Background:The heartwood(HW)proportion in the trunk of mature trees is an important characteristic not only for wood quality but also for assessing the role of forests in carbon sequestration.We have for the first tim...Background:The heartwood(HW)proportion in the trunk of mature trees is an important characteristic not only for wood quality but also for assessing the role of forests in carbon sequestration.We have for the first time studied the proportion of HW in the trunk and the distribution of carbon and extractives in sapwood(SW)and HW of 70–80 year old Pinus sylvestris L.trees under different growing conditions in the pine forests of North-West Russia.Method:We have examined the influence of conditions and tree position in stand(dominant,intermediate and suppressed trees)in the ecological series:blueberry pine forest(Blu)–lingonberry pine forest(Lin)–lichen pine forest(Lic).We have analyzed the influence of climate conditions in the biogeographical series of Lin:the middle taiga subzone–the northern taiga subzone–the transition area of the northern taiga subzone and tundra.Results:We found that the carbon concentration in HW was 1.6%–3.4%higher than in SW,and the difference depended on growing conditions.Carbon concentration in HW increased with a decrease in stand productivity(Blu-Lin-Lic).In medium-productive stands,the carbon concentration in SW was higher in intermediate and supressed trees compared to dominant trees.In the series from south to north,carbon concentration in HW increased by up to 2%,while in SW,it rose by 2.7%–3.8%.Conclusions:Our results once again emphasized the need for an empirical assessment of the accurate carbon content in aboveground wood biomass,including various forest growing conditions,to better understand the role of boreal forests in carbon storage.展开更多
Rapid urbanization has caused significant changes along the urban-rural gradient,leading to a variety of landscapes that are mainly shaped by human activities.This dynamic interplay also influences the distribution an...Rapid urbanization has caused significant changes along the urban-rural gradient,leading to a variety of landscapes that are mainly shaped by human activities.This dynamic interplay also influences the distribution and characteristics of trees outside forests(TOF).Understanding the pattern of these trees will support informed decision-making in urban planning,in conservation strategies,and altogether in sustainable land management practices in the urban context.In this study,we employed a deep learning-based object detection model and high resolution satellite imagery to identify 1.3 million trees with bounding boxes within a 250 km^(2)research transect spanning the urban-rural gradient of Bengaluru,a megacity in Southern India.Additionally,we developed an allometric equation to estimate diameter at breast height(DBH)from the tree crown diameter(CD)derived from the detected bounding boxes.Our study focused on analyzing variations in tree density and tree size along this gradient.The findings revealed distinct patterns:the urban domain displayed larger tree crown diameters(mean:8.87 m)and DBH(mean:43.78 cm)but having relatively low tree density(32 trees per hectare).Furthermore,with increasing distance from the city center,tree density increased,while the mean tree crown diameter and mean tree basal area decreased,showing clear differences of tree density and size between the urban and rural domains in Bengaluru.This study offers an efficient methodology that helps generating instructive insights into the dynamics of TOF along the urban-rural gradient.This may inform urban planning and management strategies for enhancing green infrastructure and biodiversity conservation in rapidly urbanizing cities like Bengaluru.展开更多
Increasing human activity is altering the struc-ture of forests,which affects the composition of communi-ties,including birds.However,little is known about the key forest structure variables that determine the richnes...Increasing human activity is altering the struc-ture of forests,which affects the composition of communi-ties,including birds.However,little is known about the key forest structure variables that determine the richness of bird communities in European temperate oak forests.We,there-fore,aimed to identify key variables in these habitats that could contribute to the design of management strategies for forest conservation by surveying 11 oak-dominated forest sites throughout the mid-mountain range of Hungary at 86 survey points to reveal the role of different compositional and structural variables for forest stands that influence the breeding bird assemblages in the forests at the functional group and individual species levels.Based on decision tree modelling,our results showed that the density of trees larger than 30 cm DBH was an overall important variable,indi-cating that large-diameter trees were essential to provide diverse bird communities.The total abundance of birds,the foliage-gleaners,primary and secondary cavity nest-ers,residents,and five specific bird species were related to the density of high trunk diameter trees.The abundance of shrub nesters was negatively influenced by a high density of trees over 10 cm DBH.The density of the shrub layer positively affected total bird abundance and the abundance of foliage gleaners,secondary cavity nesters and residents.Analysis of the co-dominant tree species showed that the presence of linden,beech,and hornbeam was important in influencing the abundance of various bird species,e.g.,Eur-asian Treecreeper(Certhia familiaris),Marsh Tit(Poecile palustris)and Wood Warbler(Phylloscopus sibilatrix).Our results indicated that large trees,high tree diversity,and dense shrub layer were essential for forest bird communities and are critical targets for protection to maintain diverse and abundant bird communities in oak-dominated forest habitats.展开更多
Tree endophytic fungi play an important role in reducing insect herbivory,either by repelling them or kill-ing them directly.Identifying which fungi show such activ-ity could lead to new environmentally friendly pesti...Tree endophytic fungi play an important role in reducing insect herbivory,either by repelling them or kill-ing them directly.Identifying which fungi show such activ-ity could lead to new environmentally friendly pesticides.In this study,the Mediterranean basin climate conditions are projected to harshen in the next decades,will increase vulnerability of tree species to pest invasions.Endophytic fungi were isolated from wood and leaves of Quercus pyr-enaica,Q.ilex and Q.suber and tested for virulence against adults of the mealworm beetle,Tenebrio molitor L.using a direct contact method.Only 3 of 111 sporulating isolates had entomopathogenic activity,all identified as Lecanicillium lecanii.The pathogenicity of L.lecanii on T.molitor resulted in a median lethal time(TL50)of 14-16 d.Compared with commercial products,L.lecanii caused faster insect death than the nematode Steinernema carpocapsae and nuclear polyhedrosis virus(no effect on T.molitor survival),and slower than Beauveria bassiana(TL50=5),Beauveria pseu-dobassiana(TL50=8d)and Bacillus thuriengensis(80%mortality first day after inoculation).Mortality was also accelerated under water stress,reducing TL50 by an addi-tional 33%.Remarkably,water stress alone had a comparable effect on mortality to that of L.lecanii isolates.This study confirms T.molitor as a good model insect for pathogenicity testing and agrees with management policies proposed in the EU Green Deal.展开更多
Understanding competition between trees is essential for sustainable forest management as interactions between trees in uneven-aged mixed forests play a key role in growth dynamics. This study investigated nine compet...Understanding competition between trees is essential for sustainable forest management as interactions between trees in uneven-aged mixed forests play a key role in growth dynamics. This study investigated nine competition indices(CIs) for their suitability to model the effects of neighboring trees on silver fir(Abies alba) growth in Dinaric silver fir-European beech(Fagus sylvatica) forests. Although numerous competition indices have been developed, there is still limited consensus on their applicability in different forest types, especially in mature, structurally complex forest stands. The indices were evaluated using the adjusted coefficient of determination in a linear model wherein the volume growth of the last five years for 60 dominant silver fir trees was modeled as a function of tree volume and competition index. The results demonstrated that distance-dependent indices(e.g., the Hegyi height-distance competition and Rouvinen-Kuuluvainen diameter-distance competition indices), which consider the distance to competitors and their size, perform better than distance-independent indices. Using the optimization procedure in calculating the competition indices, only neighboring trees at a distance of up to 26-fold the diameter at breast height(DBH) of the selected tree(optimal search radius) and with a DBH of at least 20% of that of the target tree(optimal DBH) were considered competitors. Therefore, competition significantly influences the growth of dominant silver firs even in older age classes. The model based solely on tree volume explained 32.5% of the variability in volume growth, while the model that accounted for competition explained 64%. Optimizing the optimal search radius had a greater impact on model performance than optimizing the DBH threshold. This emphasizes the importance of balancing stand density and competition in silvicultural practice.展开更多
