Tree-ring standardized chronologies are developed by 78 cores collected from the eastern and western Helan Mountain. Statistical analysis shows that both the STD and RES chronologies correlate negatively with the temp...Tree-ring standardized chronologies are developed by 78 cores collected from the eastern and western Helan Mountain. Statistical analysis shows that both the STD and RES chronologies correlate negatively with the temperature of different periods of early half year, especially with January to August mean (JA) temperature, which means that JA temperature is one of the predominant limiting factors of tree growth in the Helan Mountain. Based on this analysis, we reconstructed JA temperature, and the explained variance is 43.3% (F=21.422, p〈0.001 ). The comparatively high temperature periods in the reconstruction were: 1805-1818 1828-1857, 1899-1907, 1919-1931 and 1968-1995; and the comparatively low temperatu re periods happened in 1858-1872, 1883-1895 and 1935-1953. Ten-year moving average curve shows three slow uplifting trends: 1766-1853, 1862-1931 and 1944-1995. Each temperature increase was followed by a sudden temperature decrease about 10 years, that is to say, the JA temperature in the Helan Mountain is characterized by slow increase and sudden decrease. The 70- and 10.77-year periodicities detected in the temperature series correspond to the Gleissberg (80-year) and Schwabe (11-year) periodicities of solar activity respectively, the 2.11-2.62 years cycles are considered to be influenced by QBO (Quasi-Biennial-Oscillation) and the local environmental change.展开更多
Based on the analysis of the correlation between the tree-ring width of Pinus tabulaeformis and the climate factors in the western Hedong sandy land of Ningxia, a conversion equation between the annual precipitation a...Based on the analysis of the correlation between the tree-ring width of Pinus tabulaeformis and the climate factors in the western Hedong sandy land of Ningxia, a conversion equation between the annual precipitation and the tree-ring width since 1899 was reconstructed. The results of cross verification indicated that the conversion equation is stable and the reconstructed results are reliable. The result of reconstructed annual precipitation showed the remarkable fluctuation of precipitation and dry-to-wet variation before the 1940s. The smaller fluctuation and high frequent changes of precipitation occurred during the period of 1940s-1980s and after the 1980s the change trend of the precipitation became high periodic extent and low frequent. The study found that there were some coincidences with the climate change in Changling Mountains, Helan Mountains and the east of Qilian Mountains. The relatively dry periods in the beginning of 20th century, 1920s to 1930s, the end of the 20th century and 2004 to 2006 in the western Hedong sandy land of Ningxia accelerated the desertification, while the relatively humid period during the periods of the 1910s-1920s, 1930s-1940s and 1990s is favorable to prevent and control the desertification, and to weaken the climate warming and drying. The periods of annual precipitation variation in the western Hedong sandy land of Ningxia since 1899 are approximately 2-4 years, 5-7 years and 10 years.展开更多
Regional tree-ring width chronology of the Scots pine (Pinus sylvestris L.) was constructed from 8 sites in the forest-steppe belt situated in the foothills of the Selenga River basin, Russia. Moisture information con...Regional tree-ring width chronology of the Scots pine (Pinus sylvestris L.) was constructed from 8 sites in the forest-steppe belt situated in the foothills of the Selenga River basin, Russia. Moisture information contained in tree-ring width chronology was obtained through linear regression reconstruction models of annual August–July precipitation and annual water discharge of the Selenga River during the period 1767–2015. Comparison of the smoothed series allowed estimating long-term variation component of these moisture regime parameters with a high precision. At the same time, regional drought indices are less correlated with pine radial growth, because they have contribution of the other environmental variables, which are much less reflected in the tree-ring of the investigated pine forest stands. Reconstructed dynamic of the moisture regime parameters is supported by documental evident of many socially significant events in the regional history, such as crop failures caused by both droughts and floods, and catastrophic fire in the Irkutsk City in 1879. Also, dependence of the amount of precipitation in the study area on the atmospheric circulation in Central Asia is revealed to have a similar pattern with other regions, i.e., a negative relationship of precipitation with the development of large high atmospheric pressure area within its center in the Altai and Tianshan mountains.展开更多
