The strategic dispersion of carbon nanotubes(CNTs)within triblock copolymer matrix is key to fabricating nanocomposites with the desired electrical properties.This study investigated the self-assembly and electrical b...The strategic dispersion of carbon nanotubes(CNTs)within triblock copolymer matrix is key to fabricating nanocomposites with the desired electrical properties.This study investigated the self-assembly and electrical behavior of a polystyrene-polybutadiene-polystyrene(SBS)matrix with CNTs of different aspect ratios using hybrid particle-field molecular dynamics simulations.Structural factor analysis of the nanocomposites indicated that CNTs with higher aspect ratios promoted the transition of the SBS matrix from a bicontinuous to a lamellar phase.The resistor network algorithm method showed that the electrical conductivity of SBS and CNTs nanocomposites was influenced by the interplay between the CNTs aspect ratios,concentrations,and domain sizes of the triblock copolymer SBS.Our research sheds light on the relationship between CNTs dispersion and the electrical behavior of SBS/CNTs nanocomposites,guiding the engineering of materials to achieve desired electrical properties through the modulation of CNTs aspect ratios and tailored sizing of triblock copolymer domains.展开更多
In this paper, microphase behavior of an ABC triblock copolymer, polystyrene-block-poly(2-vinylpyridine)-block- poly(ethylene oxide), namely PS-b-P2VP-b-PEO, was systematically studied during spin-coating and solv...In this paper, microphase behavior of an ABC triblock copolymer, polystyrene-block-poly(2-vinylpyridine)-block- poly(ethylene oxide), namely PS-b-P2VP-b-PEO, was systematically studied during spin-coating and solvent vapor annealing based on various parameters, including the types of the solvent, spin speed and thickness. The morphological features and the microdomain location of the different blocks were characterized by atomic force microscope (AFM) and high resolution transmission electron microscopy (HRTEM). With increasing thickness, the order-order transition from nanopores array to the pattern of nanostripes was observed due to microdomain coarsening. These processes of pattern transformation were based on the selectivity of toluene for different blocks and on the contact time between solvent molecules and the three blocks. This work provides different templates for preparation of gold nanoparticle array on silicon wafer, which can be adopted as an active surface-enhanced Raman scattering (SERS) substrate for poly(3-hexylthiophene) (P3HT).展开更多
The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained poly...The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained polyisoprene and polystyrene homopolymers served as macroinitiators for block copolymerization of isoprene and styrene to synthesize poly- (styrene-b-isoprene) and poly(isoprene-b-styrene) diblock copolymers. Diblock copolymers with well-defined structures as well as controlled and narrow molecular weight distribution were obtained from the lower-mass polystyrene and polyisoprene homopolymers. These copolymers were found to be active as macroinitiators in the synthesis of the poly(styrene-b-isoprene-b-styrene) and poly(isoprene-b-styrene-b-isoprene) triblock copolymers. 1H-NMR spectroscopy and gel permeation chromatography (GPC) were used for the investigation of polymer structure, molecular weight and polydispersity (PD).展开更多
Co-assembly of ABC linear triblock copolymer/nanoparticle into bump-surface multicompartment hybrids in selective solvent was studied through self-consistent field theory (SCFT) simulation. Results from three-dimens...Co-assembly of ABC linear triblock copolymer/nanoparticle into bump-surface multicompartment hybrids in selective solvent was studied through self-consistent field theory (SCFT) simulation. Results from three-dimensional SCFT simulation showed that the hybrid morphology depended on the length and number of grafted chains, whereas the number and shape of bumps relied on nanoparticle size. Moreover, the simulation results showed that the length and number of grafted chains had equivalent effect on hybrid morphology. Calculated results indicated that entropy was a more important factor than enthalpy in the co-assembly.展开更多
An interesting order-order transition between two different complex nanostructures was observed in a new liquid crystalline linear coil-coil-rod ABC triblock copolymer(tri BCP). First, the ABC tri BCP, poly(dimethy...An interesting order-order transition between two different complex nanostructures was observed in a new liquid crystalline linear coil-coil-rod ABC triblock copolymer(tri BCP). First, the ABC tri BCP, poly(dimethylsiloxane)-bpolystyrene-b-poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene}(PDMS-b-PS-b-PMPCS), was synthesized through sequential atom transfer radical polymerization. The degrees of polymerization of PDMS, PS, and PMPCS blocks are 58, 159, and 106, and the corresponding volume fractions of PDMS, PS, and PMPCS are 0.09, 0.29, and 0.62, respectively. The phase behaviors of the PDMS-b-PS diblock copolymer precursor and the final triblock copolymer were studied by smallangle X-ray scattering, one-dimensional wide-angle X-ray scattering, and transmission electron microscopy experiments. The PDMS-b-PS precursor self-assembles into hexagonally packed cylinders with a relatively small periodic size after thermal annealing. When the triblock copolymer is annealed at a relatively low temperature(120 ○C) at which the PMPCS block is in the amorphous state, the tri BCP forms core-shell hexagonally packed cylinders(CSH) with a relativly large periodic size. After the tri BCP is annealed above 140 ○C at which the PMPCS block transforms to the liquid crystalline(LC) phase, the nanophase-separated structure transforms to a three-phase four-layer lamellar structure(LAM-3P4L). Thus, accompanied with the transition of the PMPCS blocks from the amorphous state to the LC phase, the order-order transition from CSH to LAM-3P4 L occurs in the PDMS-b-PS-b-PMPCS ABC tri BCP.展开更多
