Interaction between the Yangtze River and its tributaries in the Three Gorges Reservoir has an important influence on tributary algal blooms.Taking the Xiaojiang River as a typical tributary,a binary mixing model used...Interaction between the Yangtze River and its tributaries in the Three Gorges Reservoir has an important influence on tributary algal blooms.Taking the Xiaojiang River as a typical tributary,a binary mixing model used stable isotopes of hydrogen and oxygen to quantitatively analyze the water contribution and nutrient source structure of the tributary backwater area.Results showed that the isotope content(δD:−54.7‰,δ^(18)O−7.8‰)in the Yangtze River was higher than that in the tributaries(δD:−74.2‰,δ^(18)O−17.0‰)in the non-flood season and lower than that in the tributaries in the flood season.The Yangtze River contributed more than 50%water volume of the tributary backwater area in the non-flood season.The total nitrogen and total phosphorus concentrations in the backwater area were estimated based on water contribution ratio,and the results were in good agreement with the monitoring results.Load estimation showed that the nitrogen and phosphorus contribution ratio of the Yangtze River to the tributary backwater area was approximately 40%-80%in the non-flood season,and approximately 20%-40%in the flood season,on average.This study showed that the interaction between the Xiaojiang River and the Yangtze River is significant,and that Yangtze River recharge is an important source of nutrients in the Xiaojiang backwater area,which may play a driving role in Xiaojiang River algal blooms.展开更多
The blocking or reversing effect of the downstream trunk river on its tributary lakes is an essential aspect of river-lake hydraulics. To measure how and the extent to which a trunk river can influence its tributary l...The blocking or reversing effect of the downstream trunk river on its tributary lakes is an essential aspect of river-lake hydraulics. To measure how and the extent to which a trunk river can influence its tributary lakes, we made a case study in Changjiang River and one of its tributary lakes, Lake East Dongting (Lake ED) during a 35-year study period (1980-2014). Specifically, we investigated Lake ED's discharge ability into Changjiang River using stage-discharge relationship curves, and hence the changes of the lake discharge abil- ity under different hydrologic conditions of the Changjiang River. The results show that (1) the Changjiang River does exert a huge impact on the water regimes of Lake ED. And this impact varies seasonally. A variation of 3000 m3/s in Changjiang River's runoff would change the lake water level by about 1.1 m in dry seasons, by 0.4 m in wet seasons, and by 0.6 m during severe summer floods. (2) Changes in the Changjiang River runoff triggered by the Three Gorges Dam since 2003 have led to dramatic water regime variations in Lake ED. Other factors, including reduction of lake inflow and the lake bed erosion, also exacerbated the water regime variations in Lake ED.展开更多
Ruxi River is a tributary of the Three Gorges Reservoir. This study examined the temporal and spatial dynamics in particle size characteristics and the associated nutrients and contaminants of the fluvial suspended an...Ruxi River is a tributary of the Three Gorges Reservoir. This study examined the temporal and spatial dynamics in particle size characteristics and the associated nutrients and contaminants of the fluvial suspended and deposited sediments along the Ruxi River. Temporal variations in the particle size distribution of the suspended sediment are controlled mainly by differences in sediment source during different seasons. Total organic carbon (TOC), total nitrogen (TN) and total phosphorous (TP) in the 〈 62 μm fraction of the suspended sediment exhibit considerably higher concentrations in spring, indicating high probability of algal blooms in the backwater areas. Downstream trends in the nutrient contents of 〈 62 pm deposited sediments imply the greatest potential for eutrophication in the backwater ends, where highest nutrient concentrations were detected. Assessment of metal contamination shows that the sediments deposited in the water-level fluctuation zone were moderately to strongly contaminated by Cadmium (Cd), with a considerably high potential ecological risk. The findings reported have emphasized the impacts of reservoir impoundment on aquatic and/or terrestrial environment in this region. More information on physical, chemical and biological processes of sediment and sediment-associated materials are needed for developing ecologically sound policies management. environmentally and of water and sediment展开更多
The Kvíárjokull,a southern outlet glacier of the Vatnajokull,is confined in the mountain foreland by lateral moraines measuring a height of up to 150 m. Each of the lateral moraines shows considerable breach...The Kvíárjokull,a southern outlet glacier of the Vatnajokull,is confined in the mountain foreland by lateral moraines measuring a height of up to 150 m. Each of the lateral moraines shows considerable breaches with deviations of the main moraine ridges. The paper discusses the possible origins of these modifications of the lateral moraines as result of: 1) ice overlappings during glacier advances and subsequent breaches of the lateral moraine,2) bifurcations of the Kvíárjokull glacier tongue triggered by the preglacial relief conditions and the prehistorical moraine landscape leading to afflux conditions,3) drainage of ice-marginal glacier lakes and 4. volcanic activities,such as lava flows and volcanic-induced jokulhlaups. A historic-genetic model of the formation of the lateral moraines is presented considering the breaches in the lateral moraines as result from glacier bifurcations and therefore as former tributary tongue basins. Such breaches in the lateral moraines are also common landscape features at glaciers outside of Iceland and are from wider importance for the paleoreconstruction of former glacier stages. The knowledge of their development is essential for an adequate relative age classification of individual moraine ridges. In regard to the origin of the debris supply areas of the large-sized Kvíárjokull moraines,the resedimentation of prehistoric till deposits by younger glacier advances plays a role in the formation of the lateral moraines apart from englacial and supraglacial sediment transfer processes.展开更多
With the class V water standards of Surface Water Quality Standards( GB3838-2002) as a basis for evaluation,this paper monitors the water quality of Hongqi Village and Hongxing Village monitoring sections in Xiaoquan ...With the class V water standards of Surface Water Quality Standards( GB3838-2002) as a basis for evaluation,this paper monitors the water quality of Hongqi Village and Hongxing Village monitoring sections in Xiaoquan tributary of Huaxi River,and uses the single factor index method for evaluation.The monitoring results show that the water quality of the two sections falls within inferior class V,and Xiaoquan tributary can not meet the water functional requirements.The main reason for pollution lies in the pollution from the upstream sewage,and it is recommended to strengthen inter-regional water pollution control coordination mechanism and effectively address river pollution problems.展开更多
