For exploring the influences of application and residue of chemical fungi- cides on chlamydospore preparations of Trichoderma spp., the effects of seven chemical fungicides on chlamydospore germination and mycelia gro...For exploring the influences of application and residue of chemical fungi- cides on chlamydospore preparations of Trichoderma spp., the effects of seven chemical fungicides on chlamydospore germination and mycelia growth of two bio- control fungi T. harzianum 610 and T. Iongibrachiatum 758 were studied. Carben- dazim, tebuconazole and difenoconazole showed strong toxicities, thiram and car- bexin showed moderate toxicities, and metalaxyl showed Mycelia growth of the two strains was more sensitive to most tested fungicides than those of chlamydospore germination. Chlamydospore germination of 610 was more sensitive to tested fungicides than those of 758, and mycelia growth of 758 was more sensitive to most tested fungi- cides than those of 610. Among the seven fungicides, 98% carbendazim had the strongest effects (ECru values were 1.64 and 0.05μpg/ml), and 70% pentachloroni- trobenzene had the weakest effects (EC50 values were 1.64 and 0,05 μg/ml) for chlamydospore germination and mycelia growth of 610. As for 758, 98% carbendaz- im had the strongest inhibitory effects and 95% metalaxyl had the weakest inhibitory for chlamydospore germination of 756 (EC50 values were 0.62 and 1 108.61 μg/ml respectively), whereas 96.2% tebuconazole showed the strongest inhibitory effects for mycelia growth of 758 (EC= value was 0.32μg/ml), and 95% metalaxyl was the weakest (EC= value was 1 206.29 μg/ml). According to the applied concentration of different fungicides in practice, we concluded that chlamydospore preparations of 610 and 758 could not be combined with carbendazim, tebuconazole, thiram and carboxin for controlling plant diseases, and the pesticide residues to the biocontrol effects should be kept in mind. Chlamydospore preparations of 610 and 758 can be and difenoconazole for controlling plant dis- eases, 758 chlamydospore preparations and germinated chlamydospore of 610 can be combined with metalaxyl for controlling plant diseases, and pesticide residue risk was not serious.展开更多
[Objective] This study was conducted to investigate the effects of Penicillium spp. and Trichoderma spp. on the growth of Pleurotus ostreatus (oyster mushroom) and to screen effective disinfectants to control them a...[Objective] This study was conducted to investigate the effects of Penicillium spp. and Trichoderma spp. on the growth of Pleurotus ostreatus (oyster mushroom) and to screen effective disinfectants to control them and other pathogenic microbes. [Method] Six strains or species of Penicilliurn and Trichoderma were inocu- lated into PDA plates growing with P. ostreatus to observe the growth of their mycelia. And the inhibitory effects of hydrogen peroxide, bromogeramine bromide, 84 disinfectant, lysol, potassium permanganate, and 75% medical alcohol on Trichoderma pleuroticola, Trichoderma viride, Trichoderma harzianum, Penicillium citrinum, Penicillium thomii and Penicillium brevicompactum were detected. [Result] Confrontation test revealed that Penicillium spp. and Trichoderma spp. competed for nutrients with P. ostreatus mycelia, antagonized against the growth of P. ostreatus mycelia, invaded and twined around P. ostreatus mycelia, and also produced toxins poisoning P. ostreatus mycelia. The six disinfectants exhibited different inhibitory effects against different species of Penicillium and Trichoderma. Among them the in- hibitory effects of bromogeramine bromide against the six species of Penicillium and Trichoderma were significantly different. However, the inhibitory effects of 3% hydrogen peroxide, 84 disinfectant, 5% lysol, potassium permanganate and 75% medical alcohol were significantly different among Penicillium spp., but did not among Tri- choderma spp. [Conclusion] Bromogeramine bromide can be used to control the bacteria and fungi in mushroom production for it has significant inhibitory effects on the six species of both Penicillium and Trichoderma.展开更多
Trichoderma spp. is a filamentous soil fungus known as an effective biocontrol agent of a range of important airborne and soilborne pathogens, it has universal distribution and economic importance. This article review...Trichoderma spp. is a filamentous soil fungus known as an effective biocontrol agent of a range of important airborne and soilborne pathogens, it has universal distribution and economic importance. This article reviewed the researches on biocontrol mechanism for plant diseases and application of Trichoderma spp., especially Trichoderma harzianum in recent years展开更多
