Abstract: Daqu distiller's grains were co-fermented as raw materials by Trichoderma.koningii and Trichosporon cutaneum to produce microbial oils, which can provide raw materials for bio-diesel development. The singl...Abstract: Daqu distiller's grains were co-fermented as raw materials by Trichoderma.koningii and Trichosporon cutaneum to produce microbial oils, which can provide raw materials for bio-diesel development. The single factor tests were used to investigate the effects of ratio of strains, inoculum size, culture temperature and culture time on the production of microbial oils. The best processing conditions were obtained by orthogonal test through measuring the content of microbial oils in product. The result shows that the microbial oils content of the co-fermented product under the ratio of Trichoderma.koningii to Trichosporon cutaneum of 1:1, the inoculum size of strains of 11% at 28 ℃ for 6 d is 7.15 g/L. It is shown that the production of microbial oils co-fermented by Trichoderma.koningii and Trichosporon cutaneum with Daqu distiller's grains is possible. The research provides a new idea for the reuse of Daqu distiller's grains and also provides a new way for the development of microbial oils.展开更多
Trichoderma strains possessing biological control functions have been used in agriculture against phytopathogens.Currently,only very few species of the genus were applied to or involved in plant disease control.Discov...Trichoderma strains possessing biological control functions have been used in agriculture against phytopathogens.Currently,only very few species of the genus were applied to or involved in plant disease control.Discovery of additional useful resources is desperately needed.In this study,biocontrol effect of Trichoderma vermifimicola strain TC467 was evaluated by dual confrontation culture,cellophane and two-compartment culture,pot experiments,and resistance to chemical fungicides.The results demonstrated that TC467 produced substances essential to phytopathogen control(including siderophore,xylanase and chitinase)and plant growth promoters(producing indole-3-acetic acid and gibberellin).The strain displayed a high inhibition rate against Botrytis cinerea reaching 85.26%;and its non-volatile and volatile secondary metabolites showed the inhibition rates to Sclerotinia sclerotiorum and B.cinerea as high as 84.67%and 47.62%,respectively.In pot experiments,comparing with untreated plants TC467 significantly enhanced the height and fresh weight of lettuce(Lactuca sativa var.ramosa)by 46.69%and 15.33%,respectively.Its fermentation broth effectively minimized the lettuce disease caused by B.cinerea with inhibition rate of 87.76%.In addition,the strain showed higher tolerance to hymexazol water-dispersible granule than that to other tested fungicides;at the concentration of 0.42 mg/L the growth rate of TC467 can even approach 98.19%.T.vermifimicola strain TC467 has the potential for practical application in biocontrol especially plant diseases caused by B.cinerea,which extends our knowledge of nature beneficial resources.展开更多
The discharge of effluents containing uranium(U)ions into aquatic ecosystems poses significant risks to both human health and marine organisms.This study investigated the biosorption of U(VI)ions from aqueous solution...The discharge of effluents containing uranium(U)ions into aquatic ecosystems poses significant risks to both human health and marine organisms.This study investigated the biosorption of U(VI)ions from aqueous solutions using corncob-sodium alginate(SA)-immobilized Trichoderma aureoviride hyphal pellets.Experimental parameters,including initial solution pH,initial concentration,temperature,and contact time,were systematically examined to understand their influence on the bioadsorption process.Results showed that the corncob-SA-immobilized T.aureoviride hyphal pellets exhibited maximum uranium biosorption capacity at an initial pH of 6.23 and a contact time of 12 h.The equilibrium data aligned with the Langmuir isotherm model,with a maximum biosorption capacity of 105.60 mg/g at 301 K.Moreover,biosorption kinetics followed the pseudo-second-order kinetic model.In terms of thermodynamic parameters,the changes in Gibbs-free energy(△G°)were determined to be-4.29 kJ/mol at 301 K,the changes in enthalpy(△H°)were 46.88 kJ/mol,and the changes in entropy(△S°)was 164.98 J/(mol·K).Notably,the adsorbed U(VI)could be efficiently desorbed using Na_(2)CO_(3),with a maximum readsorption efficiency of 53.6%.Scanning electron microscopic(SEM)analysis revealed U(VI)ion binding onto the hyphal pellet surface.This study underscores the efficacy of corncob-SA-immobilized T.aureoviride hyphal pellets as a cost-effective and environmentally favorable biosorbent material for removing U(VI)from aquatic ecosystems.展开更多
