35 kD, which share 89% identity with maize TPT. The amino acids Lys-274 and Arg-275 (mature protein) which is regarded as the substrate-binding site, are both conserved in plant TPTs. The gene expression analysis for leaves, coleoptiles, roots and seeds of wheat showed that the TPT transcript was only detectable in leaves and coleoptiles. No apparent expression signal was detected in the roots and seeds. This indicated that the expression of wheat TPT might be restricted to green tissues.展开更多
Objective To confirm the genetic relation between Giardia lamblia (G. lamblia) isolates from different geographic regions of China and other countries.Methods Genomic DNA were extracted from the trophozoites or cyst...Objective To confirm the genetic relation between Giardia lamblia (G. lamblia) isolates from different geographic regions of China and other countries.Methods Genomic DNA were extracted from the trophozoites or cysts of Giardia lamblia. The triose phosphate isomerase (tim) gene was amplified using polymerase chain reaction (PCR) technique. PCR products were digested with endonuclease and sequenced. The data of sequencing were analyzed with the DNAstar software and compared with that of the isolates acquired from GenBank.Results Of nine isolates of Giardia lamblia from China (C1, C2, CH2 and CH3), Cambodia (CAM), Australia (A1 and A2) and America (BP and CDC), respectively, 3 (A1, A2 and CAM) fit into Group 1 (WB), 2 (CH2 and CH3)) into Group 2, and 4 (C1, C2, BP and CDC) into Group 3 (GS). The results confirmed the genetic relatedness of G. lamblia isolates from all over the world.Conclusion Genotyping isolates of G. Lamblia provides important information for establishing the phylogenetic relationship or for the epidemiological evaluation of the spreading of this organism.展开更多
目的:比较使用口内扫描法和传统硅橡胶法制取种植磨牙单冠的临床修复效果评价。方法:选择62例患者(共86颗后牙),随机分为试验组和对照组,每组43颗牙(其中前磨牙13颗,磨牙30颗)。临床分别采用硅橡胶法和口内扫描法制取印模,制作氧化锆全...目的:比较使用口内扫描法和传统硅橡胶法制取种植磨牙单冠的临床修复效果评价。方法:选择62例患者(共86颗后牙),随机分为试验组和对照组,每组43颗牙(其中前磨牙13颗,磨牙30颗)。临床分别采用硅橡胶法和口内扫描法制取印模,制作氧化锆全瓷修复体,于治疗后2周复诊,采用VAS评分量表及改良的美国公共卫生总署(United states public health service,USPHS)评价系统对修复效果及舒适度进行评价。结果:口内扫描法组的患者满意度更高,舒适度更好,两组USPHS评分中除口内扫描组修复体的边缘适合性A级比例比对照组高外,其余指标的A级比例差异无统计学意义(P>0.05)。结论:口内扫描技术应用在种植磨牙单冠的印模制作中,修复效果良好、精度高外,患者满意度高,值得临床推广应用。展开更多
The relationship between photosynthesis and leaf nitrogen concentration is often used to model forest carbon fixation and ratios of different nutrient elements can modify this relationship. However, the effects of nut...The relationship between photosynthesis and leaf nitrogen concentration is often used to model forest carbon fixation and ratios of different nutrient elements can modify this relationship. However, the effects of nutrient ratios on this important relationship are generally not well understood. To investigate whether N/P/K ratios and CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> concentration ([CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">]) influence relationships between photosynthesis and nitrogen, we exposed one-year-old black spruce seedlings to two [CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">] (370 and 720 μmol·mol</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">), two N/P/K ratio regimes (constant (CNR) and variable (VNR) nutrient ratio) at 6 N supply levels (10 to 360 μmol·mol</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">). It was found that photosynthesis (P</span><sub><span style="font-family:Verdana;">n</span></sub><span style="font-family:Verdana;">) was more sensitive to nitrogen supply and N/P/K ratios under the elevated [CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">] than under ambient [CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">];under the elevated [CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">], P</span><sub><span style="font-family:Verdana;">n</span></sub><span style="font-family:Verdana;"> declined with increases in N supplies above 150 μmol·mol</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> in the CNR treatment but was relatively insensitive to N supplies of the same range in the VNR treatment. Further, our data suggest that the nutrient ratio and the CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> elevation effects on photosynthesis were via their effects on the maximum rate of carboxylation (V</span><sub><span style="font-family:Verdana;">cmax</span></sub><span style="font-family:Verdana;">) but not electron transport (J</span><sub><span style="font-family:Verdana;">max</span></sub><span style="font-family:Verdana;">) or triose phosphate utilization (TPU). The results suggest that the CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> elevation increased the demand for all three nutrient elements but the increase was greater for N than for P and K. The CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> elevation resulted in greater photosynthetic use efficiencies of N, P and K, but the increases varied with the nutrient ratio treatments. The results suggest that under elevated [CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">], higher net photosynthetic rates demand different optimal N-P-K ratios than under the current [CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">].展开更多
文摘Triose phosphate translocator (TPT) is located in the inner membrane of plant chloroplasts. It catalyzes the counter exchange of those phosphate/3-phosphoglycerate and phosphate. To obtain the basic information on the structure-function relation, a cDNA encoding the complete precursor of the triose phosphate translocator has been isolated from wheat (Triticum aestivum L.) by RACE ( rapid amplification of cDNA ends) strategies. The wheat TPT cDNA encodes a precursor protein of 402 amino acid residues with a deduced molecular weight of 43 kD. A putative processing site between Ala-78 and Ala-79 of the precursor protein is suggested by comparison with those of the TPTs from spinach (Spinacia oleracea Mill.) and maize (Zea mays L.). The mature part of wheat TPT consists of 324 amino acid with a molecular weight of 35 kD, which share 89% identity with maize TPT. The amino acids Lys-274 and Arg-275 (mature protein) which is regarded as the substrate-binding site, are both conserved in plant TPTs. The gene expression analysis for leaves, coleoptiles, roots and seeds of wheat showed that the TPT transcript was only detectable in leaves and coleoptiles. No apparent expression signal was detected in the roots and seeds. This indicated that the expression of wheat TPT might be restricted to green tissues.