August-June precipitation has been reconstructed back to AD 1720 for the northern Greater Higgnan Mountains, China, by use ofPinus sylvestris var. mongolica tree-ring width. The reconstruction explains the variance of...August-June precipitation has been reconstructed back to AD 1720 for the northern Greater Higgnan Mountains, China, by use ofPinus sylvestris var. mongolica tree-ring width. The reconstruction explains the variance of 39% in observed precipitation from 1973 to 2008. Some extremely dry/wet signals in historical documents and other precipitation reconstructions in previous studies are precisely captured in our reconstruction. Wet periods occurred during the periods of 1730 to 1746, 1789 to 1812, 1844 to 1903, 1920 to 1930, 1942 to 1961, and 1985 to 1998; while periods of 1747 to 1788, 1813 to 1843, 1904 to 1919, 1931 to 1941, and 1962 to 1984 were relatively dry. Power spectral and wavelet analyses demon- strated the existence of significant 24-year, 12-year, and 2-year cycles of variability.展开更多
Determining the mechanisms controlling the changes of wet and dry conditions will improve our understanding of climate change over the past hundred years,which is of great significance to the study of climate and envi...Determining the mechanisms controlling the changes of wet and dry conditions will improve our understanding of climate change over the past hundred years,which is of great significance to the study of climate and environmental changes in the arid regions of Central Asia.Forest trees are ecologically significant in the local environment,and therefore the tree ring analysis can provide a clear record of regional historical climate.This study analyzed the correlation between the tree ring width chronology of Juniperus turkestanica Komarov and the standardized precipitation evapotranspiration index(SPEI)in Northwest Tajikistan,based on 56 tree ring samples collected from Shahristan in the Pamir region.Climate data including precipitation,temperature and the SPEI were downloaded from the Climate Research Unit(CRU)TS 4.00.The COFECHA program was used for cross-dating,and the ARSTAN program was used to remove the growth trend of the tree itself and the influence of non-climatic factors on the growth of the trees.A significant correlation was found between the radial growth of J.turkestanica trees and the monthly mean SPEI of February–April.The monthly mean SPEI sequence of February–April during the period of 1895–2016 was reconstructed,and the reconstruction equation explained 42.5%of the variance.During the past 122 a(1895–2016),the study area has experienced three wetter periods(precipitation above average):1901–1919,1945–1983 and 1995–2010,and four drier periods(precipitation below average):1895–1900,1920–1944,1984–1994 and 2011–2016.The spatial correlation analysis revealed that the monthly mean SPEI reconstruction sequence of February–April could be used to characterize the large-scale dry-wet variations in Northwest Tajikistan during the period of 1895–2016.This study could provide comparative data for validating the projections of climate models and scientific basis for managing water resources in Tajikistan in the context of climate change.展开更多
Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and ...Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and tree-ring chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June-August and the com-bination of temperatures and moisture in the current May-July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBLO1 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBLO2 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May-July,while on the western slope,it was affected by the relative humidity in the previous June-August,the current May-July and the precipitation in the current May-July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction.展开更多
Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and ...Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and treering chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June–August and the combination of temperatures and moisture in the current May–July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBL01 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBL02 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May–July,while on the western slope,it was affected by the relative humidity in the previous June–August,the current May–July and the precipitation in the current May–July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction.展开更多
In dendroclimatology,tree ring chronology is ordinarily established to reveal the fluctuation law of climate change on the interannual,interdecadal,and centennial scales.However,since traditional dendrochronology can ...In dendroclimatology,tree ring chronology is ordinarily established to reveal the fluctuation law of climate change on the interannual,interdecadal,and centennial scales.However,since traditional dendrochronology can only use one variable(tree ring width)to reflect environmentally related information,this causes the richer information recorded in the tree rings to be discarded.In this study,we examined the potential of hyperspectral chronological indices(shortened as“hyperspectral index/indices”)with samples collected in Shennongjia woodland in central China.The correlation analysis of the tree ring series on different samples indicated that hyperspectral indices outperform the traditional