The nascent polypeptide-associated complex(NAC)plays crucial roles in various biological functions in eukaryotes and has been extensively studied in animals and plants;however,its role in the biocontrol mechanisms of ...The nascent polypeptide-associated complex(NAC)plays crucial roles in various biological functions in eukaryotes and has been extensively studied in animals and plants;however,its role in the biocontrol mechanisms of microorganisms requires further investigation.This study examined the function of TbNACα,a NAC subunit,in the biocontrol activity of Trichoderma breve T069 against Sclerotium rolfsii.Following deletion of the TbNACα gene from T.breve T069,the ΔTbNACα mutant exhibited significantly reduced mycelial growth,spore production,and spore germination.While volatile substances from ΔTbNACα showed no significant effect on S.rolfsii,non-volatile substances demonstrated significant inhibition of S.rolfsii growth.Transcriptome sequencing analysis revealed 3,398 differentially expressed genes in the ΔTbNACα mutant compared to wild-type T069,primarily regulating genes associated with secondary metabolite biosynthetic enzymes,hydrolases,and membrane transport proteins.Untargeted metabolomics identified 50 upregulated metabolites(27 in positive ion mode and 23 in negative ion mode)in crude extracts from ΔTbNACα mutant metabolite broth.Among these metabolic substances,ethyl caffeate demonstrated the strongest activity against S.rolfsii,with an EC_(50) of 107.15μg mL^(-1).Quantitative real-time PCR(qPCR)analysis indicated significant upregulation of genes involved in the ethyl caffeate synthesis pathway in ΔTbNACα strains.This research establishes the negative regulation of ethyl caffeate synthesis and elucidates the antagonistic inhibition mechanism of TbNACα in T.breve T069.展开更多
Background:Momordica charantia L.var.abbreviata Ser.(MCA),locally known as“ampalayang ligaw”,is a wild variety of Momordica charantia L.,and a valuable medicinal plant possessing hypoglycemic activity.However,it onl...Background:Momordica charantia L.var.abbreviata Ser.(MCA),locally known as“ampalayang ligaw”,is a wild variety of Momordica charantia L.,and a valuable medicinal plant possessing hypoglycemic activity.However,it only grows in open fields and is not widely cultivated due to slow growth and low productivity.Methods:To enhance its overall plant health,a consortium of three Trichoderma spp.was inoculated into MCA.The effects on growth,floral biology,productivity,and total triterpenes were assessed to determine the efficacy of Trichoderma spp.as a sustainable and environment-friendly plant growth promoter.A consortium of three Trichoderma spp.(T.ghanense,T.pseudokoningii,and T.harzianum)mixed in equal proportions were applied as seed coat and soil drench according to previous recommendations.Results:Results show that Trichoderma-treated MCA exhibited significantly(P<0.05)greater leaf area and growth rate compared to the untreated control.Trichoderma likewise affected the floral biology of MCA with bigger flower sizes(P<0.01),earlier male flower emergence,and increased number of female flowers(P<0.05).Regarding productivity,Trichoderma significantly increased the fruit set,dry weight and length of fruits(P<0.01),number of fruits per plant,and seed germination percentage(P<0.05).An increase in shoot length was significantly correlated to a greater number of fruits hence with higher productivity.Trichoderma also significantly enhanced(22%increase)the total triterpenes in MCA leaves,probably owing to hormonal modulation of gene expression changes as previous studies have shown.The increased triterpene content suggests an enhanced pharmacological potential of Trichoderma-treated MCA for diabetes management,warranting further bioactivity studies.Conclusion:Therefore,these results reveal the efficacy of Trichoderma on MCA productivity enhancement,demonstrating the potential of Trichoderma-treated MCA to become more amenable to commercial cultivation.展开更多