文摘Objective To confirm the genetic relation between Giardia lamblia (G. lamblia) isolates from different geographic regions of China and other countries.Methods Genomic DNA were extracted from the trophozoites or cysts of Giardia lamblia. The triose phosphate isomerase (tim) gene was amplified using polymerase chain reaction (PCR) technique. PCR products were digested with endonuclease and sequenced. The data of sequencing were analyzed with the DNAstar software and compared with that of the isolates acquired from GenBank.Results Of nine isolates of Giardia lamblia from China (C1, C2, CH2 and CH3), Cambodia (CAM), Australia (A1 and A2) and America (BP and CDC), respectively, 3 (A1, A2 and CAM) fit into Group 1 (WB), 2 (CH2 and CH3)) into Group 2, and 4 (C1, C2, BP and CDC) into Group 3 (GS). The results confirmed the genetic relatedness of G. lamblia isolates from all over the world.Conclusion Genotyping isolates of G. Lamblia provides important information for establishing the phylogenetic relationship or for the epidemiological evaluation of the spreading of this organism.
文摘目的:比较使用口内扫描法和传统硅橡胶法制取种植磨牙单冠的临床修复效果评价。方法:选择62例患者(共86颗后牙),随机分为试验组和对照组,每组43颗牙(其中前磨牙13颗,磨牙30颗)。临床分别采用硅橡胶法和口内扫描法制取印模,制作氧化锆全瓷修复体,于治疗后2周复诊,采用VAS评分量表及改良的美国公共卫生总署(United states public health service,USPHS)评价系统对修复效果及舒适度进行评价。结果:口内扫描法组的患者满意度更高,舒适度更好,两组USPHS评分中除口内扫描组修复体的边缘适合性A级比例比对照组高外,其余指标的A级比例差异无统计学意义(P>0.05)。结论:口内扫描技术应用在种植磨牙单冠的印模制作中,修复效果良好、精度高外,患者满意度高,值得临床推广应用。
文摘The relationship between photosynthesis and leaf nitrogen concentration is often used to model forest carbon fixation and ratios of different nutrient elements can modify this relationship. However, the effects of nutrient ratios on this important relationship are generally not well understood. To investigate whether N/P/K ratios and CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> concentration ([CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">]) influence relationships between photosynthesis and nitrogen, we exposed one-year-old black spruce seedlings to two [CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">] (370 and 720 μmol·mol</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">), two N/P/K ratio regimes (constant (CNR) and variable (VNR) nutrient ratio) at 6 N supply levels (10 to 360 μmol·mol</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">). It was found that photosynthesis (P</span><sub><span style="font-family:Verdana;">n</span></sub><span style="font-family:Verdana;">) was more sensitive to nitrogen supply and N/P/K ratios under the elevated [CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">] than under ambient [CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">];under the elevated [CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">], P</span><sub><span style="font-family:Verdana;">n</span></sub><span style="font-family:Verdana;"> declined with increases in N supplies above 150 μmol·mol</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> in the CNR treatment but was relatively insensitive to N supplies of the same range in the VNR treatment. Further, our data suggest that the nutrient ratio and the CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> elevation effects on photosynthesis were via their effects on the maximum rate of carboxylation (V</span><sub><span style="font-family:Verdana;">cmax</span></sub><span style="font-family:Verdana;">) but not electron transport (J</span><sub><span style="font-family:Verdana;">max</span></sub><span style="font-family:Verdana;">) or triose phosphate utilization (TPU). The results suggest that the CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> elevation increased the demand for all three nutrient elements but the increase was greater for N than for P and K. The CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> elevation resulted in greater photosynthetic use efficiencies of N, P and K, but the increases varied with the nutrient ratio treatments. The results suggest that under elevated [CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">], higher net photosynthetic rates demand different optimal N-P-K ratios than under the current [CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">].