The karst forest in southwestern China is characterized by thin soil layers,numerous fissures and holes,resulting in low soil water availability and poor water retention,making it challenging for plant growth and surv...The karst forest in southwestern China is characterized by thin soil layers,numerous fissures and holes,resulting in low soil water availability and poor water retention,making it challenging for plant growth and survival.While the relationship between plant functional traits and tree growth performance has been extensively studied,the links between tree seasonal growth and drought-tolerant traits in tree species with different leaf habit remains poorly understood.This study evaluated the associations between four-year averaged rainy season stem diameter growth rate and 17 branch and leaf traits across evergreen and deciduous species in a tropical karst forest in southwest China.The cross-species variations in tree growth rates were related to plant hydraulic traits(e.g.,vessel lumen diameter,xylem vessel density,stomatal density,and stomatal size)and leaf anatomical traits(e.g.,total leaf thickness,lower/upper epidermis thickness,and spongy thickness).The growth of evergreen trees exhibited lower hydraulic efficiency but greater drought tolerance than deciduous tree,which enabled them to maintain higher persistence under low soil water availability and consequently a relatively longer growing season.In contrast,deciduous species showed no correlation between their functional traits and growth rate.The distinct water use strategies of evergreen and deciduous trees may offer a potential explanation for their co-existence in the tropical karst forests.展开更多
Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herb...Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herbaceous plants,with notable applications in species such as Arabidopsis(Yin et al.,2024),soybean(Zhang et al.,2024),rice(Zhang et al.,2020),and Chinese cabbage(Li et al.,2021).However,its application in fruit trees is limited.This is primarily due to their long growth cycles and lack of rapid,efficient,and stable transgenic systems,which severely hinders foundational research involving plant genetic transformation(Mei et al.,2024).Furthermore,for subtropical fruit trees,the presence of recalcitrant seeds adds an extra layer of difficulty to genetic transformation(Umarani et al.,2015),as most methods rely on seed germination as a basis for transformation.展开更多
Tree growth synchrony serves as a valuable ecological indicator of forest resilience to climate stress and disturbances.However,our understanding of how increasing temperature affects tree growth synchrony during rapi...Tree growth synchrony serves as a valuable ecological indicator of forest resilience to climate stress and disturbances.However,our understanding of how increasing temperature affects tree growth synchrony during rapidly and slowly warming periods in ecosystems with varying climatic conditions remains limited.By using tree-ring data from temperate broadleaf(Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Juglans mandshurica)and Korean pine(Pinus koraiensis)mixed forests in northeast China,we investigated the effects of climate change,particularly warming,on the growth synchrony of five dominant temperate tree species across contrasting warm-dry and cool-wet climate conditions.Results show that temperature over water availability was the primary factor driving the growth and growth synchrony of the five species.Growth synchrony was significantly higher in warm-dry than in cool-wet areas,primarily due to more uniform climate conditions and higher climate sensitivity in the former.Rapid warming from the 1960s to the 1990s significantly enhanced tree growth synchrony in both areas,followed by a marked reversal as temperatures exceeded a certain threshold or warming slowed down,particularly in the warm-dry area.The growth synchrony variation patterns of the five species were highly consistent over time,although broadleaves exhibited higher synchrony than conifers,suggesting potential risks to forest resilience and stability under future climate change scenarios.Growing season temperatures and non-growing season temperatures and precipitation had a stronger positive effect on tree growth in the cool-wet area compared to the warm-dry area.High relative humidity hindered growth in the cool-wet area but enhanced it in the warm-dry area.Overall,our study highlights that the diversity and sensitivity of climate-growth relationships directly determine spatiotemporal growth synchrony.Temperature,along with water availability,shape long-term forest dynamics by affecting tree growth and synchrony.These results provide crucial insights for forest management practice to enhance structural diversity and resilience capacity against climate changeinduced synchrony shifts.展开更多
Exotic tree species,though widely used in forestry and restoration projects,pose great threats to local ecosystems.They need to be replaced with native species from natural forests.We hypothesized that natural forests...Exotic tree species,though widely used in forestry and restoration projects,pose great threats to local ecosystems.They need to be replaced with native species from natural forests.We hypothesized that natural forests contain large,fast-growing,dominant native tree species that are suitable for specific topographic conditions in forestry.We tested this hypothesis using data from a 50-ha forest dynamics plot in subtropical China.We classified the plot into the ridge,slope,and valley habitats and found that 34/87 species had significant associations with at least one topographic habitat.There were 90 tree species with a maximum diameter≥30 cm,and their abundances varied widely in all habitat types.In all habitat types,for most species,rate of biomass gain due to recruitment was<1%of its original biomass,and rate of biomass gain due to tree growth was between 1 and 5%of its original biomass.For most species,biomass loss due to tree mortality was not significantly different than biomass gain due to recruitment,but the resulting net biomass increment rates did not significantly differ from zero.The time required to reach a diameter of 30 cm from 1 cm diameter for Altingia chinensis in the slope habitat,for Quercus chungii and Morella rubra in the ridge habitat and for Castanopsis carlesii in all habitats could be as short as 30 years in our simulations based on actual distributions of tree growth observed in the forest.Principal component analyses of maximum diameter,abundance and net biomass increment rates suggested several species were worthy of further tests for use in forestry.Our study provides an example for screening native tree species from natural forests for forestry.Because native tree species are better for local ecosystems,our study will also contribute to biodiversity conservation in plantations.展开更多
A tree's basal area(BA)and wood volume scale exponentially with tree diameter in species-specifc patterns.Recent observed increases in tree growth suggest these allometric relationships are shifting in response to...A tree's basal area(BA)and wood volume scale exponentially with tree diameter in species-specifc patterns.Recent observed increases in tree growth suggest these allometric relationships are shifting in response to climate change,rising CO_(2) levels,and/or changes in forest management.We analyzed 9,214 cores from nine conifer and 11 broadleaf species grown in managed mixed-species stands in the upper Midwest to quantify how well diameter(diameter at breast height(DBH))serves to predict BA growth and above-ground wood and carbon(C).These samples include many large trees.We ft mixed models to predict BA growth and above-ground biomass/C from diameter,tree height,and the BA of nearby trees while controlling for site effects.Models account for 55%–83%of the variance in log(recent growth),improving predictions over earlier models.Growth-diameter scaling exponents covary with certain leaf and stem(but not wood)functional traits,reflecting growth strategies.LogBA increment scales linearly with log(diameter)as trees grow bigger in 16/20 species and growth actually accelerates in Quercus rubra L.Three other species plateau in growth.Growth only decelerates in red pine,Pinus resinosa Ait.Growth in whole-tree,above-ground biomass,and C accelerate even more strongly with diameter(mean exponent:2.08 vs.1.30 for BA growth).Sustained BA growth and accelerating wood/C growth contradict the common assumption that tree growth declines in bigger trees.Yield tables and silvicultural guidelines should be updated to reflect these current relationships.Such revisions will favor delaying harvests in many managed stands to increase wood production and enhance ecosystem values including C fxation and storage.Further research may resolve the relative roles of thinning,climatic conditions,nitrogen inputs,and rising CO2 levels on changing patterns of tree growth.展开更多