Several Trichoderma species serve as biocontrol agents in agriculture through their phytopathogen growth inhibition capabilities.However,the antagonistic mechanism of certain strains primarily operates through direct ...Several Trichoderma species serve as biocontrol agents in agriculture through their phytopathogen growth inhibition capabilities.However,the antagonistic mechanism of certain strains primarily operates through direct action.This study aims to explore an effective strain with comprehensive capabilities and elucidate its practical viability and action mechanism.Trichoderma gamsii strain TC959,exhibiting robust antagonistic and plant growth-promoting properties,was identified.The strain directly inhibits plant pathogen through the production of secondary metabolites,siderophores,and chitinase/xylanase,while promotes plant growth via indole-3-acetic acid/gibberellin release.Additionally,the strain activates induced systemic resistance by enhancing the chlorophyll a/b ratio and jasmonic acid content in pepper seedlings through root colonization,leading to elevated defense-related gene expression,antioxidant enzyme activity,and indole-3-acetic acid/gibberellin production.These mechanisms collectively enhance disease resistance and promote plant growth.Moreover,TC959 demonstrates superior resistance to oxidation and chemical fungicides,facilitating strain viability maintenance and ensuring healthy pepper seedling development.The study concludes that strain TC959 exhibits significant biocontrol potential and comprehensive functions against pepper damping-off disease,warranting further practical applications.展开更多
[Objective] The aim of this study was to isolate chitinase gene from Trichoderma atroviride strain SS003. [Method] With the aeciospore wall of armandii pine blister rust as inducer, chitinase gene was induced to expre...[Objective] The aim of this study was to isolate chitinase gene from Trichoderma atroviride strain SS003. [Method] With the aeciospore wall of armandii pine blister rust as inducer, chitinase gene was induced to express in Trichoderma atroviride cells. The cDNA fragment of chitinase gene was cloned by RT-PCR approach. [Result] The activity of chitinase induced reached 40.17 μg/10 min; and the specific fragment amplified was 834 bp in length and proved to be the fragment of chitinase gene by sequencing and sequence analysis. [Conclusion] The result showed the feasibility of isolating the full length of chitinase gene and its transformation, and further producing chitinase.展开更多
Three known compounds were isolated from the endophytic fungus Trichoderma sp Xy24 from a mangrove plant Xylocarpus granatum by using various column chromatography techniques. Their structures were identified as harzi...Three known compounds were isolated from the endophytic fungus Trichoderma sp Xy24 from a mangrove plant Xylocarpus granatum by using various column chromatography techniques. Their structures were identified as harzianone (1), trichoacorenol (2), and trichodimerol (3) by extensive spectroscopic analysis. Among them, 1 was a harziane diterpene, 2 was a sesquiterpene alcohol, and 3 was a polyketide with a completely symmetric configuration. Compound 3 exhibited medium inhibitory activity with an IC50 value of 74.6 μM using a NA (H7N9)/MUNANA model.展开更多
基金Project(10A110) supported by Hunan Provincial Education Department of ChinaProject(2010JT4055) supported by Hunan Provincial Science & Technology Department of China
文摘Abstract: Daqu distiller's grains were co-fermented as raw materials by Trichoderma.koningii and Trichosporon cutaneum to produce microbial oils, which can provide raw materials for bio-diesel development. The single factor tests were used to investigate the effects of ratio of strains, inoculum size, culture temperature and culture time on the production of microbial oils. The best processing conditions were obtained by orthogonal test through measuring the content of microbial oils in product. The result shows that the microbial oils content of the co-fermented product under the ratio of Trichoderma.koningii to Trichosporon cutaneum of 1:1, the inoculum size of strains of 11% at 28 ℃ for 6 d is 7.15 g/L. It is shown that the production of microbial oils co-fermented by Trichoderma.koningii and Trichosporon cutaneum with Daqu distiller's grains is possible. The research provides a new idea for the reuse of Daqu distiller's grains and also provides a new way for the development of microbial oils.