A series of azobenzene containing side-on liquid crystalline ABA triblock copolymers were investigated. This triblock series possesses the same central liquid crystal block B and various lengths of the amorphous block...A series of azobenzene containing side-on liquid crystalline ABA triblock copolymers were investigated. This triblock series possesses the same central liquid crystal block B and various lengths of the amorphous block A. Transmission electron microscopy (TEM), small angle X-rays and neutron scattering (SAXS and SANS) were used to study their morphologies. After annealing the samples over weeks at a temperature within the nematic temperature range of block B, different morphologies (disordered, lamellar, perforated layer and hexagonal cylinder) were observed by TEM. The alignment behavior of these azo triblock copolymers in the magnetic field for artificial muscle application, as well as the phase period and the order-disorder transition (ODT) were studied in situ by SANS.展开更多
The self-assembly of linear ABC triblock copolymers under cylindrical confinements is investigated in two- dimensional space using the real-space self-consistent field theory. The effects of confinement degrees and pr...The self-assembly of linear ABC triblock copolymers under cylindrical confinements is investigated in two- dimensional space using the real-space self-consistent field theory. The effects of confinement degrees and preferential strengths on the triblock copolymer phase behaviors with special polymer parameters are first considered. On one hand, different confinement degrees cause different phase behaviors in nanopores with the neutral surfaces. Moreover, the strongly preferential surface fields can surpass the confinement degrees and volume fractions in determing the confined phase behaviors. On the other hand, in contrast, confined morphologies are more sensitive to the variations in the A-preferential surface field strength. Subsequently, the incompatibility degrees between different blocks are systematically varied under cylindrical nanopore confinements. Under cylindrical nanopore confinements, the morphologies are very sensitive to the variations in the incompatibility degrees. Meanwhile, nanopore confinements can affect order-disorder and order-order transition points in the bulk. The corresponding free, internal, and entropic energies as well as the order parameters are also quantificationally examined to deeply investigate the confined phase mechanisms, and a number of morphological transitions are confirmed to be of first-order. These findings may guide the design of novel nanostructures based on triblock copolymers by introducing confinements.展开更多
The effect of flexible spacer length on the liquid crystalline property of ABA-type triblock copolymers containing azobenzene groups was investigated. For the study, the monomers, n-[4-(4-ethoxyphenylazo)phenoxy]alkyl...The effect of flexible spacer length on the liquid crystalline property of ABA-type triblock copolymers containing azobenzene groups was investigated. For the study, the monomers, n-[4-(4-ethoxyphenylazo)phenoxy]alkyl methacrylates with varying methylene groups (n = 0, 2, 6) were used to synthesize a series of azobenzene-containing amphiphilic triblock copolymers PAnC–PEG–PAnC by atom transfer radical polymerization (ATRP). Differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and one-dimensional X-ray diffraction (1D WAXD) have shown that the glass transition temperatures of these copolymers decreased with increasing n, PA0C–PEG–PA0C has no mesophase, while both PA2C–PEG–PA2C and PA6C–PEG–PA6C have a nematic mesophase. These differences derive from the length of spacer groups between the polymer backbone and side-chain LC monomers.展开更多
Self assemblies of ABC triblock copolymer thin films on a densely brush-coated substrate were investigated by using the self-consistent field theory.The middle block B and the coated polymer form one phase and the alt...Self assemblies of ABC triblock copolymer thin films on a densely brush-coated substrate were investigated by using the self-consistent field theory.The middle block B and the coated polymer form one phase and the alternating phase A and phase C occur when the film is very thin either for the neutral or selective hard surface(which is opposite to the brushcoated substrate).The lamellar phase is stable on the hard surface when it is neutral and interestingly,the short block tends to stay on this hard surface...展开更多
A kind of novel triblock copolymers of poly(γ-benzyl L-glutamate)-b-poly(tetrahydrofuran)-b-poly(γ-benzyl L-glutamate)s(PBLG-b-PTHF-b-PBLG)was synthesized by using bis(3-aminopropyl)terminated polytetrahydrofuran to...A kind of novel triblock copolymers of poly(γ-benzyl L-glutamate)-b-poly(tetrahydrofuran)-b-poly(γ-benzyl L-glutamate)s(PBLG-b-PTHF-b-PBLG)was synthesized by using bis(3-aminopropyl)terminated polytetrahydrofuran to initiate the ring-opening polymerization ofγ-benzyl L-glutamate N-carboxyanhydride(BLG-NCA).The corresponding multiblock poly(amino acid-urea)s were prepared in one-pot protocol from the chain extension of PBLG-b-PTHF-b-PBLG with MDI.The resulting triblock and multiblock copolymers were characterized by FTIR,~1H-NMR,^(13)C-NMR and GPC techniques.It is demonstrated that the chain extension has taken place to give rise to the copolymers with the well-defined block composition and narrow molecular weight distribution.A distinct T_g arising from the hard-segments was observed in all the copolymers.Their mechanical properties showed an increasing trend with the molecular weight enhancement of the prepolymers.展开更多