width index in chronology statistics including Signal-to-noise Ratio(SNR)and Expressed Population Signal(EPS).The reliability test shows that hyperspectral chronologies have more periods reaching the threshold of EPS or Subsample Signal Strength(SSS)>0.85,which means that hyperspectral chronologies provide more reliable periods for accurate climate reconstruction.Based on this,chronologies built by the three dendroclimatic indices were used to reconstruct the average temperature changes in Shennongjia over the last 103 years.The reconstruction results indicate that in our study area,the traditional width index model failed the split-sample calibration test and exhibited a low reconstruction accuracy,while the hyperspectral index model has a higher explained variance of 46.4%(p<0.01),compared to the width index(21.4%)and the grayscale index(38.3%).Our research results show that hyperspectral indices have greater potential for climate reconstruction in regions with lower susceptibility to climate stress.This is attributed to their ability to effectively extract subtle climate signals from the spectral variations on the surface of tree rings.Such ring spectral changes may be caused by complex and currently unknown responses of the trees to the climate.展开更多
Reconstructing the hydrological change based on dendrohydrological data has important implications for understanding the dynamic distribution and evolution pattern of a given river. The widespread, long-living conifer...Reconstructing the hydrological change based on dendrohydrological data has important implications for understanding the dynamic distribution and evolution pattern of a given river. The widespread, long-living coniferous forests on the Altay Mountains provide a good example for carrying out the dendrohydrological studies. In this study, a regional composite tree-ring width chronology developed by Lariat sibirica Ledeb. and Picea obovata Ledeb. was used to reconstruct a 301-year annual (from preceding July to succeeding June) streamflow for the Haba River, which originates in the southern Altay Mountains, Xinjiang, China. Results indicated that the reconstructed streamflow series and the observations were fitting well, and explained 47.5% of the variation in the observed streamflow of 1957-2008. Moreover, floods and droughts in 1949-2000 were precisely captured by the streamflow reconstruction. Based on the frequencies of the wettest/driest years and decades, we identified the 19th century as the century with the largest occurrence of hydrological fluctuations for the last 300 years. After applying a 21-year moving average, we found five wet (1724-1758, 1780-1810, 1822-1853, 1931-1967, and 1986-2004) and four dry (1759-1779, 1811-1821, 1854-1930, and 1968-1985) periods in the streamflow reconstruction. Furthermore, four periods (1770-1796, 1816-1836, 1884-1949, and 1973-1997) identified by the streamflow series had an obvious increasing trend. The increasing trend of streamflow since the 1970s was the biggest in the last 300 years and coincided with the recent warming-wetting trend in northwestern China. A significant correlation between streamflow and precipitation in the Altay Mountains indicated that the streamflow reconstruction contained not only local, but also broad-scale, hydro-climatic signals. The 24-year, 12-year, and 2.2-4.5-year cycles of the reconstruction revealed that the streamflow variability of the Haba River may be influenced by solar activity and the atmosphere-ocean system.展开更多
Standardization is one of the important procedures in dendroclimatology. We used abundant Qilian juniper (Sabina przewalskii Kom.) tree-ring samples from the eastern margin of the Qaidam Basin to develop a new stand...Standardization is one of the important procedures in dendroclimatology. We used abundant Qilian juniper (Sabina przewalskii Kom.) tree-ring samples from the eastern margin of the Qaidam Basin to develop a new standardization method, i.e. total growth curve (TGC). The samples that contained the complete pith and reached to the growing culmination around the 40th-60th year were used to fit TGC, and the generalized negative exponential function was used to fit the curve. Usually, most cores cannot reach the arboreal pith for some reasons and it is difficult to determine the arboreal cambial age. The empirical model of initial radial growth (IRG) was employed to estimate the number of rings missing from the pith by the same data and IRG model explained 90.9% of the variance. When developing the chronology, the cambial ages of cores that contained the complete pith were regarded as beginning from the first year and others were determined by the numbers of missing and included rings in the core. Standardization was accomplished by dividing each tree-ring series by corresponding TGC. The chronologies developed by TGC can retain more low-frequency variational information and TGC helps to develop more reliable tree-ring width chronology.展开更多
Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were...Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were examined.Correlation analysis showed that similar correlations between tree-ring width chronologies and climatic factors demonstrated that radial growth responded to climate change on both slopes.The radial growth of L.chinensis was mainly limited by temperature,especially the growing season.In contrast,both chronologies were negatively correlated with precipitation in May of the previous year and April of the current year.Spatial climate-correlation analyses with gridded land-surface climate data revealed that our tree-ring width chronologies contained a strong regional temperature signal over much of northcentral and eastern China.Spatial correlation with seasurface temperature fields highlights the influence of the Pacific Ocean,Indian Ocean,and North Atlantic Ocean.Wavelet coherence analysis indicated the existence of some decadal and interannual cycles in the two tree-ring width chronologies.This may suggest the influences of El Nin˜o-Southern Oscillation and solar activity on tree growth in the Qinling Mountains.These findings will help us understand the growth response of L.chinensis to climate change in the Qinling region,and they provide critical information for future climate reconstructions based on this species in semi-humid regions.展开更多
There are differing views regarding the climatic factors that limit radial growth of Qilian juniper (Juniperus przewalskii Kom.) at the upper treelines on the northeastern Tibetan Plateau. In this study, trees from ...There are differing views regarding the climatic factors that limit radial growth of Qilian juniper (Juniperus przewalskii Kom.) at the upper treelines on the northeastern Tibetan Plateau. In this study, trees from an upper tree northeastern Tibetan Plateau were selected to limits the radial growth of Qilian juniper. Using ine site in the Anyemaqen Mountains of the present new evidence that low temperature a signal-free regional curve standardization (SF-RCS) method, a ring-width chronology for Qilian juniper was developed extending from AD 1082 to 2010. The results of correlation analysis between tree-ring index and instrumental climatic variables showed that both winter (December in the previous year and January in the current year) and summer (July and August in the current year) temperatures were signifi- cantly and positively correlated with the tree-ring index. Precipitation in June was also significantly and positively correlated with the tree-ring index, but was not as important as low temperature in controlling tree growth. To test the key limiting climatic factor for tree radial growth at different altitudes, an indicator termed the "relative distance to upper treeline" (RDUT) was developed to quantify the representativeness of collected samples for the forest's upper treeline. The RDUT showed that the upper 20% of the forest belt may be an important boundary in terms of capturing the temperature signal from tree-ring width at the upper treelines on the northeastern Tibetan Plateau. Our findings enhance the existing understanding that temperature is the limiting factor at upper treelines on the northeastern Tibetan Plateau, and will be useful in the reconstruction of past temperature in future studies.展开更多
A dendroclimatic study was conducted in the treeline ecotone of Barun Valley, eastern Nepal, to determine the tree-ring climate response and ring width trend of Abies spectabilis. A 160-year-old chronology, from 1850 ...A dendroclimatic study was conducted in the treeline ecotone of Barun Valley, eastern Nepal, to determine the tree-ring climate response and ring width trend of Abies spectabilis. A 160-year-old chronology, from 1850 to 2010, was developed from 38 tree-ring samples. No higher growth in recent decades was observed in tree-ring width in this area. The mean temperature of the current year in February and in the combined winter months of December, January, and February showed significant positive correlation with tree-ring width, although no significant correlation was found between tree-ring width and the precipitation pattern of the region. This tree-ring climate response result is different from that in other studies in Nepal, which could be attributed to location and elevation.展开更多
Background: Climate-induced challenge remains a growing concern in the dry tropics, threatening carbon sink potential of tropical dry forests. Hence, understanding their responses to the changing climate is of high pr...Background: Climate-induced challenge remains a growing concern in the dry tropics, threatening carbon sink potential of tropical dry forests. Hence, understanding their responses to the changing climate is of high priority to facilitate sustainable management of the remnant dry forests. In this study, we examined the long-term climate-growth relations of main tree species in the remnant dry Afromontane forests in northern Ethiopia. The aim of this study was to assess the dendrochronological potential of selected dry Afromontane tree species and to study the influence of climatic variables (temperature and rainfall) on radial growth. It was hypothesized that there are potential tree species with discernible annual growth rings owing to the uni-modality of rainfall in the region. Ring width measurements were