Trefftz有限元法(Trefftz finite element method,TFEM)因其独特的优良品质而备受关注.针对正交各向异性轴对称位势问题,提出了一种4节点四边形环状单元.在该单元模型中,首先假设两套独立的位势插值模式:即单元域内场和网线场,然后代入...Trefftz有限元法(Trefftz finite element method,TFEM)因其独特的优良品质而备受关注.针对正交各向异性轴对称位势问题,提出了一种4节点四边形环状单元.在该单元模型中,首先假设两套独立的位势插值模式:即单元域内场和网线场,然后代入修正变分泛函并利用Gauss散度定理消除区域积分,最后根据驻值原理导得只含边界积分的单元刚度方程.数值算例表明了该单元的准确性、稳定性以及对网格畸变的不敏感性.展开更多
简要描叙FE法(finite element method)和WB法(wave based method)的理论背景以及耦合FE/WB法的数学基础.耦合FE/WB法利用两者的优势——FE法的广泛应用和WB法的高收敛特性,将FE模型中较大且几何简单的部分采用WB法代替.耦合模型具有相...简要描叙FE法(finite element method)和WB法(wave based method)的理论背景以及耦合FE/WB法的数学基础.耦合FE/WB法利用两者的优势——FE法的广泛应用和WB法的高收敛特性,将FE模型中较大且几何简单的部分采用WB法代替.耦合模型具有相对较少的自由度.对于较高的频率还可以进行细分得到更高的计算精度,并利用模态缩减法进一步减少自由度数.数值算例结果表明,该耦合方法有潜力覆盖中频段的声分析.展开更多
A wave number method (WNM) is proposed to deal with the two-dimensional coupled structural-acoustic problem. Based on an indirect Trefftz approach, the displacement and the pressure response are approximated respect...A wave number method (WNM) is proposed to deal with the two-dimensional coupled structural-acoustic problem. Based on an indirect Trefftz approach, the displacement and the pressure response are approximated respectively by a set of wave functions, which exactly satisfy the governing equations and are independent of the size of the coupled system. The wave functions comprise the exact solutions of the homogeneous part of the governing equations and some particular solution functions, which arise from the external excitation. The weighting coefficients of the wave functions can be obtained by enforcing the pressure approximation to satisfy the boundary conditions and it is performed by applying the weighted residual formulation. The example is computed by the WNM and the BEM. The results show that, the WNM can attain the same accuracy and convergence as the BEM with less degrees of freedom.展开更多
描叙了圆柱壳与声耦合系统建模技术的基本概念。根据WB法(Wave based method,简称WB法)的基本原理,将结构场变量和声压展开成波函数和特解函数的叠加。应用加权余量法将结构和声学边界条件以及结构与声耦合界面上的连续性条件转换成近...描叙了圆柱壳与声耦合系统建模技术的基本概念。根据WB法(Wave based method,简称WB法)的基本原理,将结构场变量和声压展开成波函数和特解函数的叠加。应用加权余量法将结构和声学边界条件以及结构与声耦合界面上的连续性条件转换成近似积分,推导出一组由代数方程表示的耦合模型。通过分析二维的算例表明这种预报技术计算量小且精度高,因此可应用到中频的分析。展开更多
文摘Trefftz有限元法(Trefftz finite element method,TFEM)因其独特的优良品质而备受关注.针对正交各向异性轴对称位势问题,提出了一种4节点四边形环状单元.在该单元模型中,首先假设两套独立的位势插值模式:即单元域内场和网线场,然后代入修正变分泛函并利用Gauss散度定理消除区域积分,最后根据驻值原理导得只含边界积分的单元刚度方程.数值算例表明了该单元的准确性、稳定性以及对网格畸变的不敏感性.
文摘简要描叙FE法(finite element method)和WB法(wave based method)的理论背景以及耦合FE/WB法的数学基础.耦合FE/WB法利用两者的优势——FE法的广泛应用和WB法的高收敛特性,将FE模型中较大且几何简单的部分采用WB法代替.耦合模型具有相对较少的自由度.对于较高的频率还可以进行细分得到更高的计算精度,并利用模态缩减法进一步减少自由度数.数值算例结果表明,该耦合方法有潜力覆盖中频段的声分析.
基金Project supported by the National Natural Science Foundation of China (No.10472035).
文摘A wave number method (WNM) is proposed to deal with the two-dimensional coupled structural-acoustic problem. Based on an indirect Trefftz approach, the displacement and the pressure response are approximated respectively by a set of wave functions, which exactly satisfy the governing equations and are independent of the size of the coupled system. The wave functions comprise the exact solutions of the homogeneous part of the governing equations and some particular solution functions, which arise from the external excitation. The weighting coefficients of the wave functions can be obtained by enforcing the pressure approximation to satisfy the boundary conditions and it is performed by applying the weighted residual formulation. The example is computed by the WNM and the BEM. The results show that, the WNM can attain the same accuracy and convergence as the BEM with less degrees of freedom.
文摘描叙了圆柱壳与声耦合系统建模技术的基本概念。根据WB法(Wave based method,简称WB法)的基本原理,将结构场变量和声压展开成波函数和特解函数的叠加。应用加权余量法将结构和声学边界条件以及结构与声耦合界面上的连续性条件转换成近似积分,推导出一组由代数方程表示的耦合模型。通过分析二维的算例表明这种预报技术计算量小且精度高,因此可应用到中频的分析。