Forests play a critical role in mitigating cli-mate change by sequestering carbon,yet their responses to environmental shifts remain complex and multifaceted.This special issue,“Tree Rings,Forest Carbon Sink,and Clim...Forests play a critical role in mitigating cli-mate change by sequestering carbon,yet their responses to environmental shifts remain complex and multifaceted.This special issue,“Tree Rings,Forest Carbon Sink,and Climate Change,”compiles 41 interdisciplinary studies exploring forest-climate interactions through dendrochro-nological and ecological approaches.It addresses climate reconstruction(e.g.,temperature,precipitation,isotopes)using tree-ring proxies,species-specific and age-dependent growth responses to warming and drought,anatomical adap-tations,and methodological innovations in isotope analysis and multi-proxy integration.Key findings reveal ENSO/AMO modulation of historical climates,elevation-and latitude-driven variability in tree resilience,contrasting carbon dynamics under stress,and projected habitat shifts for vulnerable species.The issue underscores forests’dual role as climate archives and carbon regulators,offering insights for adaptive management and nature-based climate solutions.Contributions bridge micro-scale physiological processes to macro-scale ecological modeling,advancing sustainable strategies amid global environmental challenges.展开更多
The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that...The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that critically threaten ecosystem stability.Among these challenges,soil erosion emerges as a silent disaster-a gradual yet relentless process whose impacts accumulate over time,progressively degrading landscape integrity and disrupting ecological sustainability.Unlike catastrophic events with immediate visibility,soil erosion’s most devastating consequences often manifest decades later through diminished agricultural productivity,habitat fragmentation,and irreversible biodiversity loss.This study developed a scalable predictive framework employing Random Forest(RF)and Gradient Boosting Tree(GBT)machine learning models to assess and map soil erosion susceptibility across the region.A comprehensive geo-database was developed incorporating 11 erosion triggering factors:slope,elevation,rainfall,drainage density,topographic wetness index,normalized difference vegetation index,curvature,soil texture,land use,geology,and aspect.A total of 2,483 historical soil erosion locations were identified and randomly divided into two sets:70%for model building and 30%for validation purposes.The models revealed distinct spatial patterns of erosion risks,with GBT classifying 60.50%of the area as very low susceptibility,while RF identified 28.92%in this category.Notable differences emerged in high-risk zone identification,with GBT highlighting 7.42%and RF indicating 2.21%as very high erosion susceptibility areas.Both models demonstrated robust predictive capabilities,with GBT achieving 80.77%accuracy and 0.975 AUC,slightly outperforming RF’s 79.67%accuracy and 0.972 AUC.Analysis of predictor variables identified elevation,slope,rainfall and NDVI as the primary factors influencing erosion susceptibility,highlighting the complex interrelationship between geo-environmental factors and erosion processes.This research offers a strategic framework for targeted conservation and sustainable land management in the fragile Himalayan region,providing valuable insights to help policymakers implement effective soil erosion mitigation strategies and support long-term environmental sustainability.展开更多
Background The full lifespan of long-lived trees includes a seedling phase,during which a seed germinates and grows to a size large enough to be measured in forest inventories.Seedling populations are usually studied ...Background The full lifespan of long-lived trees includes a seedling phase,during which a seed germinates and grows to a size large enough to be measured in forest inventories.Seedling populations are usually studied separately from adult trees,and the seedling lifespan,from seed to sapling,is poorly known.In the 50-ha Barro Colorado forest plot,we started intensive censuses of seeds and seedlings in 1994 in order to merge seedling and adult demography and document complete lifespans.Methods In 17 species abundant in seedling censuses,we subdivided populations into six size classes from seed to 1cm dbh,including seeds plus five seedling stages.The smallest seedling class was subdivided by age.Censuses in two consecutive years provided transition matrices describing the probability that a seedling in one stage moved to another one year later.For each species,we averaged the transition matrix across 25 censuses and used it to project the seedling lifespan,from seed until 1cm dbh or death.Results The predicted mean survival rate of seeds to 1cm dbh varied 1000-fold across species,from 2.9×10^(−6)to 4.4×10^(−3);the median was 2.0×10^(−4).The seedling lifespan,or the average time it takes a seed to grow to 1cm dbh,varied across species from 5.1 to 53.1 years,with a median of 20.3 years.In the median species,the 10%fastest-growing seeds would reach 1cm dbh in 9.0 years,and the slowest 10%in 34.6 years.Conclusions Combining seedling results with our previous study of lifespan after 1cm dbh,we estimate that the focal species have full lifespans varying from 41 years in a gap-demanding pioneer to 320 years in one shade-tolerant species.Lifetime demography can contribute precise survival rates and lifespans to forestry models.展开更多
Understanding local variation in forest biomass allows for a better evaluation of broad-scale patterns and interpretation of forest ecosystems’role in carbon dynamics.This study focuses on patterns of aboveground tre...Understanding local variation in forest biomass allows for a better evaluation of broad-scale patterns and interpretation of forest ecosystems’role in carbon dynamics.This study focuses on patterns of aboveground tree biomass within a fully censused 20 ha forest plot in a temperate forest of northern Alabama,USA.We evaluated the relationship between biomass and topography using ridge and valley landforms along with digitally derived moisture and solar radiation indices.Every live woody stem over 1 cm diameter at breast height within this plot was mapped,measured,and identified to species in 2019-2022,and diameter data were used along with speciesspecific wood density to map the aboveground biomass at the scale of 20 m×20 m quadrats.The aboveground tree biomass was 211 Mg·ha^(-1).Other than small stream areas that experienced recent natural disturbances,the total stand biomass was not associated with landform or topographic indices.Dominant species,in contrast,had strong associations with topography.American beech(Fagus grandifolia)and yellow-poplar(Liriodendron tulipfera)dominated the valley landform,with 37% and 54% greater biomass in the valley than their plot average,respectively.Three other dominant species,white oak(Quercus alba),southern shagbark hickory(Carya carolinaeseptentrionalis),and white ash(Fraxinus americana),were more abundant on slopes and benches,thus partitioning the site.Of the six dominant species,only sugar maple(Acer saccharum)was not associated with landform.Moreover,both topographic wetness and potential radiation indices were significant predictors of dominant species biomass within each of the landforms.The study highlights the need to consider species when examining forest productivity in a range of site conditions.展开更多
Although numerous studies have proposed explanations for the specific and relative effects of stand structure,plant diversity,and environmental conditions on carbon(C)storage in forest ecosystems,understanding how the...Although numerous studies have proposed explanations for the specific and relative effects of stand structure,plant diversity,and environmental conditions on carbon(C)storage in forest ecosystems,understanding how these factors collectively affect C storage in different community layers(trees,shrubs,and herbs)and forest types(mixed,broad-leaved(E),broad-leaved(M),and coniferous forest)continues to pose challenges.To address this,we used structural equation models to quantify the influence of biotic factors(mean DBH,mean height,maximum height,stem density,and basal area)and abiotic factors(elevation and canopy openness),as well as metrics of species diversity(Shannon–Wiener index,Simpson index,and Pielou’s evenness)in various forest types.Our analysis revealed the critical roles of forest types and elevation in explaining a substantial portion of variability in C storage in the overstory layer,with a moderate influence of stand factors(mean DBH and basal area)and a slightly negative impact of tree species diversity(Shannon–Wiener index).Notably,forest height emerged as the primary predictor of C storage in the herb layer.Regression relationships further highlighted the significant contribution of tree species diversity to mean height,understory C storage,and branch biomass within the forest ecosystem.Our insights into tree species diversity,derived from structural equation modeling of C storage in the overstory,suggest that the effects of tree species diversity may be influenced by stem biomass in statistical reasoning within temperate forests.Further research should also integrate tree species diversity with tree components biomass,forest mean height,understory C,and canopy openness to understand complex relationships and maintain healthy and sustainable ecosystems in the face of global climate challenges.展开更多