文摘Trichoderma strains possessing biological control functions have been used in agriculture against phytopathogens.Currently,only very few species of the genus were applied to or involved in plant disease control.Discovery of additional useful resources is desperately needed.In this study,biocontrol effect of Trichoderma vermifimicola strain TC467 was evaluated by dual confrontation culture,cellophane and two-compartment culture,pot experiments,and resistance to chemical fungicides.The results demonstrated that TC467 produced substances essential to phytopathogen control(including siderophore,xylanase and chitinase)and plant growth promoters(producing indole-3-acetic acid and gibberellin).The strain displayed a high inhibition rate against Botrytis cinerea reaching 85.26%;and its non-volatile and volatile secondary metabolites showed the inhibition rates to Sclerotinia sclerotiorum and B.cinerea as high as 84.67%and 47.62%,respectively.In pot experiments,comparing with untreated plants TC467 significantly enhanced the height and fresh weight of lettuce(Lactuca sativa var.ramosa)by 46.69%and 15.33%,respectively.Its fermentation broth effectively minimized the lettuce disease caused by B.cinerea with inhibition rate of 87.76%.In addition,the strain showed higher tolerance to hymexazol water-dispersible granule than that to other tested fungicides;at the concentration of 0.42 mg/L the growth rate of TC467 can even approach 98.19%.T.vermifimicola strain TC467 has the potential for practical application in biocontrol especially plant diseases caused by B.cinerea,which extends our knowledge of nature beneficial resources.
基金supported by the National Natural Science Foundation of China(Grant No.21968001).
文摘The discharge of effluents containing uranium(U)ions into aquatic ecosystems poses significant risks to both human health and marine organisms.This study investigated the biosorption of U(VI)ions from aqueous solutions using corncob-sodium alginate(SA)-immobilized Trichoderma aureoviride hyphal pellets.Experimental parameters,including initial solution pH,initial concentration,temperature,and contact time,were systematically examined to understand their influence on the bioadsorption process.Results showed that the corncob-SA-immobilized T.aureoviride hyphal pellets exhibited maximum uranium biosorption capacity at an initial pH of 6.23 and a contact time of 12 h.The equilibrium data aligned with the Langmuir isotherm model,with a maximum biosorption capacity of 105.60 mg/g at 301 K.Moreover,biosorption kinetics followed the pseudo-second-order kinetic model.In terms of thermodynamic parameters,the changes in Gibbs-free energy(△G°)were determined to be-4.29 kJ/mol at 301 K,the changes in enthalpy(△H°)were 46.88 kJ/mol,and the changes in entropy(△S°)was 164.98 J/(mol·K).Notably,the adsorbed U(VI)could be efficiently desorbed using Na_(2)CO_(3),with a maximum readsorption efficiency of 53.6%.Scanning electron microscopic(SEM)analysis revealed U(VI)ion binding onto the hyphal pellet surface.This study underscores the efficacy of corncob-SA-immobilized T.aureoviride hyphal pellets as a cost-effective and environmentally favorable biosorbent material for removing U(VI)from aquatic ecosystems.
基金supported by the National Natural Science Foundation of China(32060589).
文摘The nascent polypeptide-associated complex(NAC)plays crucial roles in various biological functions in eukaryotes and has been extensively studied in animals and plants;however,its role in the biocontrol mechanisms of microorganisms requires further investigation.This study examined the function of TbNACα,a NAC subunit,in the biocontrol activity of Trichoderma breve T069 against Sclerotium rolfsii.Following deletion of the TbNACα gene from T.breve T069,the ΔTbNACα mutant exhibited significantly reduced mycelial growth,spore production,and spore germination.While volatile substances from ΔTbNACα showed no significant effect on S.rolfsii,non-volatile substances demonstrated significant inhibition of S.rolfsii growth.Transcriptome sequencing analysis revealed 3,398 differentially expressed genes in the ΔTbNACα mutant compared to wild-type T069,primarily regulating genes associated with secondary metabolite biosynthetic enzymes,hydrolases,and membrane transport proteins.Untargeted metabolomics identified 50 upregulated metabolites(27 in positive ion mode and 23 in negative ion mode)in crude extracts from ΔTbNACα mutant metabolite broth.Among these metabolic substances,ethyl caffeate demonstrated the strongest activity against S.rolfsii,with an EC_(50) of 107.15μg mL^(-1).Quantitative real-time PCR(qPCR)analysis indicated significant upregulation of genes involved in the ethyl caffeate synthesis pathway in ΔTbNACα strains.This research establishes the negative regulation of ethyl caffeate synthesis and elucidates the antagonistic inhibition mechanism of TbNACα in T.breve T069.