Trichoderma spp. have been known for their strong abilities to produce extracellular enzymes, especially cellulases and glucanases by T. reesei, and also for their abilities to control plant pathogens. Most notably, a...Trichoderma spp. have been known for their strong abilities to produce extracellular enzymes, especially cellulases and glucanases by T. reesei, and also for their abilities to control plant pathogens. Most notably, a number of lines of evidence indicate that the agriculturally relevant strains are synergistic plant symbionts. As plant symbionts they possess the following characteristics: (a) they infect plant roots but cause the plant to restrict their growth to outer layers of the plant cortex (an exception is the recent discoveries of plant endophytic strains of Trichoderma and Gliocladium ), (b) they produce bioactive plant molecules in the zone of interaction that (c) induce localized systemic resistance to plant diseases and (d) systemic plant resistance to diseases that in some respects is similar to that induced by rhizobacteria, (e) they induce changes in plant proteomes, (f) increase plant growth and yield at least in part by enhancing root growth, and (g) they increase plant nutrient uptake. The increase in plant growth and yields is strongly interactive with plant genotype, at least in maize. There also are very significant increases in the knowledge of events that occur in mycoparasitism that in many respects have features in common with their interactions with plants. They are highly resistant to toxicants and have recently been shown to degrade cyanide and take up, and then degrade, metallocyanides. These discoveries allow new uses for the organisms in managed plant systems, including agriculture. For example, the induced systemic resistance system allows control of fungi, bacteria, Oomycetes and even one virus at sites temporally and spatially distant from the site of application. The abilities of the fungi to resist/degrade toxicants and increase plant growth indicate they will highly useful components in plant-microbe or microbe-only strategies for remediation of soil and water pollution. Finally, there are new uses of their enzyme systems for production of chitin degradation products for use as nutraceuticals or pharmaceuticals.展开更多
Phytophthora species are particularly aggressive plant pathogens and are often associated with the decline of many tree species, including oak and beech. Several fungi and bacteria species are known as potential antag...Phytophthora species are particularly aggressive plant pathogens and are often associated with the decline of many tree species, including oak and beech. Several fungi and bacteria species are known as potential antagonists usable as biological control agents. Phosphonate (H3PO3), commonly branded as phosphite, has also been used in the past years to protect trees against invasive Phytophthora spp.. This study aimed at comparing the effects of selected antagonist microorganisms and phosphonate, when applied by microinjection or leaf treatment. Antagonistic species were first selected for their high inhibitory activity against problematic Phytophthora species, such as Phytophthora cactorum, P. quercina and P. plurivora attacking Quercus robur and Fagus sylvatica in Polish forests. Three endophytic species Trichoderma atroviride (two strains), T. harzianum and Bacillus amyloliquefaciens showed a high control activity, and their efficacy was then assessed in comparison with a phosphonate treatment. Two application methods were experimented in this study: injection of a solution of spores or phosphonate into the sap vessels of beech or a foliar treatment on oak. Phosphonate and two strains of Trichoderma significantly reduced the necrotic area on oak leaves inoculated with P. plurivora and one strain of T. atroviride significantly reduced necrotic areas on beech branches. These results are therefore promising of a novel way to control Phytophthora spp. in forest stands and nurseries.展开更多