A double thermoresponsive ABC-type triblock copolymer (poly(ethyleneglycol)-block-poly (2-(2-methoxyethoxy)ethyl methacrylate)-block-poly(2-(2-methoxy ethoxy) ethyl methacrylate-co-oligo(ethylene glycol)...A double thermoresponsive ABC-type triblock copolymer (poly(ethyleneglycol)-block-poly (2-(2-methoxyethoxy)ethyl methacrylate)-block-poly(2-(2-methoxy ethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate, PEG-b-PMEO2MA-b-P(MEO2MA-co-OEGMA)) was designed and synthesized by reversible addition- fragmentation chain transfer polymerization (RAFT). The ABC-type triblock copolymer endowed a thermal-induced two- step phase transition at 29 and 39 ℃corresponding to the thermosensitive properties of PMEOzMA and P(MEO2MA-co- OEGMA) segments, respectively. The two-step self-assembly of copolymer solutions was studied by UV transmittance measurement, dynamic light scattering (DLS), transmission electron microscopy (TEM) and so on. The triblock copolymers showed the distinct thermosensitive behavior with respect to transition temperatures, aggregate type and size, which was correlated to the degree of polymerization of thermosensitive blocks and the molar fraction of OEGMA in the P(MEO2MA- co-OEGMA) segments. In addition, micelles could further aggregate to form the hydrogel by the self-associate of PEG chains under the abduction of the concentration and temperature. The transition from sol to gel was investigated by a test tube inverting method and dynamic rheological measurement.展开更多
The morphologies and phase diagrams exhibited by symmetric ABC star triblock copolymer nanoparticles are investigated on the basis of real-space self-consistent field theory. The ABC star triblock copolymers were chos...The morphologies and phase diagrams exhibited by symmetric ABC star triblock copolymer nanoparticles are investigated on the basis of real-space self-consistent field theory. The ABC star triblock copolymers were chosen to be tiling-forming with fixed polymer parameter and the spherical boundaries were modeled using the masking technique. We first study a number of examples where the ABC triblock copolymers confined in spherical cavities with neutral surface. Then, two types of spherical cavity distinct preferential surfaces are considered, including both A-block attractive and repulsive preferential surfaces. We aim at the effects due to various spherical cavity diameters and the degree of interactions between the polymer and the spherical surface. A variety of morphologies, such as ring-like structures, concentric sphere, and irregular cylinder, were identified in phase diagrams. The results show that both the degree of interactions and spherical diameters can influence the formation of morphologies so that ring-like structures and other novel structures could be obtained.展开更多
The phase behavior of nanoparticle-filled ABC star triblock copolymers was investigated by dissipative particle dynamics simulation.Two typical structures,the three-color lamella and polygonal tiling structures,were s...The phase behavior of nanoparticle-filled ABC star triblock copolymers was investigated by dissipative particle dynamics simulation.Two typical structures,the three-color lamella and polygonal tiling structures,were selected to demonstrate the effect of filling the nanoparticle.Results showed that the filling effects were obvious on the lamellar structure but not on the tiling structure,where the high concentration of fillers can destroy the lamellar structures.The dynamic processes of nanoparticle filling were investigated for the lamellar and tiling structures,where three stages can be sorted by analyzing the system energies and chain conformations.Moreover,the mechanical properties were evaluated for the lamellar structures by exploring the interface tensions.The findings can help us understand the potential applications of microstructures based on complex block copolymers and nanoparticle mixtures.展开更多
The adsorption behavior of symmetric triblock copolymers, Am/2BnAm/2, from a nonselective solvent at solid-liquid interface has been studied by Monte Carlo simulations on a simple lattice model. Either segment A or se...The adsorption behavior of symmetric triblock copolymers, Am/2BnAm/2, from a nonselective solvent at solid-liquid interface has been studied by Monte Carlo simulations on a simple lattice model. Either segment A or segment B is attractive, while the other is non-attractive to the surface. Influences of the adsorption energy, bulk concentration, chain composition and chain length on the microstructure of adsorbed layers are presented. The results show that the total surface coverage and the adsorption amount increases monotonically as the bulk concentration increases. The larger the adsorption energy and the higher the fraction of adsorbing segments, the higher the total surface coverage is exhibited. The product of surface coverage and the proportion of non-attractive segments are nearly independent of the chain length, and the logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is larger, the adsorption amount exhibits a maximum as the fraction of adsorbing segment increases. The adsorption isotherms of copolymers with different length of non-attractive segments can be mapped onto a single curve under given adsorption energy. The adsorption layer thickness decreases as the adsorption energy and the fraction of adsorbing segments increases, but it increases as the length of non-attractive segments increases. The tails mainly govern the adsorption layer thickness.展开更多