Making the distinction between different plantation tree species is crucial for creating reliable and trustworthy information, which is critical in forestry administration and upkeep. Over the years, forest delineatio...Making the distinction between different plantation tree species is crucial for creating reliable and trustworthy information, which is critical in forestry administration and upkeep. Over the years, forest delineation and mapping have been done using the conventional techniques, such as the utilization of ground truth facts together with orthophotos. These techniques have been proven to be very precise, but they are expensive, cumbersome, and challenging to employ in remote regions. To resolve this shortfall, this research investigates the potential of data from the commercial, PlanetScope CubeSat and the freely available, Sentinel 2 data from Copernicus to discriminate commercial forest tree species in the Usutu Forest, Eswatini. Two approaches for image classification, Random Forest (RF) and the Support Vector Machine (SVM) were investigated at different levels of the forest database classification which is the genus (family of tree species) and species levels. The result of the study indicates that, the Sentinel 2 images had the highest species classification accuracy compared to the PlanetScope image. Both classification methods achieved a 94% maximum OA and 0.90 kappa value at the genus level with the Sentinel 2 imagery. At the species level, the Sentinel 2 imagery again showed highly acceptable results with the SVM method, with an OA of 82%. The PlanetScope images performed badly with less than 64% OA for both RF and SVM at the genus level and poorer at the species level with a low OA figure, 47% and 53% for the SVM and RF respectively. Our results suggest that the freely available Sentinel 2 data together with the SVM method has a high potential for identifying differences between commercial tree species than the PlanetScope. The study uncovered that both classification methods are highly capable of classifying species under the gum genus group (esmi, egxu, and egxn) using both imageries. However, it was difficult to separate species types under the pine genus group, particularly discriminating the hybrid species such as pech and pell since pech is a hybrid species for pell.展开更多
In the Rocky Mountain and Pacific Northwest regions of the United States,forests include extensive portions of standing dead trees.These regions showcase an intriguing phenomenon where the combined biomass of standing...In the Rocky Mountain and Pacific Northwest regions of the United States,forests include extensive portions of standing dead trees.These regions showcase an intriguing phenomenon where the combined biomass of standing dead trees surpasses that of fallen and decomposing woody debris.This stems from a suite of factors including pest disturbances,management decisions,and a changing climate.With increasingly dry and hot conditions,dead timber on a landscape increases the probability that a fire will occur.Identifying and characterizing the presence of standing dead trees on a landscape helps with forest management efforts including reductions in the wildfire hazard presented by the trees,and vulnerability of nearby park assets should the trees burn.Using forest-based classification,exploratory data analysis,and cluster vulnerability analysis,this study characterized the occurrence and implications of standing dead trees within Yellowstone National Park.The findings show standing dead trees across the entire study area with varying densities.These clusters were cross-referenced with vulnerability parameters of distance to roads,distance to trails,distance to water,distance to buildings,and slope.These parameters inform fire ignition,propagation,and impact.The weighted sum of these parameters was used to determine the vulnerability incurred on the park assets by the clusters and showed the highest values nearest to park entrances and points of interest.High vulnerability clusters warrant priority management to reduce wildfire impact.The framework of this study can be applied to other sites and incorporate additional vulnerability variables to assess forest fuel and impact.This can provide a reference for management to prioritize areas for resource conservation and improve fire prevention and suppression efficiency.展开更多
Mekong River Delta has many home-gardens,here,everybody organizes the tourisms.We observed the real situations and substances,evaluation,a choice at some households in the Mekong River Delta in order to have a purpose...Mekong River Delta has many home-gardens,here,everybody organizes the tourisms.We observed the real situations and substances,evaluation,a choice at some households in the Mekong River Delta in order to have a purpose of search,here,they have the home-gardens;the farmers plant fruit trees at the villages of provinces,that is a place which is influenced by the climate change.We went to the villages such as:Hiep Thanh village,Chau Thanh district,Long An province;Tan Phu village,Tan Phu Dong district,Tien Giang province;Tieu Can village,Tieu Can district,Tra Vinh province to observe the landscape(here 10 households for 1 village),and we took the sample to analyze.We knew the factors such as:drought,deficiency of water,salt water intrusion,flood.These factors influence the trees,assets,diseases,lives of the persons who stay here,and cause many damages.We compare many home-gardens having a climate change with the normal home-gardens.Thus,we propose the reasonable methods in order to fix the consequence and prevent the salt intrusion,flood,important damages…And we present some illustrations.展开更多
The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilitie...The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilities of common trees in BKF to extreme climates are poorly understood.Here we used dendrochronological meth-ods to assess radial growth of seven main tree species(Pinus koraiensis,Picea jezoensis,Abies nephrolepis,Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Ulmus davidiana)in an old-growth BKF in response to climate changes in the Xiaoxing’an Mountains and to improve predictions of changes in the tree species compo-sition.Temperature in most months and winter precipita-tion significantly negatively affected growth of P.jezoensis and A.nephrolepis,but positively impacted growth of P.koraiensis and the broadleaf species,especially F.mandshu-rica and U.davidiana.Precipitation and relative humidity in June significantly positively impacted the growth of most tree species.The positive effect of the temperature during the previous non-growing season(PNG)on growth of F.mandshurica and Q.mongolica strengthened significantly with rapid warming around 1981,while the impact of PNG temperature on the growth of P.jezoensis and A.nephrolepis changed from significantly negative to weakly negative or positive at this time.The negative response of radial growth of P.jezoensis and A.nephrolepis to precipitation during the growing season gradually weakened,and the negative response to PNG precipitation was enhanced.Among the studied species,P.koraiensis was the most resistant to drought,and U.davidiana recovered the best after extreme drought.Ulmus davidiana,P.jezoensis and A.nephrolepis were more resistant to extreme cold than the other species.Climate warming generally exacerbated the opposite growth patterns of conifer(decline)and broadleaf(increase)spe-cies.Deciduous broadleaf tree species in the old-growth BKF probably will gradually become dominant as warming continues.Species-specific growth-climate relationships should be considered in future models of biogeochemical cycles and in forestry management practices.展开更多
基金carried out within the framework of the most important innovative project of state importance“Development of a system of ground-based and remote monitoring of carbon pools and greenhouse gas fluxes on the territory of the Russian Federation,…”(No.123030300031-6)in the northern taiga subzone and on the border of tundra and taiga under the state assignment of the Forest Institute of the Karelian Research Center of the Russian Academy of Sciences(FMEN-2021-0018)with the partial financial support from RSF(grant no.21-14-00204)。
文摘Background:The heartwood(HW)proportion in the trunk of mature trees is an important characteristic not only for wood quality but also for assessing the role of forests in carbon sequestration.We have for the first time studied the proportion of HW in the trunk and the distribution of carbon and extractives in sapwood(SW)and HW of 70–80 year old Pinus sylvestris L.trees under different growing conditions in the pine forests of North-West Russia.Method:We have examined the influence of conditions and tree position in stand(dominant,intermediate and suppressed trees)in the ecological series:blueberry pine forest(Blu)–lingonberry pine forest(Lin)–lichen pine forest(Lic).We have analyzed the influence of climate conditions in the biogeographical series of Lin:the middle taiga subzone–the northern taiga subzone–the transition area of the northern taiga subzone and tundra.Results:We found that the carbon concentration in HW was 1.6%–3.4%higher than in SW,and the difference depended on growing conditions.Carbon concentration in HW increased with a decrease in stand productivity(Blu-Lin-Lic).In medium-productive stands,the carbon concentration in SW was higher in intermediate and supressed trees compared to dominant trees.In the series from south to north,carbon concentration in HW increased by up to 2%,while in SW,it rose by 2.7%–3.8%.Conclusions:Our results once again emphasized the need for an empirical assessment of the accurate carbon content in aboveground wood biomass,including various forest growing conditions,to better understand the role of boreal forests in carbon storage.