Various forms of nitrogen(N)discharged by high-intensity human activities in the Yangtze River Delta are transported into the lake along the river channel,accelerating the lake’s N cycle and increasing the eutrophica...Various forms of nitrogen(N)discharged by high-intensity human activities in the Yangtze River Delta are transported into the lake along the river channel,accelerating the lake’s N cycle and increasing the eutrophication ecological risk.Taihu Lake is a typical eutrophic shallowlake,suffering fromcyanobacteria blooms for decades due to excessive exogenous nutrient load.In this study,the coupling relationship between basin N loss and lake responsewas established by combining N flow and exogenous nutrient load.The results showed striking spatiotemporal differences and the large tributaries input themajority of N.Three evolution stages of the lake ecosystem were classified,i.e.,Stage A(1980–1997)with slow increasing N load;Stage B(1998–2006)with high-level N load despite some controlling methods;Stage C(2007 to present)with the strengthening of N management in lake basin after the Water Crisis,the N load has gradually decreased,while the water flow is increasing by the year.Environmental N export in the basin was 581.46 kg/ha N in 2021,and a total of 32.06 Gg N was finally drawn into the lake.Over the recent two decades,the noticeable expansion of built-up land from 8.21%to 21.04%associated with its environmental impacts i.e.,urban heat island effect,hard pavement,and ecological fragility deserves attention.Accordingly,the rapid climate change of the basin became the key factor driving the tributaries’hydrologic conditions(r_(∂)=0.945).The developed social economy dominated the sewage discharge(r_(∂)=0.857).The N inputs and losses to the environment in the basin can be further exacerbated without control.Meanwhile,the lake would respond to the exogenous input.In addition to the self-cleaning part of the lake,the N accumulation rate of the surface sediment ranged from 3.29 to 10.77 g N/(m^(2)·yr)of Taihu Lake.To meet the pollutant control target,around 66.28 Gg anthropogenic N needs to be reduced in the upper stream area yearly.Clarifying the N flow and its environmental burden can mitigate its damage to the ecosystem and take on the refined management on the watershed scale.展开更多
As the ecologically important recipient channels for riverine ecosystems, tributaries provide unique microhabitats for microorganisms, among which zooplankton constitutes the most important heterotrophic organisms. In...As the ecologically important recipient channels for riverine ecosystems, tributaries provide unique microhabitats for microorganisms, among which zooplankton constitutes the most important heterotrophic organisms. In particular, the reduced water velocity caused by dams is more favorable for zooplankton development;therefore, dammed rivers are expected to support extremely diverse and abundant zooplankton communities and notably different spatiotemporal distribution patterns. So far,however, only very few molecular studies support these assumptions. Using high-throughput sequencing, a high number of 350 operational taxonomic units(OTUs;97% cutoff) were retrieved from 30 samples collected in the Xiangxi River, the nearest large tributary upstream of the Three Gorges Dam. Zooplankton did not show significant spatial distribution in the channel. Instead,the community structures varied significantly over sampling dates, corroborating the seasonal patterns found in lakes and ponds in the subtropical zone. As expected, the community compositions were deterministically governed by environmental filtering processes(phylogenetic clustering), in which water velocity appeared to be much less important than other investigated environmental factors. Moreover, most of the detected phylotypes(OTUs) had a relatively high(>90%) sequence similarity to previously deposited sequences, suggesting a mediocre degree of genetic novelty within the zooplankton communities in the Xiangxi River.展开更多
In recent years,the Chinese leadership has openly argued that the inter- national community has to exceed the dominance of the Western-based rules in international relations,since in the last two centuries these rules...In recent years,the Chinese leadership has openly argued that the inter- national community has to exceed the dominance of the Western-based rules in international relations,since in the last two centuries these rules have become globally accepted,China's claim seems to be a hardly imaginable vision.However, according to some scholars'view,there is a possible historical alternative for the international order,the so-called Chinese Tributary System,which once bounded the East and Southeast Asian states together.The present study examines whether the mainstream schools of the International Relations Theory provide an appropriate tool to understand the characteristics of this system.The study argues that the culturally based "guanxi model"can supply a better explanatory framework to understand the inner logic and the working mechanism of the Tributary System.展开更多
A new glacial history paradigm that describes huge and prolonged southwest-oriented meltwater floods flowing along the rising rim of a deep “hole” (which a large continental icesheet created and occupied) is used to...A new glacial history paradigm that describes huge and prolonged southwest-oriented meltwater floods flowing along the rising rim of a deep “hole” (which a large continental icesheet created and occupied) is used to explain previously unexplained or poorly explained central Pennsylvania Bald Eagle through valley region topographic map evidence. Pennsylvania’s Bald Eagle through valley as defined here extends in a northeast direction from near Altoona to near Williamsport along the Allegheny Front escarpment base and forms the boundary between the Appalachian Plateau to the northwest and the Ridge and Valley Province to the southeast. The Lycoming and Towanda Creek valleys follow a probable northeastern Bald Eagle through valley extension and a probable southern extension continues southward along the Allegheny Front base by crossing Juniata River tributary drainage basins to reach the Potomac River drainage basin. Landform features identified on topographic maps, which include through valleys (valleys crossing drainage divides), barbed tributaries, drainage route orientations, drainage route direction changes, water gaps, and gaps located along the Allegheny Front crest, are used to reconstruct how the Pennsylvania Susquehanna and Juniata River drainage systems developed. The resulting geomorphic history describes how massive southwest-oriented floods moving across what was probably a low relief and rising surface (now preserved if preserved at all by the region’s highest elevations) flowed to an actively eroding Potomac River drainage system before being captured and sometimes reversed first by Juniata River valley headward erosion, second by West Branch Susquehanna River valley headward erosion (to create northeast-oriented Bald Eagle Creek and the northeast-oriented West Branch Susquehanna River segment) and third by North Branch Susquehanna River valley headward erosion. This interpretation explains most if not all of the previously poorly explained and unexplained topographic map evidence.展开更多
With the impoundment of the Three Gorges Reservoir, algal blooms have been found in some tributaries. In this study, according to the theoretical analysis of the eutrophication mechanism in a river-type reservoir trib...With the impoundment of the Three Gorges Reservoir, algal blooms have been found in some tributaries. In this study, according to the theoretical analysis of the eutrophication mechanism in a river-type reservoir tributary, a one-dimensional eutrophication model was developed for the Xiangxi River tributary of the Three Gorges Reservoir, and the influence of hydrodynamic conditions on the primary growth rate of algae was investigated. Furthermore, numerical predictions of hydraulic variables and eutrophication factors, such as the concentration distribution of TP, TN, and Chl-a in the spatial and temporal domains, were carried out. Comparison of computation results of TP, TN, and Chl-a concentrations along the river in the spring of 2005 with experimental data demonstrates the validity of the model. The agreement between the computation results and the experimental data of TP and TN concentrations is better than the agreement between those of Chl-a concentration. The simulated results also show that the Chl-a concentration downstream is much higher than that in the upstream tributary, which potentially indicates the outbreak of algae in this area. Therefore, this study provides a feasible method of accurately predicting the state of eutrophication in river-type reservoirs and their tributaries.展开更多