Maize is the main crop for Mexicans;however, it is affected by species of fungi causing ear rot. This research aimed to evaluate the effect of T. asperellum T11, T. harzianum T1 4 y T. longibrachiatum T1 40 on some ag...Maize is the main crop for Mexicans;however, it is affected by species of fungi causing ear rot. This research aimed to evaluate the effect of T. asperellum T11, T. harzianum T1 4 y T. longibrachiatum T1 40 on some agronomic variables of four maize genotypes. The seeds of the genotypes H-515, Zapata 7, and H-507 were treated with a suspension of Trichoderma spp. to 1 × 10<sup>8</sup> spores mL<sup>-1</sup>, using a control (untreated seed), and Benomyl as chemical control. The planting was in Morelos, in a completely random block design with a factorial arrangement. The ear rot was natural. Data were obtained at the end of the crop cycle and processed in SAS 9.4<sup><sup>®</sup></sup>. H-515 genotype had the greatest effect on the treatment of maize seeds with Trichoderma spp. (5.562 kg);T. asperellum T11 was the strain that stood out with a mean yield of 50 ears in an area of 16 m<sup>2</sup> of 4.904 kg, and control of 4.448 kg. Our results are an economic option for farmers to contemplate the use of Trichoderma and obtain its benefits.展开更多
Microbes that are beneficial to plants are used to enhance the crop growth,yield and are alternatives to chemical fertilizers.Trichoderma and Bacillus are the predominant plant growth-promoting fungi and bacteria.The ...Microbes that are beneficial to plants are used to enhance the crop growth,yield and are alternatives to chemical fertilizers.Trichoderma and Bacillus are the predominant plant growth-promoting fungi and bacteria.The objective of this study was select,characterize,and evaluate isolates of Trichoderma spp.and Bacillus spp.native from the northern region of Sinaloa,Mexico,and assess their effect on growth promotion in maize(Zea mays L.).In greenhouse conditions,four Trichoderma isolates and twenty Bacillus isolates,as well as two controls,were tested in a completely randomized design with three replicates.We selected the two best strains of Trichoderma and Bacillus:TB=Trichoderma asperellum,TF=Trichoderma virens,B14=Bacillus cereus sensu lato and B17=Bacillus cereus,which were evaluated in the field in a completely randomized blocks in factorial arrangement design with three replicates applying different rates of nitrogen fertilizer(0,150 kg N/ha,and 300 kg N/ha).Treatments 5(B17=B.cereus)and 11(TF=T.virens)both fertilized with 150 kg N/ha showed similar yields and they did not reveal significant differences from the treatments fertilized with 300 kg N/ha.This indicated that treatment 5(B17=B.cereus with 150 kg N/ha)and treatment 11(TF=T.virens with 150 kg N/ha)were efficient as growth promoters,by not showing significant differences in root volume and dry weight of foliage.The results indicated a reduction of 50% in the rate of nitrogen to fertilizer required for maize(Zea mays L.)crops.These microorganisms Trichoderma and Bacillus could be an alternative to reduce the use of chemical fertilizers in maize.展开更多
From over 800 fungal strains of Tri-choderma Spp. , 6 strains were foundto greatly inhibit the growing of Rhi-zocotonia solani, the pathogen of ricesheath blight in dual culture. Amongthem, strain T3 was the best anta...From over 800 fungal strains of Tri-choderma Spp. , 6 strains were foundto greatly inhibit the growing of Rhi-zocotonia solani, the pathogen of ricesheath blight in dual culture. Amongthem, strain T3 was the best antago-nist, which reduced the growing ofthe pathogen by 52.54% (Table 1).展开更多
Trichoderma strains possessing biological control functions have been used in agriculture against phytopathogens.Currently,only very few species of the genus were applied to or involved in plant disease control.Discov...Trichoderma strains possessing biological control functions have been used in agriculture against phytopathogens.Currently,only very few species of the genus were applied to or involved in plant disease control.Discovery of additional useful resources is desperately needed.In this study,biocontrol effect of Trichoderma vermifimicola strain TC467 was evaluated by dual confrontation culture,cellophane and two-compartment culture,pot experiments,and resistance to chemical fungicides.The results demonstrated that TC467 produced substances essential to phytopathogen control(including siderophore,xylanase and chitinase)and plant growth promoters(producing indole-3-acetic acid and gibberellin).The strain displayed a high inhibition rate against Botrytis cinerea reaching 85.26%;and its non-volatile and volatile secondary metabolites showed the inhibition rates to Sclerotinia sclerotiorum and B.cinerea as high as 84.67%and 47.62%,respectively.In