基金financial support provided by the German Research Foundation,DFG,through grant number KL894/23-2 and NO 1444/1-2 as part of the Research Unit FOR2432/2the China Scholarship Council(CSC)that supports the first author with a Ph D scholarshipsupport provided by Indian partners at the Institute of Wood Science and Technology(IWST),Bengaluru。
文摘Rapid urbanization has caused significant changes along the urban-rural gradient,leading to a variety of landscapes that are mainly shaped by human activities.This dynamic interplay also influences the distribution and characteristics of trees outside forests(TOF).Understanding the pattern of these trees will support informed decision-making in urban planning,in conservation strategies,and altogether in sustainable land management practices in the urban context.In this study,we employed a deep learning-based object detection model and high resolution satellite imagery to identify 1.3 million trees with bounding boxes within a 250 km^(2)research transect spanning the urban-rural gradient of Bengaluru,a megacity in Southern India.Additionally,we developed an allometric equation to estimate diameter at breast height(DBH)from the tree crown diameter(CD)derived from the detected bounding boxes.Our study focused on analyzing variations in tree density and tree size along this gradient.The findings revealed distinct patterns:the urban domain displayed larger tree crown diameters(mean:8.87 m)and DBH(mean:43.78 cm)but having relatively low tree density(32 trees per hectare).Furthermore,with increasing distance from the city center,tree density increased,while the mean tree crown diameter and mean tree basal area decreased,showing clear differences of tree density and size between the urban and rural domains in Bengaluru.This study offers an efficient methodology that helps generating instructive insights into the dynamics of TOF along the urban-rural gradient.This may inform urban planning and management strategies for enhancing green infrastructure and biodiversity conservation in rapidly urbanizing cities like Bengaluru.
基金supported part ia l l y by LIFE4Oak Forests Project LIFE16NAT/IT/000245)the RRF 2.3.121202200008 projectthe MERLiN project funded under the European Commission H2020 Programme(101036337 MERLiN H2020 LC GD 2020)。
文摘Increasing human activity is altering the struc-ture of forests,which affects the composition of communi-ties,including birds.However,little is known about the key forest structure variables that determine the richness of bird communities in European temperate oak forests.We,there-fore,aimed to identify key variables in these habitats that could contribute to the design of management strategies for forest conservation by surveying 11 oak-dominated forest sites throughout the mid-mountain range of Hungary at 86 survey points to reveal the role of different compositional and structural variables for forest stands that influence the breeding bird assemblages in the forests at the functional group and individual species levels.Based on decision tree modelling,our results showed that the density of trees larger than 30 cm DBH was an overall important variable,indi-cating that large-diameter trees were essential to provide diverse bird communities.The total abundance of birds,the foliage-gleaners,primary and secondary cavity nest-ers,residents,and five specific bird species were related to the density of high trunk diameter trees.The abundance of shrub nesters was negatively influenced by a high density of trees over 10 cm DBH.The density of the shrub layer positively affected total bird abundance and the abundance of foliage gleaners,secondary cavity nesters and residents.Analysis of the co-dominant tree species showed that the presence of linden,beech,and hornbeam was important in influencing the abundance of various bird species,e.g.,Eur-asian Treecreeper(Certhia familiaris),Marsh Tit(Poecile palustris)and Wood Warbler(Phylloscopus sibilatrix).Our results indicated that large trees,high tree diversity,and dense shrub layer were essential for forest bird communities and are critical targets for protection to maintain diverse and abundant bird communities in oak-dominated forest habitats.
基金supported by LIFE project MYCORESTORE“Innovative use of mycological resources for resilient and productive Mediterranean forests threatened by climate change,LIFE18 CCA/ES/001110”projects VA178P23 and VA208P20 funded by JCYL(Spain),both co-financed by FEDER(UE)budget.
文摘Tree endophytic fungi play an important role in reducing insect herbivory,either by repelling them or kill-ing them directly.Identifying which fungi show such activ-ity could lead to new environmentally friendly pesticides.In this study,the Mediterranean basin climate conditions are projected to harshen in the next decades,will increase vulnerability of tree species to pest invasions.Endophytic fungi were isolated from wood and leaves of Quercus pyr-enaica,Q.ilex and Q.suber and tested for virulence against adults of the mealworm beetle,Tenebrio molitor L.using a direct contact method.Only 3 of 111 sporulating isolates had entomopathogenic activity,all identified as Lecanicillium lecanii.The pathogenicity of L.lecanii on T.molitor resulted in a median lethal time(TL50)of 14-16 d.Compared with commercial products,L.lecanii caused faster insect death than the nematode Steinernema carpocapsae and nuclear polyhedrosis virus(no effect on T.molitor survival),and slower than Beauveria bassiana(TL50=5),Beauveria pseu-dobassiana(TL50=8d)and Bacillus thuriengensis(80%mortality first day after inoculation).Mortality was also accelerated under water stress,reducing TL50 by an addi-tional 33%.Remarkably,water stress alone had a comparable effect on mortality to that of L.lecanii isolates.This study confirms T.molitor as a good model insect for pathogenicity testing and agrees with management policies proposed in the EU Green Deal.
基金funded by the Slovenian Research and Innovation Agency(https://www.aris-rs.si/sl/)ProgramResearch Core Fund-ing No.P4-0107(TL)and No.P4-0059(MK)+1 种基金Young Researcher Program Grant(MK)funded by the Slovenian Forestry Institute(P4-0107).
文摘Understanding competition between trees is essential for sustainable forest management as interactions between trees in uneven-aged mixed forests play a key role in growth dynamics. This study investigated nine competition indices(CIs) for their suitability to model the effects of neighboring trees on silver fir(Abies alba) growth in Dinaric silver fir-European beech(Fagus sylvatica) forests. Although numerous competition indices have been developed, there is still limited consensus on their applicability in different forest types, especially in mature, structurally complex forest stands. The indices were evaluated using the adjusted coefficient of determination in a linear model wherein the volume growth of the last five years for 60 dominant silver fir trees was modeled as a function of tree volume and competition index. The results demonstrated that distance-dependent indices(e.g., the Hegyi height-distance competition and Rouvinen-Kuuluvainen diameter-distance competition indices), which consider the distance to competitors and their size, perform better than distance-independent indices. Using the optimization procedure in calculating the competition indices, only neighboring trees at a distance of up to 26-fold the diameter at breast height(DBH) of the selected tree(optimal search radius) and with a DBH of at least 20% of that of the target tree(optimal DBH) were considered competitors. Therefore, competition significantly influences the growth of dominant silver firs even in older age classes. The model based solely on tree volume explained 32.5% of the variability in volume growth, while the model that accounted for competition explained 64%. Optimizing the optimal search radius had a greater impact on model performance than optimizing the DBH threshold. This emphasizes the importance of balancing stand density and competition in silvicultural practice.