Most debris flows occur in valleys of area smaller than 50 km^(2). While associated with a valley, debris flow is by no means a full-valley event but originates from parts of the valley, i.e., the tributary sources. W...Most debris flows occur in valleys of area smaller than 50 km^(2). While associated with a valley, debris flow is by no means a full-valley event but originates from parts of the valley, i.e., the tributary sources. We propose that debris flow develops by extending from tributaries to the mainstream. The debris flow observed in the mainstream is the confluence of the tributary flows and the process of the confluence can be considered as a combination of the tributary elements. The frequency distribution of tributaries is found subject to the Weibull form (or its generalizations). And the same distribution form applies to the discharge of debris flow. Then the process of debris flow is related to the geometric structure of the valley. Moreover, viewed from a large scale of water system, all valleys are tributaries, which have been found to assume the same distribution. With each valley corresponding to a debris flow, the distribution can be taken as the frequency distribution of debris flow and therefore provides a quantitative description of the fact that debris flow is inclined to occur at valley of small size. Furthermore, different parameters appear in different regions, suggesting the regional differentials of debris flow potential. We can use the failure rate, instead of the size per se, to describe the risk of a valley of a given area. Finally we claim that the valleys of debris flow in different regions are in the similar episode of evolution.展开更多
Zn isotope is a useful tool for tracing biogeochemical processes as zinc plays important roles in the biogeochemistry of natural systems. However, the Zn isotope composition in the lake ecosystems has not been well ch...Zn isotope is a useful tool for tracing biogeochemical processes as zinc plays important roles in the biogeochemistry of natural systems. However, the Zn isotope composition in the lake ecosystems has not been well characterized. In order to resolve this problem, we investigate the Zn isotope compositions of suspended particulate matter(SPM) and biological samples collected from the Aha Lake and Hongfeng Lake, and their tributaries in summer and winter, aiming to explore the potential of this novel isotope system as a proxy for biogeochemical processes in aqueous environments. Concentration of dissolved Zn ranges from 0.65 to 5.06 μg/L and 0.74 to 12.04 μg/L for Aha Lake and Hongfeng Lake, respectively, while Zn(SPM) ranges from 0.18 to 0.70 mg/g and 0.24 to 0.75 mg/g for Aha Lake and Hongfeng Lake, respectively. The Zn isotope composition in SPM from Aha Lake and its main tributaries ranges from -0.18‰ to 0.27‰ and -0.17‰ to 0.46‰, respectively, and it varies from -0.29‰ to 0.26‰ and -0.04‰ to 0.48‰, respectively in Hongfeng Lake and its main tributaries, displaying a wider range in tributaries than lakes. These results imply that Zn isotope compositions are mainly affected by tributaries inputting into Aha Lake, while adsorption process by algae is the major factor for the Zn isotope composition in Hongfeng Lake, and ZnS precipitation leads to the light Zn isotope composition of SPM in summer. These data and results provide the basic information of the Zn isotope for the lake ecosystem, and promote the application of Zn isotope in biogeochemistry.展开更多
Detailed topographic maps show multiple stream valleys and what are probably dismembered stream valleys that extend completely across Wyoming’s northern Laramie Mountains. Several of the most obvious valleys are desc...Detailed topographic maps show multiple stream valleys and what are probably dismembered stream valleys that extend completely across Wyoming’s northern Laramie Mountains. Several of the most obvious valleys are described with valley origins first explained (or attempted to be explained) from the commonly accepted regional geomorphology paradigm (accepted paradigm) perspective and second from a recently proposed regional geomorphology paradigm (new paradigm) perspective in an effort to determine which of the two paradigms provides the simplest explanations. Accepted paradigm explanations require at least some of the valley erosion to have occurred prior to deposition of Oligocene and Miocene sediments that once covered the northern Laramie Mountains (with some of the exhumed valleys now containing sediment cover remnants). In contrast the fundamentally different new paradigm requires immense south-oriented continental ice sheet melt water floods to have crossed the region as ice sheet related crustal warping raised the region and the Laramie Mountains (and implies sediments now partially filling some of the valleys are probably flood deposited materials). The new paradigm provides simpler explanations for the origins of the valleys now extending completely across the northern Laramie Mountains and also for their related barbed tributaries, truncated side valleys, and drainage route U-turns than the accepted paradigm, although the new paradigm also leads to a fundamentally different middle and late Cenozoic regional geologic history than is currently recognized. One paradigm cannot be used to judge a different paradigm, but the paradigms can be compared based on their ability to explain evidence and Occam’s Razor can determine which of the two paradigms provides the simplest explanations. New paradigm explanations for northern Laramie Mountains valley origins investigated here require fewer assumptions than the accepted paradigm explanations suggesting the new paradigm merits serious future consideration.展开更多
Microtopography affects hydrological processes and forms different microhabitats.Our previous study uncovered that riparian zone microtopography created various microhabitats with different soil environments and runof...Microtopography affects hydrological processes and forms different microhabitats.Our previous study uncovered that riparian zone microtopography created various microhabitats with different soil environments and runoff-infiltration patterns.However,how riparian microtopography and microtopography within the water area(waterfall and tributary)affects downstream water quality remains unclear.Therefore,water samples were taken almost monthly in both the main stream and the tributary,before and after waterfalls,and near the bottom of three microtopographic types from June 2016 to March 2017.Compared with the dry season,the fact that water quality worsened in the wet season and that there were positive correlations for nitrate(NO3-)between water and the corresponding soil samples suggested that the riparian-soil environment affected the adjacent water quality mainly in the wet season.Nevertheless,riparian microtopography did not influence water quality downstream because of the low rainfall frequency and the weak leaching process due to plant interception.In the wet season,both the tributary and the waterfall increased the dissolved oxygen in the water body and,therefore,lowered the risk of eutrophication.The tributary has two pathways for improving the water quality,by increased disturbance and flow velocity,while the waterfall only has the former.However,such effects were not significant in the dry season.We conclude that the application of microtopographic modification is useful in maintaining urban wetland water quality in wet seasons.展开更多