Poly(N,N-dimethyl acrylamide)-block-poly(styrene)-block-poly(N,N-dimethyl acrylamide)(PDMAc-bPSt-b-PDMAc)amphiphilic triblock copolymer micro/nano-objects were synthesized through reversible addition-fragmentation cha...Poly(N,N-dimethyl acrylamide)-block-poly(styrene)-block-poly(N,N-dimethyl acrylamide)(PDMAc-bPSt-b-PDMAc)amphiphilic triblock copolymer micro/nano-objects were synthesized through reversible addition-fragmentation chain transfer(RAFT)dispersion polymerization of St mediated with poly(N,Ndimethyl acrylamide)trithiocarbonate(PDMAc-TTC-PDMAc)bi-functional macromolecular RAFT agent.It is found that the morphology of the PDMAc-b-PSt-b-PDMAc copolymer micro/nano-objects like spheres,vesicles and vesicle with hexagonally packed hollow hoops(HHHs)wall can be tuned by changing the solvent composition.In addition,vesicles with two sizes(600 nm,264 nm)and vesicles with HHHs features were also synthesized in high solid content systems(30 wt%and 40 wt%,respectively).Besides,as compared with typical AB diblock copolymers(A is the solvophilic,stabilizer block,and B is the solvophobic block),ABA triblock copolymers tend to form higher order morphologies,such as vesicles,under similar conditions.The finding of this study provides a new and robust approach to prepare block copolymer vesicles and other higher order micelles with special structure via PISA.展开更多
The self-assembly behavior of ABC star triblock copolymers can lead to a large number of nanostructures. Indeed, many new and interesting structures have already been discovered and proven to be hotspot in soft matter...The self-assembly behavior of ABC star triblock copolymers can lead to a large number of nanostructures. Indeed, many new and interesting structures have already been discovered and proven to be hotspot in soft matter physics research. In this work, we introduce different phase diagrams of core-shell-cylinder-forming ABC star triblock copolymers under different conditions, including in-bulk and pore geometries with different sizes. The relation between the pore size geometries and their corresponding structures are also revealed. The different properties of the surface potential field that significantly affect the self-assembly process of ABC star triblock copolymers are investigated as well.展开更多
In this study a low molecular weight triblock copolymer derived fromε-caprolactone and tetrahydrofuran was used as a non-reactive compatibilizer of immiscible PLA/PCL blends.Ternary blends with 0,1.5 wt%,3 wt%and 5 w...In this study a low molecular weight triblock copolymer derived fromε-caprolactone and tetrahydrofuran was used as a non-reactive compatibilizer of immiscible PLA/PCL blends.Ternary blends with 0,1.5 wt%,3 wt%and 5 wt% copolymer and about 75 wt%PLA were prepared by single screw extrusion and characterized by scanning electron microscopy(SEM),differential scanning calorimetry(DSC),dynamic mechanical analysis(DMA),tensile and Izod impact testing.SEM micrographs showed that the size of the dispersed PCL domains was practically constant regardless of copolymer concentration.This result can be explained by the low shear rate employed during processing step and a decrease of PCL viscosity by presence of the triblock copolymer.However,when the copolymer concentration increased,strain at break of PLA/PCL blends also increased.PLA/PCL blend with 0 wt% copolymer presented 2%strain at break,whereas PLA/PCL blend with 5 wt%copolymer exhibited 90%.展开更多
Two reduction-cleavable ABA triblock copolymers possessing two disulfide linkages,PMMA-ssPMEO3MA-ss-PMMA and PDEA-ss-PEO-ss-PDEA were synthesized via facile substitution reactions from homopolymer precursors,where PMM...Two reduction-cleavable ABA triblock copolymers possessing two disulfide linkages,PMMA-ssPMEO3MA-ss-PMMA and PDEA-ss-PEO-ss-PDEA were synthesized via facile substitution reactions from homopolymer precursors,where PMMA,PMEO3MA,PDEA,and PEO represent poly(methyl methacrylate),poly(tri(ethylene glycol) monomethyl ether methacrylate,poly(2-(diethylamino)ethyl methacrylate),and poly(ethylene oxide),respectively.Spherical micelles were obtained through supramolecular self-assembly of these two triblock copolymers in aqueous solutions.The resultant micelles with abundant disulfide bonds could serve as soft templates and precisely accommodate gold nanoparticles in the core/shell interface as a result of the formation of Au-S bonds.展开更多
The morphological changes of ABA amphiphilic triblock copolymer micelles in dilute solution were systematically studied by tuning the solvent property using self-consistent field simulation. The solvent property was t...The morphological changes of ABA amphiphilic triblock copolymer micelles in dilute solution were systematically studied by tuning the solvent property using self-consistent field simulation. The solvent property was tuned by changing the Flory-Huggins interaction parameters between each type of blocks and solvent, respectively. The simulation results show that by changing the solvent properties, a series of micelle morphologies such as vesicle, cage-like, ring-shaped, rod-like and spherical micelle morphologies can be obtained. Variations of the free energy of the solution system and the surface area of micelles with the Flory-Huggins interaction parameters were calculated to better understand the effect of solvent property on micelle morphologies. In addition, a phase diagram showing the morphological changes of micelles with the Flory-Huggins interaction parameters is provided.展开更多
The self-assembly behavior of sphere-forming R_5C_(30)R_5 triblock copolymers within a planar slit is studied by performing dissipative particle dynamics simulations. A sequence of novel structures which are not obs...The self-assembly behavior of sphere-forming R_5C_(30)R_5 triblock copolymers within a planar slit is studied by performing dissipative particle dynamics simulations. A sequence of novel structures which are not observed in bulk are formed within slits, including wetting layers, island-like structure, parallel cylinders, perpendicular cylinders and crosscylindrical structures. Perpendicular cylinders are always formed before the increase in the layers of parallel cylinders. A phase diagram of the assembled structures with respective to the slit property and height is thus presented. The rod length is found to have a significant impact on the rod alignment, and a disordered-ordered transition of rod orientation occurs with an increase in the length of rod blocks. Some special structures, such as parallel half-cylinders and arrowhead-shaped morphology, are observed when the rod length increases to a certain extent. Our results show that the property and height of the slit and rod length all influence the self-assembly of rod-coil-rod triblock copolymers.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52273019,62173065,22133002,22273031,and 12274056)Fundamental Research Funds for the Central Universities(No.04442024074)+2 种基金NationalKey R&D Program of China(No.2022YFB3707300)Beijing Natural Science Foundation(No.4242040)Scientific Research Funds Project of Liaoning Provincial Department of Education(No.LJKZ0034)。