pot experiments,comparing with untreated plants TC467 significantly enhanced the height and fresh weight of lettuce(Lactuca sativa var.ramosa)by 46.69%and 15.33%,respectively.Its fermentation broth effectively minimized the lettuce disease caused by B.cinerea with inhibition rate of 87.76%.In addition,the strain showed higher tolerance to hymexazol water-dispersible granule than that to other tested fungicides;at the concentration of 0.42 mg/L the growth rate of TC467 can even approach 98.19%.T.vermifimicola strain TC467 has the potential for practical application in biocontrol especially plant diseases caused by B.cinerea,which extends our knowledge of nature beneficial resources.展开更多
The discharge of effluents containing uranium(U)ions into aquatic ecosystems poses significant risks to both human health and marine organisms.This study investigated the biosorption of U(VI)ions from aqueous solution...The discharge of effluents containing uranium(U)ions into aquatic ecosystems poses significant risks to both human health and marine organisms.This study investigated the biosorption of U(VI)ions from aqueous solutions using corncob-sodium alginate(SA)-immobilized Trichoderma aureoviride hyphal pellets.Experimental parameters,including initial solution pH,initial concentration,temperature,and contact time,were systematically examined to understand their influence on the bioadsorption process.Results showed that the corncob-SA-immobilized T.aureoviride hyphal pellets exhibited maximum uranium biosorption capacity at an initial pH of 6.23 and a contact time of 12 h.The equilibrium data aligned with the Langmuir isotherm model,with a maximum biosorption capacity of 105.60 mg/g at 301 K.Moreover,biosorption kinetics followed the pseudo-second-order kinetic model.In terms of thermodynamic parameters,the changes in Gibbs-free energy(△G°)were determined to be-4.29 kJ/mol at 301 K,the changes in enthalpy(△H°)were 46.88 kJ/mol,and the changes in entropy(△S°)was 164.98 J/(mol·K).Notably,the adsorbed U(VI)could be efficiently desorbed using Na_(2)CO_(3),with a maximum readsorption efficiency of 53.6%.Scanning electron microscopic(SEM)analysis revealed U(VI)ion binding onto the hyphal pellet surface.This study underscores the efficacy of corncob-SA-immobilized T.aureoviride hyphal pellets as a cost-effective and environmentally favorable biosorbent material for removing U(VI)from aquatic ecosystems.展开更多
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303057)948 Program(2011-G4)~~
文摘For exploring the influences of application and residue of chemical fungi- cides on chlamydospore preparations of Trichoderma spp., the effects of seven chemical fungicides on chlamydospore germination and mycelia growth of two bio- control fungi T. harzianum 610 and T. Iongibrachiatum 758 were studied. Carben- dazim, tebuconazole and difenoconazole showed strong toxicities, thiram and car- bexin showed moderate toxicities, and metalaxyl showed Mycelia growth of the two strains was more sensitive to most tested fungicides than those of chlamydospore germination. Chlamydospore germination of 610 was more sensitive to tested fungicides than those of 758, and mycelia growth of 758 was more sensitive to most tested fungi- cides than those of 610. Among the seven fungicides, 98% carbendazim had the strongest effects (ECru values were 1.64 and 0.05μpg/ml), and 70% pentachloroni- trobenzene had the weakest effects (EC50 values were 1.64 and 0,05 μg/ml) for chlamydospore germination and mycelia growth of 610. As for 758, 98% carbendaz- im had the strongest inhibitory effects and 95% metalaxyl had the weakest inhibitory for chlamydospore germination of 756 (EC50 values were 0.62 and 1 108.61 μg/ml respectively), whereas 96.2% tebuconazole showed the strongest inhibitory effects for mycelia growth of 758 (EC= value was 0.32μg/ml), and 95% metalaxyl was the weakest (EC= value was 1 206.29 μg/ml). According to the applied concentration of different fungicides in practice, we concluded that chlamydospore preparations of 610 and 758 could not be combined with carbendazim, tebuconazole, thiram and carboxin for controlling plant diseases, and the pesticide residues to the biocontrol effects should be kept in mind. Chlamydospore preparations of 610 and 758 can be and difenoconazole for controlling plant dis- eases, 758 chlamydospore preparations and germinated chlamydospore of 610 can be combined with metalaxyl for controlling plant diseases, and pesticide residue risk was not serious.