Tributaries are one of the most important factors contributing to variability in the downstream evolution of bed sediment grain size.The primary aim of this work is to evaluate the response of the bed sediment texture...Tributaries are one of the most important factors contributing to variability in the downstream evolution of bed sediment grain size.The primary aim of this work is to evaluate the response of the bed sediment texture in the recipient channel induced by ten tributaries of the?ernáOstravice stream and find reach-scale and catchment-scale parameters that would be able to predict this response.The research was based on collecting information on the grain size distributions at sites adjacent to confluence zones.A significant change in sediment texture occurred in the vicinity of five confluences.Considering the other factors contributing to grain size variability(e.g.,local channel geometry,lithology,and lateral sediment sources),it was assumed that only four of them were associated with a sufficient bedload influx to alter the sediment calibre below the junction.Moreover,a significant morphological effect in the form of a large confluence bar was observed in one case.These tributaries had several common features:(i)they had a larger relative catchment area than that of nonsignificant tributaries;(ii)they were characterized by different bed grain sizes,with some exceptions;and(iii)they had a higher unit stream power close to the confluence in relation to that of the mainstream.These characteristics were represented by the proposed relative parameters,including the relative unit stream power and bed material texture,which allowed the best classification of significant and nonsignificant tributaries.In their simplified form,the parameters described the transport capacity and grain size distribution,which were generally considered to be primary factors responsible for a redefinition of the sediment texture in the recipient channel.However,it should be noted that these results are subject to some degree of uncertainty due to the relatively small sample size of only 10 tributaries.展开更多
After water storage in the Three Gorges Reservoir Region,there are no outbreaks of algal blooms in the main stream of the reservoir region,but the density of algae increases obviously. Outbreaks of algal blooms mainly...After water storage in the Three Gorges Reservoir Region,there are no outbreaks of algal blooms in the main stream of the reservoir region,but the density of algae increases obviously. Outbreaks of algal blooms mainly appeared in the tributaries of the reservoir region such as the Xiangxi River,Daning River,Shennong River and Xiaojiang River,but they did not occur every year. The reasons for outbreaks of algal blooms in the tributaries are shown as follows: the existence of sources of algae(blue-green algae) in the Three Gorges Reservoir is the root cause,and the sources include sources existing and being produced in the reservoir and sources from upstream main stream and its tributaries and other related lakes and reservoirs,of which the sources are mainly from the Dianchi Lake; slight or moderate eutrophication of water is the basic condition;hydrologic and hydrodynamic conditions and suitable temperature are conducive to proliferation and aggregation of algae(blue-green algae) after the operation of the Three Gorges Reservoir until outbreaks of algal blooms appear. Outbreaks of algal blooms in the tributaries of the Three Gorges Reservoir Region mainly appear in backwater reaches; they mainly occur in the tributaries in the north of the reservoir region and near to the dam;they mainly appear from March to July; the dominant species of algae( blue-green algae) in the Three Gorges Reservoir are Pyrrophyta,Bacillariophyta and Chlorophyta,but they tend to change into blue-green algae and other algae. To control outbreaks of algal blooms in the tributaries of the Three Gorges Reservoir Region,it is needed to prevent water containing blue-green algae collected from the Dianchi Lake and other lakes and reservoirs from being input into the lower reaches,reduce pollution load flowing into the Three Gorges Reservoir,use enclosures to change hydrodynamic conditions of backwater reaches of the tributaries appropriately,and adopt biological measures such as culturing fish and planting plants to improve ecosystem of the tributaries and other measures to inhibit and eliminate algae and decrease eutrophication level.展开更多
Focusing on the 18 counties along “One River and Two Tributaries” region, and based on the data from China 3nl, 4th and 5th population censuses, this article has analyzed the time and spatial changing patterns of th...Focusing on the 18 counties along “One River and Two Tributaries” region, and based on the data from China 3nl, 4th and 5th population censuses, this article has analyzed the time and spatial changing patterns of the population in this region. The analyses show that since the 3nl population census, total population, average age and total birth rate have all changed considerably: ① Total population has grown, fast, with most counties' annual average growth rate of more than 10. ② In terms of the region's average age, in 2000 the age in the 18 counties is younger than 30 years old. ③ Compared with the 3nl population census, labor force by the 5th census is much younger. ④ Countermeasures are proposed to control population by controlling birth rate as the result of the local resident's quality improvement by education.展开更多
Detailed topographic map evidence and a new Cenozoic geologic and glacial history paradigm are used to determine the previously unexplained Yampa River-Colorado River drainage divide origin. The Yampa River now flows ...Detailed topographic map evidence and a new Cenozoic geologic and glacial history paradigm are used to determine the previously unexplained Yampa River-Colorado River drainage divide origin. The Yampa River now flows in a north direction away from the Colorado River (between the Park Range to the east and the Flat Tops region to the west) before turning in a west direction to reach the Unita Mountains where it joins the south-oriented Green River, which eventually joins the southwest-oriented Colorado River. Topographic maps show the Yampa-Colorado River drainage divide is asymmetric with steeper slopes leading to the Colorado River, barbed (south-oriented) tributaries leading to north-oriented Yampa River headwaters (especially near the Yampa River turn to the west), and evidence of a large north-to-south oriented diverging and converging channel complex that preceded present-day drainage routes. Map evidence is interpreted to mean massive south-oriented floods flowed through what are now north-oriented Yampa River headwaters valleys and that headward erosion of a deep west-oriented valley beheaded and reversed those south-oriented flood flow channels to create the north-oriented Yampa River headwaters and the Egeria Park area Yampa-Colorado River drainage divide seen today. Large south-oriented floods leading to the Colorado River (while regional uplift was occurring) are inconsistent with accepted Cenozoic geologic and glacial history paradigm predictions, but are predicted by a newly proposed Cenozoic geologic and glacial history paradigm in which a thick continental ice sheet created a deep “hole” by eroding underlying bedrock and also by causing crustal warping that raised the present-day northern Colorado east-west continental divide as immense south-oriented meltwater floods flowed across it.展开更多
Focusing on the region of Yarlung Zangbo River and the middle reaches of itstwo tributaries of Nianchu River and Lhasa River in Tibet (Hereafter referred to as the 'One Riverand Two Tributaries' region), and b...Focusing on the region of Yarlung Zangbo River and the middle reaches of itstwo tributaries of Nianchu River and Lhasa River in Tibet (Hereafter referred to as the 'One Riverand Two Tributaries' region), and based on the data from China 3rd, 4th and5th population censuses,the article has analyzed change patterns of this region' s labor force. Major findings from thestudy are summarized as follows; (1) Compared with the data from the 3rd census, labor forcepopulation in 2000 has increased significantly. (2) Children dependency coefficient has dropped,while old people dependency coefficient has changed very slightly with an increase of 0. 047% only.(3) Compared 2000 with 1982, illiteracy and semi-illiteracy rate of the population above 15 yearsold have decreased significantly by 30. 69 percentage points, but still higher than the nationalaverage. (4) Women' s illiteracy rate has dropped faster than men's, but up to 2000 it was generallyquite high. The upgrading of the entire population's overall quality has a long way to go.展开更多
基金supported by the National Natural Science Foundation of China(No.U2040210).