文摘The strategic dispersion of carbon nanotubes(CNTs)within triblock copolymer matrix is key to fabricating nanocomposites with the desired electrical properties.This study investigated the self-assembly and electrical behavior of a polystyrene-polybutadiene-polystyrene(SBS)matrix with CNTs of different aspect ratios using hybrid particle-field molecular dynamics simulations.Structural factor analysis of the nanocomposites indicated that CNTs with higher aspect ratios promoted the transition of the SBS matrix from a bicontinuous to a lamellar phase.The resistor network algorithm method showed that the electrical conductivity of SBS and CNTs nanocomposites was influenced by the interplay between the CNTs aspect ratios,concentrations,and domain sizes of the triblock copolymer SBS.Our research sheds light on the relationship between CNTs dispersion and the electrical behavior of SBS/CNTs nanocomposites,guiding the engineering of materials to achieve desired electrical properties through the modulation of CNTs aspect ratios and tailored sizing of triblock copolymer domains.
基金supported by the National Natural Science Foundation of China(Nos.51273048 and 51203025)Natural Science Foundation of Guangdong Province(No.S2012040007725)
文摘In this paper, microphase behavior of an ABC triblock copolymer, polystyrene-block-poly(2-vinylpyridine)-block- poly(ethylene oxide), namely PS-b-P2VP-b-PEO, was systematically studied during spin-coating and solvent vapor annealing based on various parameters, including the types of the solvent, spin speed and thickness. The morphological features and the microdomain location of the different blocks were characterized by atomic force microscope (AFM) and high resolution transmission electron microscopy (HRTEM). With increasing thickness, the order-order transition from nanopores array to the pattern of nanostripes was observed due to microdomain coarsening. These processes of pattern transformation were based on the selectivity of toluene for different blocks and on the contact time between solvent molecules and the three blocks. This work provides different templates for preparation of gold nanoparticle array on silicon wafer, which can be adopted as an active surface-enhanced Raman scattering (SERS) substrate for poly(3-hexylthiophene) (P3HT).
文摘The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained polyisoprene and polystyrene homopolymers served as macroinitiators for block copolymerization of isoprene and styrene to synthesize poly- (styrene-b-isoprene) and poly(isoprene-b-styrene) diblock copolymers. Diblock copolymers with well-defined structures as well as controlled and narrow molecular weight distribution were obtained from the lower-mass polystyrene and polyisoprene homopolymers. These copolymers were found to be active as macroinitiators in the synthesis of the poly(styrene-b-isoprene-b-styrene) and poly(isoprene-b-styrene-b-isoprene) triblock copolymers. 1H-NMR spectroscopy and gel permeation chromatography (GPC) were used for the investigation of polymer structure, molecular weight and polydispersity (PD).
基金supported by the National Natural Science Foundation of China for General Program(No. 21274145)
文摘Co-assembly of ABC linear triblock copolymer/nanoparticle into bump-surface multicompartment hybrids in selective solvent was studied through self-consistent field theory (SCFT) simulation. Results from three-dimensional SCFT simulation showed that the hybrid morphology depended on the length and number of grafted chains, whereas the number and shape of bumps relied on nanoparticle size. Moreover, the simulation results showed that the length and number of grafted chains had equivalent effect on hybrid morphology. Calculated results indicated that entropy was a more important factor than enthalpy in the co-assembly.
基金supported by the National Natural Science Foundation of China(Nos.20874003 and 21174006)
文摘An interesting order-order transition between two different complex nanostructures was observed in a new liquid crystalline linear coil-coil-rod ABC triblock copolymer(tri BCP). First, the ABC tri BCP, poly(dimethylsiloxane)-bpolystyrene-b-poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene}(PDMS-b-PS-b-PMPCS), was synthesized through sequential atom transfer radical polymerization. The degrees of polymerization of PDMS, PS, and PMPCS blocks are 58, 159, and 106, and the corresponding volume fractions of PDMS, PS, and PMPCS are 0.09, 0.29, and 0.62, respectively. The phase behaviors of the PDMS-b-PS diblock copolymer precursor and the final triblock copolymer were studied by smallangle X-ray scattering, one-dimensional wide-angle X-ray scattering, and transmission electron microscopy experiments. The PDMS-b-PS precursor self-assembles into hexagonally packed cylinders with a relatively small periodic size after thermal annealing. When the triblock copolymer is annealed at a relatively low temperature(120 ○C) at which the PMPCS block is in the amorphous state, the tri BCP forms core-shell hexagonally packed cylinders(CSH) with a relativly large periodic size. After the tri BCP is annealed above 140 ○C at which the PMPCS block transforms to the liquid crystalline(LC) phase, the nanophase-separated structure transforms to a three-phase four-layer lamellar structure(LAM-3P4L). Thus, accompanied with the transition of the PMPCS blocks from the amorphous state to the LC phase, the order-order transition from CSH to LAM-3P4 L occurs in the PDMS-b-PS-b-PMPCS ABC tri BCP.