文摘[Objective] This study was conducted to investigate the effects of Penicillium spp. and Trichoderma spp. on the growth of Pleurotus ostreatus (oyster mushroom) and to screen effective disinfectants to control them and other pathogenic microbes. [Method] Six strains or species of Penicilliurn and Trichoderma were inocu- lated into PDA plates growing with P. ostreatus to observe the growth of their mycelia. And the inhibitory effects of hydrogen peroxide, bromogeramine bromide, 84 disinfectant, lysol, potassium permanganate, and 75% medical alcohol on Trichoderma pleuroticola, Trichoderma viride, Trichoderma harzianum, Penicillium citrinum, Penicillium thomii and Penicillium brevicompactum were detected. [Result] Confrontation test revealed that Penicillium spp. and Trichoderma spp. competed for nutrients with P. ostreatus mycelia, antagonized against the growth of P. ostreatus mycelia, invaded and twined around P. ostreatus mycelia, and also produced toxins poisoning P. ostreatus mycelia. The six disinfectants exhibited different inhibitory effects against different species of Penicillium and Trichoderma. Among them the in- hibitory effects of bromogeramine bromide against the six species of Penicillium and Trichoderma were significantly different. However, the inhibitory effects of 3% hydrogen peroxide, 84 disinfectant, 5% lysol, potassium permanganate and 75% medical alcohol were significantly different among Penicillium spp., but did not among Tri- choderma spp. [Conclusion] Bromogeramine bromide can be used to control the bacteria and fungi in mushroom production for it has significant inhibitory effects on the six species of both Penicillium and Trichoderma.
基金Supported by Chinese National Programs for High Technology Research and Development(2003AA241140)
文摘Trichoderma spp. is a filamentous soil fungus known as an effective biocontrol agent of a range of important airborne and soilborne pathogens, it has universal distribution and economic importance. This article reviewed the researches on biocontrol mechanism for plant diseases and application of Trichoderma spp., especially Trichoderma harzianum in recent years
文摘Trichoderma spp. have been known for their strong abilities to produce extracellular enzymes, especially cellulases and glucanases by T. reesei, and also for their abilities to control plant pathogens. Most notably, a number of lines of evidence indicate that the agriculturally relevant strains are synergistic plant symbionts. As plant symbionts they possess the following characteristics: (a) they infect plant roots but cause the plant to restrict their growth to outer layers of the plant cortex (an exception is the recent discoveries of plant endophytic strains of Trichoderma and Gliocladium ), (b) they produce bioactive plant molecules in the zone of interaction that (c) induce localized systemic resistance to plant diseases and (d) systemic plant resistance to diseases that in some respects is similar to that induced by rhizobacteria, (e) they induce changes in plant proteomes, (f) increase plant growth and yield at least in part by enhancing root growth, and (g) they increase plant nutrient uptake. The increase in plant growth and yields is strongly interactive with plant genotype, at least in maize. There also are very significant increases in the knowledge of events that occur in mycoparasitism that in many respects have features in common with their interactions with plants. They are highly resistant to toxicants and have recently been shown to degrade cyanide and take up, and then degrade, metallocyanides. These discoveries allow new uses for the organisms in managed plant systems, including agriculture. For example, the induced systemic resistance system allows control of fungi, bacteria, Oomycetes and even one virus at sites temporally and spatially distant from the site of application. The abilities of the fungi to resist/degrade toxicants and increase plant growth indicate they will highly useful components in plant-microbe or microbe-only strategies for remediation of soil and water pollution. Finally, there are new uses of their enzyme systems for production of chitin degradation products for use as nutraceuticals or pharmaceuticals.