基金financially funded by the National Natural Science Foundation of China(3186113307,31770533,31870591)the West Light Talent Program of the Chinese Academy of Sciences(xbzg-zdsys-202218).
文摘The karst forest in southwestern China is characterized by thin soil layers,numerous fissures and holes,resulting in low soil water availability and poor water retention,making it challenging for plant growth and survival.While the relationship between plant functional traits and tree growth performance has been extensively studied,the links between tree seasonal growth and drought-tolerant traits in tree species with different leaf habit remains poorly understood.This study evaluated the associations between four-year averaged rainy season stem diameter growth rate and 17 branch and leaf traits across evergreen and deciduous species in a tropical karst forest in southwest China.The cross-species variations in tree growth rates were related to plant hydraulic traits(e.g.,vessel lumen diameter,xylem vessel density,stomatal density,and stomatal size)and leaf anatomical traits(e.g.,total leaf thickness,lower/upper epidermis thickness,and spongy thickness).The growth of evergreen trees exhibited lower hydraulic efficiency but greater drought tolerance than deciduous tree,which enabled them to maintain higher persistence under low soil water availability and consequently a relatively longer growing season.In contrast,deciduous species showed no correlation between their functional traits and growth rate.The distinct water use strategies of evergreen and deciduous trees may offer a potential explanation for their co-existence in the tropical karst forests.
基金funded by the Key-Area Research and Development Program of Guangdong Province(Grant No.2022B0202070002)the Guangxi Science and Technology Major Program(Grant No.GuikeAA23023007-2)+1 种基金the Guangdong Province Modern Agricultural Industry Technology System Innovation Team Construction Project(2024CXTD19)Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515010303)。
文摘Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herbaceous plants,with notable applications in species such as Arabidopsis(Yin et al.,2024),soybean(Zhang et al.,2024),rice(Zhang et al.,2020),and Chinese cabbage(Li et al.,2021).However,its application in fruit trees is limited.This is primarily due to their long growth cycles and lack of rapid,efficient,and stable transgenic systems,which severely hinders foundational research involving plant genetic transformation(Mei et al.,2024).Furthermore,for subtropical fruit trees,the presence of recalcitrant seeds adds an extra layer of difficulty to genetic transformation(Umarani et al.,2015),as most methods rely on seed germination as a basis for transformation.
基金supported by the National Natural Science Foundation of China(Nos.42107476 and 42177421)the China Postdoctoral International Exchange Fellowship Program(No.PC2021099)+1 种基金the Science and Technology Innovation Program of Hunan Province(No.2020RC2058)the China Scholarship Council(CSC,No.202206600004,to D.Yuan).
文摘Tree growth synchrony serves as a valuable ecological indicator of forest resilience to climate stress and disturbances.However,our understanding of how increasing temperature affects tree growth synchrony during rapidly and slowly warming periods in ecosystems with varying climatic conditions remains limited.By using tree-ring data from temperate broadleaf(Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Juglans mandshurica)and Korean pine(Pinus koraiensis)mixed forests in northeast China,we investigated the effects of climate change,particularly warming,on the growth synchrony of five dominant temperate tree species across contrasting warm-dry and cool-wet climate conditions.Results show that temperature over water availability was the primary factor driving the growth and growth synchrony of the five species.Growth synchrony was significantly higher in warm-dry than in cool-wet areas,primarily due to more uniform climate conditions and higher climate sensitivity in the former.Rapid warming from the 1960s to the 1990s significantly enhanced tree growth synchrony in both areas,followed by a marked reversal as temperatures exceeded a certain threshold or warming slowed down,particularly in the warm-dry area.The growth synchrony variation patterns of the five species were highly consistent over time,although broadleaves exhibited higher synchrony than conifers,suggesting potential risks to forest resilience and stability under future climate change scenarios.Growing season temperatures and non-growing season temperatures and precipitation had a stronger positive effect on tree growth in the cool-wet area compared to the warm-dry area.High relative humidity hindered growth in the cool-wet area but enhanced it in the warm-dry area.Overall,our study highlights that the diversity and sensitivity of climate-growth relationships directly determine spatiotemporal growth synchrony.Temperature,along with water availability,shape long-term forest dynamics by affecting tree growth and synchrony.These results provide crucial insights for forest management practice to enhance structural diversity and resilience capacity against climate changeinduced synchrony shifts.
基金supported by the National Natural Science Foundation of China(31925027,31300455).
文摘Exotic tree species,though widely used in forestry and restoration projects,pose great threats to local ecosystems.They need to be replaced with native species from natural forests.We hypothesized that natural forests contain large,fast-growing,dominant native tree species that are suitable for specific topographic conditions in forestry.We tested this hypothesis using data from a 50-ha forest dynamics plot in subtropical China.We classified the plot into the ridge,slope,and valley habitats and found that 34/87 species had significant associations with at least one topographic habitat.There were 90 tree species with a maximum diameter≥30 cm,and their abundances varied widely in all habitat types.In all habitat types,for most species,rate of biomass gain due to recruitment was<1%of its original biomass,and rate of biomass gain due to tree growth was between 1 and 5%of its original biomass.For most species,biomass loss due to tree mortality was not significantly different than biomass gain due to recruitment,but the resulting net biomass increment rates did not significantly differ from zero.The time required to reach a diameter of 30 cm from 1 cm diameter for Altingia chinensis in the slope habitat,for Quercus chungii and Morella rubra in the ridge habitat and for Castanopsis carlesii in all habitats could be as short as 30 years in our simulations based on actual distributions of tree growth observed in the forest.Principal component analyses of maximum diameter,abundance and net biomass increment rates suggested several species were worthy of further tests for use in forestry.Our study provides an example for screening native tree species from natural forests for forestry.Because native tree species are better for local ecosystems,our study will also contribute to biodiversity conservation in plantations.
文摘A tree's basal area(BA)and wood volume scale exponentially with tree diameter in species-specifc patterns.Recent observed increases in tree growth suggest these allometric relationships are shifting in response to climate change,rising CO_(2) levels,and/or changes in forest management.We analyzed 9,214 cores from nine conifer and 11 broadleaf species grown in managed mixed-species stands in the upper Midwest to quantify how well diameter(diameter at breast height(DBH))serves to predict BA growth and above-ground wood and carbon(C).These samples include many large trees.We ft mixed models to predict BA growth and above-ground biomass/C from diameter,tree height,and the BA of nearby trees while controlling for site effects.Models account for 55%–83%of the variance in log(recent growth),improving predictions over earlier models.Growth-diameter scaling exponents covary with certain leaf and stem(but not wood)functional traits,reflecting growth strategies.LogBA increment scales linearly with log(diameter)as trees grow bigger in 16/20 species and growth actually accelerates in Quercus rubra L.Three other species plateau in growth.Growth only decelerates in red pine,Pinus resinosa Ait.Growth in whole-tree,above-ground biomass,and C accelerate even more strongly with diameter(mean exponent:2.08 vs.1.30 for BA growth).Sustained BA growth and accelerating wood/C growth contradict the common assumption that tree growth declines in bigger trees.Yield tables and silvicultural guidelines should be updated to reflect these current relationships.Such revisions will favor delaying harvests in many managed stands to increase wood production and enhance ecosystem values including C fxation and storage.Further research may resolve the relative roles of thinning,climatic conditions,nitrogen inputs,and rising CO2 levels on changing patterns of tree growth.