文摘Interaction between the Yangtze River and its tributaries in the Three Gorges Reservoir has an important influence on tributary algal blooms.Taking the Xiaojiang River as a typical tributary,a binary mixing model used stable isotopes of hydrogen and oxygen to quantitatively analyze the water contribution and nutrient source structure of the tributary backwater area.Results showed that the isotope content(δD:−54.7‰,δ^(18)O−7.8‰)in the Yangtze River was higher than that in the tributaries(δD:−74.2‰,δ^(18)O−17.0‰)in the non-flood season and lower than that in the tributaries in the flood season.The Yangtze River contributed more than 50%water volume of the tributary backwater area in the non-flood season.The total nitrogen and total phosphorus concentrations in the backwater area were estimated based on water contribution ratio,and the results were in good agreement with the monitoring results.Load estimation showed that the nitrogen and phosphorus contribution ratio of the Yangtze River to the tributary backwater area was approximately 40%-80%in the non-flood season,and approximately 20%-40%in the flood season,on average.This study showed that the interaction between the Xiaojiang River and the Yangtze River is significant,and that Yangtze River recharge is an important source of nutrients in the Xiaojiang backwater area,which may play a driving role in Xiaojiang River algal blooms.
基金Key Research Program of the Chinese Academy of Sciences,No.KFZD-SW-318National Basic Research Program of China,No.2012CB417006National Natural Science Foundation of China,No.41601041
文摘The blocking or reversing effect of the downstream trunk river on its tributary lakes is an essential aspect of river-lake hydraulics. To measure how and the extent to which a trunk river can influence its tributary lakes, we made a case study in Changjiang River and one of its tributary lakes, Lake East Dongting (Lake ED) during a 35-year study period (1980-2014). Specifically, we investigated Lake ED's discharge ability into Changjiang River using stage-discharge relationship curves, and hence the changes of the lake discharge abil- ity under different hydrologic conditions of the Changjiang River. The results show that (1) the Changjiang River does exert a huge impact on the water regimes of Lake ED. And this impact varies seasonally. A variation of 3000 m3/s in Changjiang River's runoff would change the lake water level by about 1.1 m in dry seasons, by 0.4 m in wet seasons, and by 0.6 m during severe summer floods. (2) Changes in the Changjiang River runoff triggered by the Three Gorges Dam since 2003 have led to dramatic water regime variations in Lake ED. Other factors, including reduction of lake inflow and the lake bed erosion, also exacerbated the water regime variations in Lake ED.
基金financially supported by the National Natural Science Foundation of China (41430750, 41301293)the National Key R&D Program of China (2017YFD0800505, 2016YFC0402301)
文摘Ruxi River is a tributary of the Three Gorges Reservoir. This study examined the temporal and spatial dynamics in particle size characteristics and the associated nutrients and contaminants of the fluvial suspended and deposited sediments along the Ruxi River. Temporal variations in the particle size distribution of the suspended sediment are controlled mainly by differences in sediment source during different seasons. Total organic carbon (TOC), total nitrogen (TN) and total phosphorous (TP) in the 〈 62 μm fraction of the suspended sediment exhibit considerably higher concentrations in spring, indicating high probability of algal blooms in the backwater areas. Downstream trends in the nutrient contents of 〈 62 pm deposited sediments imply the greatest potential for eutrophication in the backwater ends, where highest nutrient concentrations were detected. Assessment of metal contamination shows that the sediments deposited in the water-level fluctuation zone were moderately to strongly contaminated by Cadmium (Cd), with a considerably high potential ecological risk. The findings reported have emphasized the impacts of reservoir impoundment on aquatic and/or terrestrial environment in this region. More information on physical, chemical and biological processes of sediment and sediment-associated materials are needed for developing ecologically sound policies management. environmentally and of water and sediment
文摘The Kvíárjokull,a southern outlet glacier of the Vatnajokull,is confined in the mountain foreland by lateral moraines measuring a height of up to 150 m. Each of the lateral moraines shows considerable breaches with deviations of the main moraine ridges. The paper discusses the possible origins of these modifications of the lateral moraines as result of: 1) ice overlappings during glacier advances and subsequent breaches of the lateral moraine,2) bifurcations of the Kvíárjokull glacier tongue triggered by the preglacial relief conditions and the prehistorical moraine landscape leading to afflux conditions,3) drainage of ice-marginal glacier lakes and 4. volcanic activities,such as lava flows and volcanic-induced jokulhlaups. A historic-genetic model of the formation of the lateral moraines is presented considering the breaches in the lateral moraines as result from glacier bifurcations and therefore as former tributary tongue basins. Such breaches in the lateral moraines are also common landscape features at glaciers outside of Iceland and are from wider importance for the paleoreconstruction of former glacier stages. The knowledge of their development is essential for an adequate relative age classification of individual moraine ridges. In regard to the origin of the debris supply areas of the large-sized Kvíárjokull moraines,the resedimentation of prehistoric till deposits by younger glacier advances plays a role in the formation of the lateral moraines apart from englacial and supraglacial sediment transfer processes.