文摘Background:Momordica charantia L.var.abbreviata Ser.(MCA),locally known as“ampalayang ligaw”,is a wild variety of Momordica charantia L.,and a valuable medicinal plant possessing hypoglycemic activity.However,it only grows in open fields and is not widely cultivated due to slow growth and low productivity.Methods:To enhance its overall plant health,a consortium of three Trichoderma spp.was inoculated into MCA.The effects on growth,floral biology,productivity,and total triterpenes were assessed to determine the efficacy of Trichoderma spp.as a sustainable and environment-friendly plant growth promoter.A consortium of three Trichoderma spp.(T.ghanense,T.pseudokoningii,and T.harzianum)mixed in equal proportions were applied as seed coat and soil drench according to previous recommendations.Results:Results show that Trichoderma-treated MCA exhibited significantly(P<0.05)greater leaf area and growth rate compared to the untreated control.Trichoderma likewise affected the floral biology of MCA with bigger flower sizes(P<0.01),earlier male flower emergence,and increased number of female flowers(P<0.05).Regarding productivity,Trichoderma significantly increased the fruit set,dry weight and length of fruits(P<0.01),number of fruits per plant,and seed germination percentage(P<0.05).An increase in shoot length was significantly correlated to a greater number of fruits hence with higher productivity.Trichoderma also significantly enhanced(22%increase)the total triterpenes in MCA leaves,probably owing to hormonal modulation of gene expression changes as previous studies have shown.The increased triterpene content suggests an enhanced pharmacological potential of Trichoderma-treated MCA for diabetes management,warranting further bioactivity studies.Conclusion:Therefore,these results reveal the efficacy of Trichoderma on MCA productivity enhancement,demonstrating the potential of Trichoderma-treated MCA to become more amenable to commercial cultivation.
基金supported by the National Key Research and Development Program of China(2022YFC2303000).
文摘Several Trichoderma species serve as biocontrol agents in agriculture through their phytopathogen growth inhibition capabilities.However,the antagonistic mechanism of certain strains primarily operates through direct action.This study aims to explore an effective strain with comprehensive capabilities and elucidate its practical viability and action mechanism.Trichoderma gamsii strain TC959,exhibiting robust antagonistic and plant growth-promoting properties,was identified.The strain directly inhibits plant pathogen through the production of secondary metabolites,siderophores,and chitinase/xylanase,while promotes plant growth via indole-3-acetic acid/gibberellin release.Additionally,the strain activates induced systemic resistance by enhancing the chlorophyll a/b ratio and jasmonic acid content in pepper seedlings through root colonization,leading to elevated defense-related gene expression,antioxidant enzyme activity,and indole-3-acetic acid/gibberellin production.These mechanisms collectively enhance disease resistance and promote plant growth.Moreover,TC959 demonstrates superior resistance to oxidation and chemical fungicides,facilitating strain viability maintenance and ensuring healthy pepper seedling development.The study concludes that strain TC959 exhibits significant biocontrol potential and comprehensive functions against pepper damping-off disease,warranting further practical applications.
基金Supported by Science Foundation from Southwest Forestry College(200524M)Natural Science Foundation of Yunan Province(2002C0047M)Key Scientific and Technological Project of Yunan Province(2003NG12)~~
文摘[Objective] The aim of this study was to isolate chitinase gene from Trichoderma atroviride strain SS003. [Method] With the aeciospore wall of armandii pine blister rust as inducer, chitinase gene was induced to express in Trichoderma atroviride cells. The cDNA fragment of chitinase gene was cloned by RT-PCR approach. [Result] The activity of chitinase induced reached 40.17 μg/10 min; and the specific fragment amplified was 834 bp in length and proved to be the fragment of chitinase gene by sequencing and sequence analysis. [Conclusion] The result showed the feasibility of isolating the full length of chitinase gene and its transformation, and further producing chitinase.
基金Science&Technology Project of Guangdong Province(Grant No.2011A080403020)the Fundamental Research Funds for the Central Universities(Grant No.2012N06)
文摘Three known compounds were isolated from the endophytic fungus Trichoderma sp Xy24 from a mangrove plant Xylocarpus granatum by using various column chromatography techniques. Their structures were identified as harzianone (1), trichoacorenol (2), and trichodimerol (3) by extensive spectroscopic analysis. Among them, 1 was a harziane diterpene, 2 was a sesquiterpene alcohol, and 3 was a polyketide with a completely symmetric configuration. Compound 3 exhibited medium inhibitory activity with an IC50 value of 74.6 μM using a NA (H7N9)/MUNANA model.