基金supported by the Outstanding Action Plan of Chinese Sci-tech Journals(Grant No.OAP-C-077).
文摘Forests play a critical role in mitigating cli-mate change by sequestering carbon,yet their responses to environmental shifts remain complex and multifaceted.This special issue,“Tree Rings,Forest Carbon Sink,and Climate Change,”compiles 41 interdisciplinary studies exploring forest-climate interactions through dendrochro-nological and ecological approaches.It addresses climate reconstruction(e.g.,temperature,precipitation,isotopes)using tree-ring proxies,species-specific and age-dependent growth responses to warming and drought,anatomical adap-tations,and methodological innovations in isotope analysis and multi-proxy integration.Key findings reveal ENSO/AMO modulation of historical climates,elevation-and latitude-driven variability in tree resilience,contrasting carbon dynamics under stress,and projected habitat shifts for vulnerable species.The issue underscores forests’dual role as climate archives and carbon regulators,offering insights for adaptive management and nature-based climate solutions.Contributions bridge micro-scale physiological processes to macro-scale ecological modeling,advancing sustainable strategies amid global environmental challenges.
文摘The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that critically threaten ecosystem stability.Among these challenges,soil erosion emerges as a silent disaster-a gradual yet relentless process whose impacts accumulate over time,progressively degrading landscape integrity and disrupting ecological sustainability.Unlike catastrophic events with immediate visibility,soil erosion’s most devastating consequences often manifest decades later through diminished agricultural productivity,habitat fragmentation,and irreversible biodiversity loss.This study developed a scalable predictive framework employing Random Forest(RF)and Gradient Boosting Tree(GBT)machine learning models to assess and map soil erosion susceptibility across the region.A comprehensive geo-database was developed incorporating 11 erosion triggering factors:slope,elevation,rainfall,drainage density,topographic wetness index,normalized difference vegetation index,curvature,soil texture,land use,geology,and aspect.A total of 2,483 historical soil erosion locations were identified and randomly divided into two sets:70%for model building and 30%for validation purposes.The models revealed distinct spatial patterns of erosion risks,with GBT classifying 60.50%of the area as very low susceptibility,while RF identified 28.92%in this category.Notable differences emerged in high-risk zone identification,with GBT highlighting 7.42%and RF indicating 2.21%as very high erosion susceptibility areas.Both models demonstrated robust predictive capabilities,with GBT achieving 80.77%accuracy and 0.975 AUC,slightly outperforming RF’s 79.67%accuracy and 0.972 AUC.Analysis of predictor variables identified elevation,slope,rainfall and NDVI as the primary factors influencing erosion susceptibility,highlighting the complex interrelationship between geo-environmental factors and erosion processes.This research offers a strategic framework for targeted conservation and sustainable land management in the fragile Himalayan region,providing valuable insights to help policymakers implement effective soil erosion mitigation strategies and support long-term environmental sustainability.
基金funded by the Environmental Seed Arrival and Interspecific Associations in Seedling Sciences Program of the Smithsonian Institutionthe National Science Foundation (DEB-0075102,DEB-0823728,DEB-0640386,DEB-1242622,DEB-1464389)the Andrew Mellon Foundation,The Ohio State University,and Yale University
文摘Background The full lifespan of long-lived trees includes a seedling phase,during which a seed germinates and grows to a size large enough to be measured in forest inventories.Seedling populations are usually studied separately from adult trees,and the seedling lifespan,from seed to sapling,is poorly known.In the 50-ha Barro Colorado forest plot,we started intensive censuses of seeds and seedlings in 1994 in order to merge seedling and adult demography and document complete lifespans.Methods In 17 species abundant in seedling censuses,we subdivided populations into six size classes from seed to 1cm dbh,including seeds plus five seedling stages.The smallest seedling class was subdivided by age.Censuses in two consecutive years provided transition matrices describing the probability that a seedling in one stage moved to another one year later.For each species,we averaged the transition matrix across 25 censuses and used it to project the seedling lifespan,from seed until 1cm dbh or death.Results The predicted mean survival rate of seeds to 1cm dbh varied 1000-fold across species,from 2.9×10^(−6)to 4.4×10^(−3);the median was 2.0×10^(−4).The seedling lifespan,or the average time it takes a seed to grow to 1cm dbh,varied across species from 5.1 to 53.1 years,with a median of 20.3 years.In the median species,the 10%fastest-growing seeds would reach 1cm dbh in 9.0 years,and the slowest 10%in 34.6 years.Conclusions Combining seedling results with our previous study of lifespan after 1cm dbh,we estimate that the focal species have full lifespans varying from 41 years in a gap-demanding pioneer to 320 years in one shade-tolerant species.Lifetime demography can contribute precise survival rates and lifespans to forestry models.
基金supported in part by the intramural research program of the US Department of Agriculture,National Institute of Food and Agriculture,Evans-Allen#1024525,and Capacity Building Grant#006531supported in part by the US National Science Foundation RII Track 2 FEC:Leveraging Intelligent Informatics and Smart Data for Improved Understanding of Northern Forest Ecosystem Resiliency(INSPIRES)#1920908by The Lyndhurst Foundation.
文摘Understanding local variation in forest biomass allows for a better evaluation of broad-scale patterns and interpretation of forest ecosystems’role in carbon dynamics.This study focuses on patterns of aboveground tree biomass within a fully censused 20 ha forest plot in a temperate forest of northern Alabama,USA.We evaluated the relationship between biomass and topography using ridge and valley landforms along with digitally derived moisture and solar radiation indices.Every live woody stem over 1 cm diameter at breast height within this plot was mapped,measured,and identified to species in 2019-2022,and diameter data were used along with speciesspecific wood density to map the aboveground biomass at the scale of 20 m×20 m quadrats.The aboveground tree biomass was 211 Mg·ha^(-1).Other than small stream areas that experienced recent natural disturbances,the total stand biomass was not associated with landform or topographic indices.Dominant species,in contrast,had strong associations with topography.American beech(Fagus grandifolia)and yellow-poplar(Liriodendron tulipfera)dominated the valley landform,with 37% and 54% greater biomass in the valley than their plot average,respectively.Three other dominant species,white oak(Quercus alba),southern shagbark hickory(Carya carolinaeseptentrionalis),and white ash(Fraxinus americana),were more abundant on slopes and benches,thus partitioning the site.Of the six dominant species,only sugar maple(Acer saccharum)was not associated with landform.Moreover,both topographic wetness and potential radiation indices were significant predictors of dominant species biomass within each of the landforms.The study highlights the need to consider species when examining forest productivity in a range of site conditions.
基金supported by the Fundamental Research Funds for the Central Universities(2021ZY89)the National Natural Science Foundation of China(32201258 and 32271652)+4 种基金Research Service Project on the Effects of Extreme Climate on Biodiversity and Conservation Strategies in Mentougou District(2024HXFWBH-XJL-02)the Fang Jingyun Ecological Study Studio of Yunnan Province(China)the State Scholarship Fund of China(2011811457)support to the Xingdian Scholar Fund of Yunnan Provincethe Double Top University Fund of Yunnan University.