文摘With the class V water standards of Surface Water Quality Standards( GB3838-2002) as a basis for evaluation,this paper monitors the water quality of Hongqi Village and Hongxing Village monitoring sections in Xiaoquan tributary of Huaxi River,and uses the single factor index method for evaluation.The monitoring results show that the water quality of the two sections falls within inferior class V,and Xiaoquan tributary can not meet the water functional requirements.The main reason for pollution lies in the pollution from the upstream sewage,and it is recommended to strengthen inter-regional water pollution control coordination mechanism and effectively address river pollution problems.
基金supported by the National Key Research and Development Program of China(No.2021YFC3201502)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_1830).
文摘Various forms of nitrogen(N)discharged by high-intensity human activities in the Yangtze River Delta are transported into the lake along the river channel,accelerating the lake’s N cycle and increasing the eutrophication ecological risk.Taihu Lake is a typical eutrophic shallowlake,suffering fromcyanobacteria blooms for decades due to excessive exogenous nutrient load.In this study,the coupling relationship between basin N loss and lake responsewas established by combining N flow and exogenous nutrient load.The results showed striking spatiotemporal differences and the large tributaries input themajority of N.Three evolution stages of the lake ecosystem were classified,i.e.,Stage A(1980–1997)with slow increasing N load;Stage B(1998–2006)with high-level N load despite some controlling methods;Stage C(2007 to present)with the strengthening of N management in lake basin after the Water Crisis,the N load has gradually decreased,while the water flow is increasing by the year.Environmental N export in the basin was 581.46 kg/ha N in 2021,and a total of 32.06 Gg N was finally drawn into the lake.Over the recent two decades,the noticeable expansion of built-up land from 8.21%to 21.04%associated with its environmental impacts i.e.,urban heat island effect,hard pavement,and ecological fragility deserves attention.Accordingly,the rapid climate change of the basin became the key factor driving the tributaries’hydrologic conditions(r_(∂)=0.945).The developed social economy dominated the sewage discharge(r_(∂)=0.857).The N inputs and losses to the environment in the basin can be further exacerbated without control.Meanwhile,the lake would respond to the exogenous input.In addition to the self-cleaning part of the lake,the N accumulation rate of the surface sediment ranged from 3.29 to 10.77 g N/(m^(2)·yr)of Taihu Lake.To meet the pollutant control target,around 66.28 Gg anthropogenic N needs to be reduced in the upper stream area yearly.Clarifying the N flow and its environmental burden can mitigate its damage to the ecosystem and take on the refined management on the watershed scale.
基金supported by the National Natural Science Foundation of China (31772433, 31801984)Biodiversity survey of aquatic organisms in Three Gorges Reservoir area and the illustrated handbook compilation (2014FY120200)
文摘As the ecologically important recipient channels for riverine ecosystems, tributaries provide unique microhabitats for microorganisms, among which zooplankton constitutes the most important heterotrophic organisms. In particular, the reduced water velocity caused by dams is more favorable for zooplankton development;therefore, dammed rivers are expected to support extremely diverse and abundant zooplankton communities and notably different spatiotemporal distribution patterns. So far,however, only very few molecular studies support these assumptions. Using high-throughput sequencing, a high number of 350 operational taxonomic units(OTUs;97% cutoff) were retrieved from 30 samples collected in the Xiangxi River, the nearest large tributary upstream of the Three Gorges Dam. Zooplankton did not show significant spatial distribution in the channel. Instead,the community structures varied significantly over sampling dates, corroborating the seasonal patterns found in lakes and ponds in the subtropical zone. As expected, the community compositions were deterministically governed by environmental filtering processes(phylogenetic clustering), in which water velocity appeared to be much less important than other investigated environmental factors. Moreover, most of the detected phylotypes(OTUs) had a relatively high(>90%) sequence similarity to previously deposited sequences, suggesting a mediocre degree of genetic novelty within the zooplankton communities in the Xiangxi River.
文摘In recent years,the Chinese leadership has openly argued that the inter- national community has to exceed the dominance of the Western-based rules in international relations,since in the last two centuries these rules have become globally accepted,China's claim seems to be a hardly imaginable vision.However, according to some scholars'view,there is a possible historical alternative for the international order,the so-called Chinese Tributary System,which once bounded the East and Southeast Asian states together.The present study examines whether the mainstream schools of the International Relations Theory provide an appropriate tool to understand the characteristics of this system.The study argues that the culturally based "guanxi model"can supply a better explanatory framework to understand the inner logic and the working mechanism of the Tributary System.
文摘A new glacial history paradigm that describes huge and prolonged southwest-oriented meltwater floods flowing along the rising rim of a deep “hole” (which a large continental icesheet created and occupied) is used to explain previously unexplained or poorly explained central Pennsylvania Bald Eagle through valley region topographic map evidence. Pennsylvania’s Bald Eagle through valley as defined here extends in a northeast direction from near Altoona to near Williamsport along the Allegheny Front escarpment base and forms the boundary between the Appalachian Plateau to the northwest and the Ridge and Valley Province to the southeast. The Lycoming and Towanda Creek valleys follow a probable northeastern Bald Eagle through valley extension and a probable southern extension continues southward along the Allegheny Front base by crossing Juniata River tributary drainage basins to reach the Potomac River drainage basin. Landform features identified on topographic maps, which include through valleys (valleys crossing drainage divides), barbed tributaries, drainage route orientations, drainage route direction changes, water gaps, and gaps located along the Allegheny Front crest, are used to reconstruct how the Pennsylvania Susquehanna and Juniata River drainage systems developed. The resulting geomorphic history describes how massive southwest-oriented floods moving across what was probably a low relief and rising surface (now preserved if preserved at all by the region’s highest elevations) flowed to an actively eroding Potomac River drainage system before being captured and sometimes reversed first by Juniata River valley headward erosion, second by West Branch Susquehanna River valley headward erosion (to create northeast-oriented Bald Eagle Creek and the northeast-oriented West Branch Susquehanna River segment) and third by North Branch Susquehanna River valley headward erosion. This interpretation explains most if not all of the previously poorly explained and unexplained topographic map evidence.