文摘Phytophthora species are particularly aggressive plant pathogens and are often associated with the decline of many tree species, including oak and beech. Several fungi and bacteria species are known as potential antagonists usable as biological control agents. Phosphonate (H3PO3), commonly branded as phosphite, has also been used in the past years to protect trees against invasive Phytophthora spp.. This study aimed at comparing the effects of selected antagonist microorganisms and phosphonate, when applied by microinjection or leaf treatment. Antagonistic species were first selected for their high inhibitory activity against problematic Phytophthora species, such as Phytophthora cactorum, P. quercina and P. plurivora attacking Quercus robur and Fagus sylvatica in Polish forests. Three endophytic species Trichoderma atroviride (two strains), T. harzianum and Bacillus amyloliquefaciens showed a high control activity, and their efficacy was then assessed in comparison with a phosphonate treatment. Two application methods were experimented in this study: injection of a solution of spores or phosphonate into the sap vessels of beech or a foliar treatment on oak. Phosphonate and two strains of Trichoderma significantly reduced the necrotic area on oak leaves inoculated with P. plurivora and one strain of T. atroviride significantly reduced necrotic areas on beech branches. These results are therefore promising of a novel way to control Phytophthora spp. in forest stands and nurseries.
文摘Maize is the main crop for Mexicans;however, it is affected by species of fungi causing ear rot. This research aimed to evaluate the effect of T. asperellum T11, T. harzianum T1 4 y T. longibrachiatum T1 40 on some agronomic variables of four maize genotypes. The seeds of the genotypes H-515, Zapata 7, and H-507 were treated with a suspension of Trichoderma spp. to 1 × 10<sup>8</sup> spores mL<sup>-1</sup>, using a control (untreated seed), and Benomyl as chemical control. The planting was in Morelos, in a completely random block design with a factorial arrangement. The ear rot was natural. Data were obtained at the end of the crop cycle and processed in SAS 9.4<sup><sup>®</sup></sup>. H-515 genotype had the greatest effect on the treatment of maize seeds with Trichoderma spp. (5.562 kg);T. asperellum T11 was the strain that stood out with a mean yield of 50 ears in an area of 16 m<sup>2</sup> of 4.904 kg, and control of 4.448 kg. Our results are an economic option for farmers to contemplate the use of Trichoderma and obtain its benefits.
文摘Microbes that are beneficial to plants are used to enhance the crop growth,yield and are alternatives to chemical fertilizers.Trichoderma and Bacillus are the predominant plant growth-promoting fungi and bacteria.The objective of this study was select,characterize,and evaluate isolates of Trichoderma spp.and Bacillus spp.native from the northern region of Sinaloa,Mexico,and assess their effect on growth promotion in maize(Zea mays L.).In greenhouse conditions,four Trichoderma isolates and twenty Bacillus isolates,as well as two controls,were tested in a completely randomized design with three replicates.We selected the two best strains of Trichoderma and Bacillus:TB=Trichoderma asperellum,TF=Trichoderma virens,B14=Bacillus cereus sensu lato and B17=Bacillus cereus,which were evaluated in the field in a completely randomized blocks in factorial arrangement design with three replicates applying different rates of nitrogen fertilizer(0,150 kg N/ha,and 300 kg N/ha).Treatments 5(B17=B.cereus)and 11(TF=T.virens)both fertilized with 150 kg N/ha showed similar yields and they did not reveal significant differences from the treatments fertilized with 300 kg N/ha.This indicated that treatment 5(B17=B.cereus with 150 kg N/ha)and treatment 11(TF=T.virens with 150 kg N/ha)were efficient as growth promoters,by not showing significant differences in root volume and dry weight of foliage.The results indicated a reduction of 50% in the rate of nitrogen to fertilizer required for maize(Zea mays L.)crops.These microorganisms Trichoderma and Bacillus could be an alternative to reduce the use of chemical fertilizers in maize.