文摘Although numerous studies have proposed explanations for the specific and relative effects of stand structure,plant diversity,and environmental conditions on carbon(C)storage in forest ecosystems,understanding how these factors collectively affect C storage in different community layers(trees,shrubs,and herbs)and forest types(mixed,broad-leaved(E),broad-leaved(M),and coniferous forest)continues to pose challenges.To address this,we used structural equation models to quantify the influence of biotic factors(mean DBH,mean height,maximum height,stem density,and basal area)and abiotic factors(elevation and canopy openness),as well as metrics of species diversity(Shannon–Wiener index,Simpson index,and Pielou’s evenness)in various forest types.Our analysis revealed the critical roles of forest types and elevation in explaining a substantial portion of variability in C storage in the overstory layer,with a moderate influence of stand factors(mean DBH and basal area)and a slightly negative impact of tree species diversity(Shannon–Wiener index).Notably,forest height emerged as the primary predictor of C storage in the herb layer.Regression relationships further highlighted the significant contribution of tree species diversity to mean height,understory C storage,and branch biomass within the forest ecosystem.Our insights into tree species diversity,derived from structural equation modeling of C storage in the overstory,suggest that the effects of tree species diversity may be influenced by stem biomass in statistical reasoning within temperate forests.Further research should also integrate tree species diversity with tree components biomass,forest mean height,understory C,and canopy openness to understand complex relationships and maintain healthy and sustainable ecosystems in the face of global climate challenges.
文摘Making the distinction between different plantation tree species is crucial for creating reliable and trustworthy information, which is critical in forestry administration and upkeep. Over the years, forest delineation and mapping have been done using the conventional techniques, such as the utilization of ground truth facts together with orthophotos. These techniques have been proven to be very precise, but they are expensive, cumbersome, and challenging to employ in remote regions. To resolve this shortfall, this research investigates the potential of data from the commercial, PlanetScope CubeSat and the freely available, Sentinel 2 data from Copernicus to discriminate commercial forest tree species in the Usutu Forest, Eswatini. Two approaches for image classification, Random Forest (RF) and the Support Vector Machine (SVM) were investigated at different levels of the forest database classification which is the genus (family of tree species) and species levels. The result of the study indicates that, the Sentinel 2 images had the highest species classification accuracy compared to the PlanetScope image. Both classification methods achieved a 94% maximum OA and 0.90 kappa value at the genus level with the Sentinel 2 imagery. At the species level, the Sentinel 2 imagery again showed highly acceptable results with the SVM method, with an OA of 82%. The PlanetScope images performed badly with less than 64% OA for both RF and SVM at the genus level and poorer at the species level with a low OA figure, 47% and 53% for the SVM and RF respectively. Our results suggest that the freely available Sentinel 2 data together with the SVM method has a high potential for identifying differences between commercial tree species than the PlanetScope. The study uncovered that both classification methods are highly capable of classifying species under the gum genus group (esmi, egxu, and egxn) using both imageries. However, it was difficult to separate species types under the pine genus group, particularly discriminating the hybrid species such as pech and pell since pech is a hybrid species for pell.
基金Wyoming NASA EPSCoR Faculty Research Grant(Grant#80NSSC19M0061)Yellowstone National Park Services for their generous support and funding that made this research possible.
文摘In the Rocky Mountain and Pacific Northwest regions of the United States,forests include extensive portions of standing dead trees.These regions showcase an intriguing phenomenon where the combined biomass of standing dead trees surpasses that of fallen and decomposing woody debris.This stems from a suite of factors including pest disturbances,management decisions,and a changing climate.With increasingly dry and hot conditions,dead timber on a landscape increases the probability that a fire will occur.Identifying and characterizing the presence of standing dead trees on a landscape helps with forest management efforts including reductions in the wildfire hazard presented by the trees,and vulnerability of nearby park assets should the trees burn.Using forest-based classification,exploratory data analysis,and cluster vulnerability analysis,this study characterized the occurrence and implications of standing dead trees within Yellowstone National Park.The findings show standing dead trees across the entire study area with varying densities.These clusters were cross-referenced with vulnerability parameters of distance to roads,distance to trails,distance to water,distance to buildings,and slope.These parameters inform fire ignition,propagation,and impact.The weighted sum of these parameters was used to determine the vulnerability incurred on the park assets by the clusters and showed the highest values nearest to park entrances and points of interest.High vulnerability clusters warrant priority management to reduce wildfire impact.The framework of this study can be applied to other sites and incorporate additional vulnerability variables to assess forest fuel and impact.This can provide a reference for management to prioritize areas for resource conservation and improve fire prevention and suppression efficiency.
文摘Mekong River Delta has many home-gardens,here,everybody organizes the tourisms.We observed the real situations and substances,evaluation,a choice at some households in the Mekong River Delta in order to have a purpose of search,here,they have the home-gardens;the farmers plant fruit trees at the villages of provinces,that is a place which is influenced by the climate change.We went to the villages such as:Hiep Thanh village,Chau Thanh district,Long An province;Tan Phu village,Tan Phu Dong district,Tien Giang province;Tieu Can village,Tieu Can district,Tra Vinh province to observe the landscape(here 10 households for 1 village),and we took the sample to analyze.We knew the factors such as:drought,deficiency of water,salt water intrusion,flood.These factors influence the trees,assets,diseases,lives of the persons who stay here,and cause many damages.We compare many home-gardens having a climate change with the normal home-gardens.Thus,we propose the reasonable methods in order to fix the consequence and prevent the salt intrusion,flood,important damages…And we present some illustrations.
基金supported by the National Natural Science Foundation of China(42107476,41877426)the Hunan Provincial Natural Science Foundation of China(2021JJ41075)+3 种基金the China Postdoctoral Science Foundation(2020M682600)the Science and Technology Innovation Program of Hunan Province(2020RC2058)the Research Foundation of the Bureau of Education in Hunan Province(20B627)China Scholarship Council(CSC,no.202206600004,to DY).
文摘The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilities of common trees in BKF to extreme climates are poorly understood.Here we used dendrochronological meth-ods to assess radial growth of seven main tree species(Pinus koraiensis,Picea jezoensis,Abies nephrolepis,Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Ulmus davidiana)in an old-growth BKF in response to climate changes in the Xiaoxing’an Mountains and to improve predictions of changes in the tree species compo-sition.Temperature in most months and winter precipita-tion significantly negatively affected growth of P.jezoensis and A.nephrolepis,but positively impacted growth of P.koraiensis and the broadleaf species,especially F.mandshu-rica and U.davidiana.Precipitation and relative humidity in June significantly positively impacted the growth of most tree species.The positive effect of the temperature during the previous non-growing season(PNG)on growth of F.mandshurica and Q.mongolica strengthened significantly with rapid warming around 1981,while the impact of PNG temperature on the growth of P.jezoensis and A.nephrolepis changed from significantly negative to weakly negative or positive at this time.The negative response of radial growth of P.jezoensis and A.nephrolepis to precipitation during the growing season gradually weakened,and the negative response to PNG precipitation was enhanced.Among the studied species,P.koraiensis was the most resistant to drought,and U.davidiana recovered the best after extreme drought.Ulmus davidiana,P.jezoensis and A.nephrolepis were more resistant to extreme cold than the other species.Climate warming generally exacerbated the opposite growth patterns of conifer(decline)and broadleaf(increase)spe-cies.Deciduous broadleaf tree species in the old-growth BKF probably will gradually become dominant as warming continues.Species-specific growth-climate relationships should be considered in future models of biogeochemical cycles and in forestry management practices.