基金supported by the National Natural Science Foundation of China (Grant No. 50779028)the National Science and Technology Supporting Plan (Grant No. 2008BAB29B09)
文摘With the impoundment of the Three Gorges Reservoir, algal blooms have been found in some tributaries. In this study, according to the theoretical analysis of the eutrophication mechanism in a river-type reservoir tributary, a one-dimensional eutrophication model was developed for the Xiangxi River tributary of the Three Gorges Reservoir, and the influence of hydrodynamic conditions on the primary growth rate of algae was investigated. Furthermore, numerical predictions of hydraulic variables and eutrophication factors, such as the concentration distribution of TP, TN, and Chl-a in the spatial and temporal domains, were carried out. Comparison of computation results of TP, TN, and Chl-a concentrations along the river in the spring of 2005 with experimental data demonstrates the validity of the model. The agreement between the computation results and the experimental data of TP and TN concentrations is better than the agreement between those of Chl-a concentration. The simulated results also show that the Chl-a concentration downstream is much higher than that in the upstream tributary, which potentially indicates the outbreak of algae in this area. Therefore, this study provides a feasible method of accurately predicting the state of eutrophication in river-type reservoirs and their tributaries.
基金the National Natural Science Foundation of China (Grant No.40771010 and No.40671025)the Innovation Project of IMHE, CAS (1100001062).
文摘Most debris flows occur in valleys of area smaller than 50 km^(2). While associated with a valley, debris flow is by no means a full-valley event but originates from parts of the valley, i.e., the tributary sources. We propose that debris flow develops by extending from tributaries to the mainstream. The debris flow observed in the mainstream is the confluence of the tributary flows and the process of the confluence can be considered as a combination of the tributary elements. The frequency distribution of tributaries is found subject to the Weibull form (or its generalizations). And the same distribution form applies to the discharge of debris flow. Then the process of debris flow is related to the geometric structure of the valley. Moreover, viewed from a large scale of water system, all valleys are tributaries, which have been found to assume the same distribution. With each valley corresponding to a debris flow, the distribution can be taken as the frequency distribution of debris flow and therefore provides a quantitative description of the fact that debris flow is inclined to occur at valley of small size. Furthermore, different parameters appear in different regions, suggesting the regional differentials of debris flow potential. We can use the failure rate, instead of the size per se, to describe the risk of a valley of a given area. Finally we claim that the valleys of debris flow in different regions are in the similar episode of evolution.
基金supported by the National Natural Science Foundation of China(No.40903005)
文摘Zn isotope is a useful tool for tracing biogeochemical processes as zinc plays important roles in the biogeochemistry of natural systems. However, the Zn isotope composition in the lake ecosystems has not been well characterized. In order to resolve this problem, we investigate the Zn isotope compositions of suspended particulate matter(SPM) and biological samples collected from the Aha Lake and Hongfeng Lake, and their tributaries in summer and winter, aiming to explore the potential of this novel isotope system as a proxy for biogeochemical processes in aqueous environments. Concentration of dissolved Zn ranges from 0.65 to 5.06 μg/L and 0.74 to 12.04 μg/L for Aha Lake and Hongfeng Lake, respectively, while Zn(SPM) ranges from 0.18 to 0.70 mg/g and 0.24 to 0.75 mg/g for Aha Lake and Hongfeng Lake, respectively. The Zn isotope composition in SPM from Aha Lake and its main tributaries ranges from -0.18‰ to 0.27‰ and -0.17‰ to 0.46‰, respectively, and it varies from -0.29‰ to 0.26‰ and -0.04‰ to 0.48‰, respectively in Hongfeng Lake and its main tributaries, displaying a wider range in tributaries than lakes. These results imply that Zn isotope compositions are mainly affected by tributaries inputting into Aha Lake, while adsorption process by algae is the major factor for the Zn isotope composition in Hongfeng Lake, and ZnS precipitation leads to the light Zn isotope composition of SPM in summer. These data and results provide the basic information of the Zn isotope for the lake ecosystem, and promote the application of Zn isotope in biogeochemistry.
文摘Detailed topographic maps show multiple stream valleys and what are probably dismembered stream valleys that extend completely across Wyoming’s northern Laramie Mountains. Several of the most obvious valleys are described with valley origins first explained (or attempted to be explained) from the commonly accepted regional geomorphology paradigm (accepted paradigm) perspective and second from a recently proposed regional geomorphology paradigm (new paradigm) perspective in an effort to determine which of the two paradigms provides the simplest explanations. Accepted paradigm explanations require at least some of the valley erosion to have occurred prior to deposition of Oligocene and Miocene sediments that once covered the northern Laramie Mountains (with some of the exhumed valleys now containing sediment cover remnants). In contrast the fundamentally different new paradigm requires immense south-oriented continental ice sheet melt water floods to have crossed the region as ice sheet related crustal warping raised the region and the Laramie Mountains (and implies sediments now partially filling some of the valleys are probably flood deposited materials). The new paradigm provides simpler explanations for the origins of the valleys now extending completely across the northern Laramie Mountains and also for their related barbed tributaries, truncated side valleys, and drainage route U-turns than the accepted paradigm, although the new paradigm also leads to a fundamentally different middle and late Cenozoic regional geologic history than is currently recognized. One paradigm cannot be used to judge a different paradigm, but the paradigms can be compared based on their ability to explain evidence and Occam’s Razor can determine which of the two paradigms provides the simplest explanations. New paradigm explanations for northern Laramie Mountains valley origins investigated here require fewer assumptions than the accepted paradigm explanations suggesting the new paradigm merits serious future consideration.
基金supported by the National Natural Science Foundation of China(No.41571482)the State Key Laboratory of Urban&Regional Ecology(No.SKLURE2017-1-1)
文摘Microtopography affects hydrological processes and forms different microhabitats.Our previous study uncovered that riparian zone microtopography created various microhabitats with different soil environments and runoff-infiltration patterns.However,how riparian microtopography and microtopography within the water area(waterfall and tributary)affects downstream water quality remains unclear.Therefore,water samples were taken almost monthly in both the main stream and the tributary,before and after waterfalls,and near the bottom of three microtopographic types from June 2016 to March 2017.Compared with the dry season,the fact that water quality worsened in the wet season and that there were positive correlations for nitrate(NO3-)between water and the corresponding soil samples suggested that the riparian-soil environment affected the adjacent water quality mainly in the wet season.Nevertheless,riparian microtopography did not influence water quality downstream because of the low rainfall frequency and the weak leaching process due to plant interception.In the wet season,both the tributary and the waterfall increased the dissolved oxygen in the water body and,therefore,lowered the risk of eutrophication.The tributary has two pathways for improving the water quality,by increased disturbance and flow velocity,while the waterfall only has the former.However,such effects were not significant in the dry season.We conclude that the application of microtopographic modification is useful in maintaining urban wetland water quality in wet seasons.