文摘From over 800 fungal strains of Tri-choderma Spp. , 6 strains were foundto greatly inhibit the growing of Rhi-zocotonia solani, the pathogen of ricesheath blight in dual culture. Amongthem, strain T3 was the best antago-nist, which reduced the growing ofthe pathogen by 52.54% (Table 1).
文摘Trichoderma strains possessing biological control functions have been used in agriculture against phytopathogens.Currently,only very few species of the genus were applied to or involved in plant disease control.Discovery of additional useful resources is desperately needed.In this study,biocontrol effect of Trichoderma vermifimicola strain TC467 was evaluated by dual confrontation culture,cellophane and two-compartment culture,pot experiments,and resistance to chemical fungicides.The results demonstrated that TC467 produced substances essential to phytopathogen control(including siderophore,xylanase and chitinase)and plant growth promoters(producing indole-3-acetic acid and gibberellin).The strain displayed a high inhibition rate against Botrytis cinerea reaching 85.26%;and its non-volatile and volatile secondary metabolites showed the inhibition rates to Sclerotinia sclerotiorum and B.cinerea as high as 84.67%and 47.62%,respectively.In pot experiments,comparing with untreated plants TC467 significantly enhanced the height and fresh weight of lettuce(Lactuca sativa var.ramosa)by 46.69%and 15.33%,respectively.Its fermentation broth effectively minimized the lettuce disease caused by B.cinerea with inhibition rate of 87.76%.In addition,the strain showed higher tolerance to hymexazol water-dispersible granule than that to other tested fungicides;at the concentration of 0.42 mg/L the growth rate of TC467 can even approach 98.19%.T.vermifimicola strain TC467 has the potential for practical application in biocontrol especially plant diseases caused by B.cinerea,which extends our knowledge of nature beneficial resources.
基金supported by the National Natural Science Foundation of China(Grant No.21968001).
文摘The discharge of effluents containing uranium(U)ions into aquatic ecosystems poses significant risks to both human health and marine organisms.This study investigated the biosorption of U(VI)ions from aqueous solutions using corncob-sodium alginate(SA)-immobilized Trichoderma aureoviride hyphal pellets.Experimental parameters,including initial solution pH,initial concentration,temperature,and contact time,were systematically examined to understand their influence on the bioadsorption process.Results showed that the corncob-SA-immobilized T.aureoviride hyphal pellets exhibited maximum uranium biosorption capacity at an initial pH of 6.23 and a contact time of 12 h.The equilibrium data aligned with the Langmuir isotherm model,with a maximum biosorption capacity of 105.60 mg/g at 301 K.Moreover,biosorption kinetics followed the pseudo-second-order kinetic model.In terms of thermodynamic parameters,the changes in Gibbs-free energy(△G°)were determined to be-4.29 kJ/mol at 301 K,the changes in enthalpy(△H°)were 46.88 kJ/mol,and the changes in entropy(△S°)was 164.98 J/(mol·K).Notably,the adsorbed U(VI)could be efficiently desorbed using Na_(2)CO_(3),with a maximum readsorption efficiency of 53.6%.Scanning electron microscopic(SEM)analysis revealed U(VI)ion binding onto the hyphal pellet surface.This study underscores the efficacy of corncob-SA-immobilized T.aureoviride hyphal pellets as a cost-effective and environmentally favorable biosorbent material for removing U(VI)from aquatic ecosystems.