基金financially supported by the French Embassy in China(Beijing) to Wei Deng(Bourse doctorale en altemance 2004-2007)
文摘A series of azobenzene containing side-on liquid crystalline ABA triblock copolymers were investigated. This triblock series possesses the same central liquid crystal block B and various lengths of the amorphous block A. Transmission electron microscopy (TEM), small angle X-rays and neutron scattering (SAXS and SANS) were used to study their morphologies. After annealing the samples over weeks at a temperature within the nematic temperature range of block B, different morphologies (disordered, lamellar, perforated layer and hexagonal cylinder) were observed by TEM. The alignment behavior of these azo triblock copolymers in the magnetic field for artificial muscle application, as well as the phase period and the order-disorder transition (ODT) were studied in situ by SANS.
基金supported by the General Program of National Natural Science Foundation of China(Nos. 21174131, 20974081, 21074096, and 21104060)the Natural Science Foundation of Zhejiang Province(Nos. Y4090174 and Y6100033)
文摘The self-assembly of linear ABC triblock copolymers under cylindrical confinements is investigated in two- dimensional space using the real-space self-consistent field theory. The effects of confinement degrees and preferential strengths on the triblock copolymer phase behaviors with special polymer parameters are first considered. On one hand, different confinement degrees cause different phase behaviors in nanopores with the neutral surfaces. Moreover, the strongly preferential surface fields can surpass the confinement degrees and volume fractions in determing the confined phase behaviors. On the other hand, in contrast, confined morphologies are more sensitive to the variations in the A-preferential surface field strength. Subsequently, the incompatibility degrees between different blocks are systematically varied under cylindrical nanopore confinements. Under cylindrical nanopore confinements, the morphologies are very sensitive to the variations in the incompatibility degrees. Meanwhile, nanopore confinements can affect order-disorder and order-order transition points in the bulk. The corresponding free, internal, and entropic energies as well as the order parameters are also quantificationally examined to deeply investigate the confined phase mechanisms, and a number of morphological transitions are confirmed to be of first-order. These findings may guide the design of novel nanostructures based on triblock copolymers by introducing confinements.
文摘The effect of flexible spacer length on the liquid crystalline property of ABA-type triblock copolymers containing azobenzene groups was investigated. For the study, the monomers, n-[4-(4-ethoxyphenylazo)phenoxy]alkyl methacrylates with varying methylene groups (n = 0, 2, 6) were used to synthesize a series of azobenzene-containing amphiphilic triblock copolymers PAnC–PEG–PAnC by atom transfer radical polymerization (ATRP). Differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and one-dimensional X-ray diffraction (1D WAXD) have shown that the glass transition temperatures of these copolymers decreased with increasing n, PA0C–PEG–PA0C has no mesophase, while both PA2C–PEG–PA2C and PA6C–PEG–PA6C have a nematic mesophase. These differences derive from the length of spacer groups between the polymer backbone and side-chain LC monomers.
基金supported by the National Natural Science Foundations of China(Nos.20504013,20674035,20874046 and50533020)the National Basic Research Program of China(No.2007CB825101)+1 种基金the Nanjing University TalentDevelopment Foundation(No.0205004107)the Natural Science Foundation of Nanjing University(No.0205005216).
文摘Self assemblies of ABC triblock copolymer thin films on a densely brush-coated substrate were investigated by using the self-consistent field theory.The middle block B and the coated polymer form one phase and the alternating phase A and phase C occur when the film is very thin either for the neutral or selective hard surface(which is opposite to the brushcoated substrate).The lamellar phase is stable on the hard surface when it is neutral and interestingly,the short block tends to stay on this hard surface...
基金supported by the Ministry Basic Research Found(No.51412010204BQ0161).
文摘A kind of novel triblock copolymers of poly(γ-benzyl L-glutamate)-b-poly(tetrahydrofuran)-b-poly(γ-benzyl L-glutamate)s(PBLG-b-PTHF-b-PBLG)was synthesized by using bis(3-aminopropyl)terminated polytetrahydrofuran to initiate the ring-opening polymerization ofγ-benzyl L-glutamate N-carboxyanhydride(BLG-NCA).The corresponding multiblock poly(amino acid-urea)s were prepared in one-pot protocol from the chain extension of PBLG-b-PTHF-b-PBLG with MDI.The resulting triblock and multiblock copolymers were characterized by FTIR,~1H-NMR,^(13)C-NMR and GPC techniques.It is demonstrated that the chain extension has taken place to give rise to the copolymers with the well-defined block composition and narrow molecular weight distribution.A distinct T_g arising from the hard-segments was observed in all the copolymers.Their mechanical properties showed an increasing trend with the molecular weight enhancement of the prepolymers.