基金supported by the University of Ostrava(Grant no.SGS02/P?F/2019–2020)。
文摘Tributaries are one of the most important factors contributing to variability in the downstream evolution of bed sediment grain size.The primary aim of this work is to evaluate the response of the bed sediment texture in the recipient channel induced by ten tributaries of the?ernáOstravice stream and find reach-scale and catchment-scale parameters that would be able to predict this response.The research was based on collecting information on the grain size distributions at sites adjacent to confluence zones.A significant change in sediment texture occurred in the vicinity of five confluences.Considering the other factors contributing to grain size variability(e.g.,local channel geometry,lithology,and lateral sediment sources),it was assumed that only four of them were associated with a sufficient bedload influx to alter the sediment calibre below the junction.Moreover,a significant morphological effect in the form of a large confluence bar was observed in one case.These tributaries had several common features:(i)they had a larger relative catchment area than that of nonsignificant tributaries;(ii)they were characterized by different bed grain sizes,with some exceptions;and(iii)they had a higher unit stream power close to the confluence in relation to that of the mainstream.These characteristics were represented by the proposed relative parameters,including the relative unit stream power and bed material texture,which allowed the best classification of significant and nonsignificant tributaries.In their simplified form,the parameters described the transport capacity and grain size distribution,which were generally considered to be primary factors responsible for a redefinition of the sediment texture in the recipient channel.However,it should be noted that these results are subject to some degree of uncertainty due to the relatively small sample size of only 10 tributaries.
文摘After water storage in the Three Gorges Reservoir Region,there are no outbreaks of algal blooms in the main stream of the reservoir region,but the density of algae increases obviously. Outbreaks of algal blooms mainly appeared in the tributaries of the reservoir region such as the Xiangxi River,Daning River,Shennong River and Xiaojiang River,but they did not occur every year. The reasons for outbreaks of algal blooms in the tributaries are shown as follows: the existence of sources of algae(blue-green algae) in the Three Gorges Reservoir is the root cause,and the sources include sources existing and being produced in the reservoir and sources from upstream main stream and its tributaries and other related lakes and reservoirs,of which the sources are mainly from the Dianchi Lake; slight or moderate eutrophication of water is the basic condition;hydrologic and hydrodynamic conditions and suitable temperature are conducive to proliferation and aggregation of algae(blue-green algae) after the operation of the Three Gorges Reservoir until outbreaks of algal blooms appear. Outbreaks of algal blooms in the tributaries of the Three Gorges Reservoir Region mainly appear in backwater reaches; they mainly occur in the tributaries in the north of the reservoir region and near to the dam;they mainly appear from March to July; the dominant species of algae( blue-green algae) in the Three Gorges Reservoir are Pyrrophyta,Bacillariophyta and Chlorophyta,but they tend to change into blue-green algae and other algae. To control outbreaks of algal blooms in the tributaries of the Three Gorges Reservoir Region,it is needed to prevent water containing blue-green algae collected from the Dianchi Lake and other lakes and reservoirs from being input into the lower reaches,reduce pollution load flowing into the Three Gorges Reservoir,use enclosures to change hydrodynamic conditions of backwater reaches of the tributaries appropriately,and adopt biological measures such as culturing fish and planting plants to improve ecosystem of the tributaries and other measures to inhibit and eliminate algae and decrease eutrophication level.
文摘Focusing on the 18 counties along “One River and Two Tributaries” region, and based on the data from China 3nl, 4th and 5th population censuses, this article has analyzed the time and spatial changing patterns of the population in this region. The analyses show that since the 3nl population census, total population, average age and total birth rate have all changed considerably: ① Total population has grown, fast, with most counties' annual average growth rate of more than 10. ② In terms of the region's average age, in 2000 the age in the 18 counties is younger than 30 years old. ③ Compared with the 3nl population census, labor force by the 5th census is much younger. ④ Countermeasures are proposed to control population by controlling birth rate as the result of the local resident's quality improvement by education.
文摘Detailed topographic map evidence and a new Cenozoic geologic and glacial history paradigm are used to determine the previously unexplained Yampa River-Colorado River drainage divide origin. The Yampa River now flows in a north direction away from the Colorado River (between the Park Range to the east and the Flat Tops region to the west) before turning in a west direction to reach the Unita Mountains where it joins the south-oriented Green River, which eventually joins the southwest-oriented Colorado River. Topographic maps show the Yampa-Colorado River drainage divide is asymmetric with steeper slopes leading to the Colorado River, barbed (south-oriented) tributaries leading to north-oriented Yampa River headwaters (especially near the Yampa River turn to the west), and evidence of a large north-to-south oriented diverging and converging channel complex that preceded present-day drainage routes. Map evidence is interpreted to mean massive south-oriented floods flowed through what are now north-oriented Yampa River headwaters valleys and that headward erosion of a deep west-oriented valley beheaded and reversed those south-oriented flood flow channels to create the north-oriented Yampa River headwaters and the Egeria Park area Yampa-Colorado River drainage divide seen today. Large south-oriented floods leading to the Colorado River (while regional uplift was occurring) are inconsistent with accepted Cenozoic geologic and glacial history paradigm predictions, but are predicted by a newly proposed Cenozoic geologic and glacial history paradigm in which a thick continental ice sheet created a deep “hole” by eroding underlying bedrock and also by causing crustal warping that raised the present-day northern Colorado east-west continental divide as immense south-oriented meltwater floods flowed across it.
文摘Focusing on the region of Yarlung Zangbo River and the middle reaches of itstwo tributaries of Nianchu River and Lhasa River in Tibet (Hereafter referred to as the 'One Riverand Two Tributaries' region), and based on the data from China 3rd, 4th and5th population censuses,the article has analyzed change patterns of this region' s labor force. Major findings from thestudy are summarized as follows; (1) Compared with the data from the 3rd census, labor forcepopulation in 2000 has increased significantly. (2) Children dependency coefficient has dropped,while old people dependency coefficient has changed very slightly with an increase of 0. 047% only.(3) Compared 2000 with 1982, illiteracy and semi-illiteracy rate of the population above 15 yearsold have decreased significantly by 30. 69 percentage points, but still higher than the nationalaverage. (4) Women' s illiteracy rate has dropped faster than men's, but up to 2000 it was generallyquite high. The upgrading of the entire population's overall quality has a long way to go.