基金financially supported by the National Natural Science Foundation of China(No.20973106)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT_14R33)
文摘A double thermoresponsive ABC-type triblock copolymer (poly(ethyleneglycol)-block-poly (2-(2-methoxyethoxy)ethyl methacrylate)-block-poly(2-(2-methoxy ethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate, PEG-b-PMEO2MA-b-P(MEO2MA-co-OEGMA)) was designed and synthesized by reversible addition- fragmentation chain transfer polymerization (RAFT). The ABC-type triblock copolymer endowed a thermal-induced two- step phase transition at 29 and 39 ℃corresponding to the thermosensitive properties of PMEOzMA and P(MEO2MA-co- OEGMA) segments, respectively. The two-step self-assembly of copolymer solutions was studied by UV transmittance measurement, dynamic light scattering (DLS), transmission electron microscopy (TEM) and so on. The triblock copolymers showed the distinct thermosensitive behavior with respect to transition temperatures, aggregate type and size, which was correlated to the degree of polymerization of thermosensitive blocks and the molar fraction of OEGMA in the P(MEO2MA- co-OEGMA) segments. In addition, micelles could further aggregate to form the hydrogel by the self-associate of PEG chains under the abduction of the concentration and temperature. The transition from sol to gel was investigated by a test tube inverting method and dynamic rheological measurement.
基金financially supported by the National Natural Science Foundation of China(Nos.21074096,21474076 and 31340026)the Natural Science Foundation of Zhejiang Province(Nos.Y4090174,LY12A04004,LQ12E01003 and Z13F020019)X.W thanks the funding from the Advanced Talent Program of Wenzhou
文摘The morphologies and phase diagrams exhibited by symmetric ABC star triblock copolymer nanoparticles are investigated on the basis of real-space self-consistent field theory. The ABC star triblock copolymers were chosen to be tiling-forming with fixed polymer parameter and the spherical boundaries were modeled using the masking technique. We first study a number of examples where the ABC triblock copolymers confined in spherical cavities with neutral surface. Then, two types of spherical cavity distinct preferential surfaces are considered, including both A-block attractive and repulsive preferential surfaces. We aim at the effects due to various spherical cavity diameters and the degree of interactions between the polymer and the spherical surface. A variety of morphologies, such as ring-like structures, concentric sphere, and irregular cylinder, were identified in phase diagrams. The results show that both the degree of interactions and spherical diameters can influence the formation of morphologies so that ring-like structures and other novel structures could be obtained.
基金financially supported by the National Natural Science Foundation of China(No.11875205)。
文摘The phase behavior of nanoparticle-filled ABC star triblock copolymers was investigated by dissipative particle dynamics simulation.Two typical structures,the three-color lamella and polygonal tiling structures,were selected to demonstrate the effect of filling the nanoparticle.Results showed that the filling effects were obvious on the lamellar structure but not on the tiling structure,where the high concentration of fillers can destroy the lamellar structures.The dynamic processes of nanoparticle filling were investigated for the lamellar and tiling structures,where three stages can be sorted by analyzing the system energies and chain conformations.Moreover,the mechanical properties were evaluated for the lamellar structures by exploring the interface tensions.The findings can help us understand the potential applications of microstructures based on complex block copolymers and nanoparticle mixtures.
基金the National Natural Science Foundation of China (No. 20025618, No. 20236010) Shanghai Municipal Education Commission of China.
文摘The adsorption behavior of symmetric triblock copolymers, Am/2BnAm/2, from a nonselective solvent at solid-liquid interface has been studied by Monte Carlo simulations on a simple lattice model. Either segment A or segment B is attractive, while the other is non-attractive to the surface. Influences of the adsorption energy, bulk concentration, chain composition and chain length on the microstructure of adsorbed layers are presented. The results show that the total surface coverage and the adsorption amount increases monotonically as the bulk concentration increases. The larger the adsorption energy and the higher the fraction of adsorbing segments, the higher the total surface coverage is exhibited. The product of surface coverage and the proportion of non-attractive segments are nearly independent of the chain length, and the logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is larger, the adsorption amount exhibits a maximum as the fraction of adsorbing segment increases. The adsorption isotherms of copolymers with different length of non-attractive segments can be mapped onto a single curve under given adsorption energy. The adsorption layer thickness decreases as the adsorption energy and the fraction of adsorbing segments increases, but it increases as the length of non-attractive segments increases. The tails mainly govern the adsorption layer thickness.
文摘Poly(N,N-dimethyl acrylamide)-block-poly(styrene)-block-poly(N,N-dimethyl acrylamide)(PDMAc-bPSt-b-PDMAc)amphiphilic triblock copolymer micro/nano-objects were synthesized through reversible addition-fragmentation chain transfer(RAFT)dispersion polymerization of St mediated with poly(N,Ndimethyl acrylamide)trithiocarbonate(PDMAc-TTC-PDMAc)bi-functional macromolecular RAFT agent.It is found that the morphology of the PDMAc-b-PSt-b-PDMAc copolymer micro/nano-objects like spheres,vesicles and vesicle with hexagonally packed hollow hoops(HHHs)wall can be tuned by changing the solvent composition.In addition,vesicles with two sizes(600 nm,264 nm)and vesicles with HHHs features were also synthesized in high solid content systems(30 wt%and 40 wt%,respectively).Besides,as compared with typical AB diblock copolymers(A is the solvophilic,stabilizer block,and B is the solvophobic block),ABA triblock copolymers tend to form higher order morphologies,such as vesicles,under similar conditions.The finding of this study provides a new and robust approach to prepare block copolymer vesicles and other higher order micelles with special structure via PISA.
基金ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.21074096 and No.31340026) and the Natural Science Foundation of Zhejiang Province (No.Y4090174, No.LY12A04004, No.LQ12E01003 and No.Z13F020019). Xiang-hong Wang thanks the funding from the Advanced Talent Program of Wenzhou.
文摘The self-assembly behavior of ABC star triblock copolymers can lead to a large number of nanostructures. Indeed, many new and interesting structures have already been discovered and proven to be hotspot in soft matter physics research. In this work, we introduce different phase diagrams of core-shell-cylinder-forming ABC star triblock copolymers under different conditions, including in-bulk and pore geometries with different sizes. The relation between the pore size geometries and their corresponding structures are also revealed. The different properties of the surface potential field that significantly affect the self-assembly process of ABC star triblock copolymers are investigated as well.
文摘In this study a low molecular weight triblock copolymer derived fromε-caprolactone and tetrahydrofuran was used as a non-reactive compatibilizer of immiscible PLA/PCL blends.Ternary blends with 0,1.5 wt%,3 wt%and 5 wt% copolymer and about 75 wt%PLA were prepared by single screw extrusion and characterized by scanning electron microscopy(SEM),differential scanning calorimetry(DSC),dynamic mechanical analysis(DMA),tensile and Izod impact testing.SEM micrographs showed that the size of the dispersed PCL domains was practically constant regardless of copolymer concentration.This result can be explained by the low shear rate employed during processing step and a decrease of PCL viscosity by presence of the triblock copolymer.However,when the copolymer concentration increased,strain at break of PLA/PCL blends also increased.PLA/PCL blend with 0 wt% copolymer presented 2%strain at break,whereas PLA/PCL blend with 5 wt%copolymer exhibited 90%.
基金financial support from the National Natural Scientific Foundation of China(NNSFC) Project(Nos.51690150,51690154,and 21674103)Anhui Provincial Natural Scientific Foundation project(No.1508085QB43)
文摘Two reduction-cleavable ABA triblock copolymers possessing two disulfide linkages,PMMA-ssPMEO3MA-ss-PMMA and PDEA-ss-PEO-ss-PDEA were synthesized via facile substitution reactions from homopolymer precursors,where PMMA,PMEO3MA,PDEA,and PEO represent poly(methyl methacrylate),poly(tri(ethylene glycol) monomethyl ether methacrylate,poly(2-(diethylamino)ethyl methacrylate),and poly(ethylene oxide),respectively.Spherical micelles were obtained through supramolecular self-assembly of these two triblock copolymers in aqueous solutions.The resultant micelles with abundant disulfide bonds could serve as soft templates and precisely accommodate gold nanoparticles in the core/shell interface as a result of the formation of Au-S bonds.
基金financially supported by the National Natural Science Foundation of China(No.21104078)the Project of Science and Technology of Jilin Province,China(No.201201096)the Scientific Research Starting Foundation for the Jilin Agricultural University,China(No.201212)
文摘The morphological changes of ABA amphiphilic triblock copolymer micelles in dilute solution were systematically studied by tuning the solvent property using self-consistent field simulation. The solvent property was tuned by changing the Flory-Huggins interaction parameters between each type of blocks and solvent, respectively. The simulation results show that by changing the solvent properties, a series of micelle morphologies such as vesicle, cage-like, ring-shaped, rod-like and spherical micelle morphologies can be obtained. Variations of the free energy of the solution system and the surface area of micelles with the Flory-Huggins interaction parameters were calculated to better understand the effect of solvent property on micelle morphologies. In addition, a phase diagram showing the morphological changes of micelles with the Flory-Huggins interaction parameters is provided.
基金financially supported by the National Natural Science Foundation of China(No.21574117)
文摘The self-assembly behavior of sphere-forming R_5C_(30)R_5 triblock copolymers within a planar slit is studied by performing dissipative particle dynamics simulations. A sequence of novel structures which are not observed in bulk are formed within slits, including wetting layers, island-like structure, parallel cylinders, perpendicular cylinders and crosscylindrical structures. Perpendicular cylinders are always formed before the increase in the layers of parallel cylinders. A phase diagram of the assembled structures with respective to the slit property and height is thus presented. The rod length is found to have a significant impact on the rod alignment, and a disordered-ordered transition of rod orientation occurs with an increase in the length of rod blocks. Some special structures, such as parallel half-cylinders and arrowhead-shaped morphology, are observed when the rod length increases to a certain extent. Our results show that the property and height of the slit and rod length all influence the self-assembly of rod-coil-rod triblock copolymers.