based on increment core samples and stem discs collected from a total of 106 trees belonging to three tree species (Juniperus procera, Olea europaea p. cuspidate and Podocarpus falcatus). Thesubsp. collected samples were prepared, crossdated, and analyzed using standard dendrochronological methods. The formation of annual growth rings of the study species was verified based on successful crossdatability and by correlating tree-ring widths with rainfall. Results: The results showed that all the sampled tree species form distinct growth boundaries though differences in the distinctiveness were observed among the species. Positive and significant correlations were found between the tree-ring widths and rainfall, implying that rainfall plays a vital role in determining tree growth in the region. The study confirmed the formation of annual growth rings through successful crossdating, thus highlighted the potential applicability of dendroclimatic studies in the region. Conclusions: Overall, the results proved the strong linkage between tree-ring chronologies and climate variability in the study region, which further strengthens the potential of dendrochronological studies developing in Ethiopia, and also has great implications for further paleo-climatic reconstructions and in the restoration of degraded lands. Further knowledge on the growth characteristics of tree species from the region is required to improve the network of tree-ring data and quality of the chronology so as to successfully reconstruct historic environmental changes.展开更多
我国东北地区气候寒冷,低温事件会严重影响树木生长。水曲柳是东北地区珍贵的用材树种,目前关于其纤维解剖特征对低温的响应与适应策略还知之甚少。为此,以小兴安岭地区水曲柳子代测定林为研究对象,采用树轮年代学和木材解剖学方法,研...我国东北地区气候寒冷,低温事件会严重影响树木生长。水曲柳是东北地区珍贵的用材树种,目前关于其纤维解剖特征对低温的响应与适应策略还知之甚少。为此,以小兴安岭地区水曲柳子代测定林为研究对象,采用树轮年代学和木材解剖学方法,研究水曲柳纤维解剖特征与主要气候因子之间关系,明确低温对木材纤维解剖特征的影响。结果表明,小兴安岭地区水曲柳木纤维解剖特征具有较大的年际变化,木纤维细胞数量(fiber cell number,FN)、木纤维细胞总面积(total fiber cell area,TFA)与年轮宽度(ring width,RW)存在极显著正相关关系,在幼龄林阶段均呈现先升后降的变化趋势。木纤维细胞密度(fiber density,FD)和总体平均木纤维细胞壁增强指数(square of the total-to-bound ratio,(T/B)2)呈现逐年下降的趋势。平均木纤维细胞面积(mean fiber cell area,MFA)和木纤维细胞壁厚度(overall mean thickness of all fiber cell walls,CWTall)呈现逐年增加的趋势。水曲柳纤维解剖特征受温度影响较大,尤其是生长季最低温。低温事件使水曲柳的径向生长受到抑制,年轮宽度、木纤维细胞数量、平均木纤维细胞面积、木纤维细胞总面积和木纤维细胞占比(mean percentage of fiber cell area within xylem,RFTA)较非低温年分别显著下降32.6%、20.3%、22.4%、45.9%和9.4%,而木纤维细胞密度升高11.6%。在面对低温事件时,水曲柳会采取减少木纤维细胞数量、提高木纤维细胞密度这一相对保守的生存策略。研究结果为小兴安岭地区耐寒水曲柳选育提供科学依据。展开更多
Using five well-replicated Qilian juniper (Sabina przewalskii Kom.) tree-ring width index se- ries, monthly normalized difference vegetation index (NDVI) of grassland, and climatic data from 1982 to 2001, the relation...Using five well-replicated Qilian juniper (Sabina przewalskii Kom.) tree-ring width index se- ries, monthly normalized difference vegetation index (NDVI) of grassland, and climatic data from 1982 to 2001, the relationships between tree-ring width index, NDVI of grassland, and climatic data were analyzed firstly. Then, the relationship between tree-ring width index and NDVI of grassland was explored. The re- sults showed that: (1) Temperature and precipitation in June influenced tree-ring width index and NDVI of grassland deeply in Delingha. (2) There were sig- nificant relationships between five tree-ring width index series (DLH1-DLH5) and monthly NDVI of grassland from June to September, with the most significant relationship being between tree-ring width index series and NDVI of grassland in August. (3) The PC1 (the first principal component derived from DLH1-DLH5 series) exhibited good agreement with monthly NDVI of grassland in the grass growth sea- son (from June to September) and the averaged NDVI in the growth season, which was attributed to their common responses to water-supply limit in Delingha. This study may allow an increase in studying the past dynamics of grassland in Delingha in that the variation of grassland NDVI during the last millennium has been reconstructed from PC1.展开更多
基金National Natural Science Foundation of China, No.40525004 No.40599420+2 种基金 No.90211081 No.40531003 No.40121303
文摘Tree-ring standardized chronologies are developed by 78 cores collected from the eastern and western Helan Mountain. Statistical analysis shows that both the STD and RES chronologies correlate negatively with the temperature of different periods of early half year, especially with January to August mean (JA) temperature, which means that JA temperature is one of the predominant limiting factors of tree growth in the Helan Mountain. Based on this analysis, we reconstructed JA temperature, and the explained variance is 43.3% (F=21.422, p〈0.001 ). The comparatively high temperature periods in the reconstruction were: 1805-1818 1828-1857, 1899-1907, 1919-1931 and 1968-1995; and the comparatively low temperatu re periods happened in 1858-1872, 1883-1895 and 1935-1953. Ten-year moving average curve shows three slow uplifting trends: 1766-1853, 1862-1931 and 1944-1995. Each temperature increase was followed by a sudden temperature decrease about 10 years, that is to say, the JA temperature in the Helan Mountain is characterized by slow increase and sudden decrease. The 70- and 10.77-year periodicities detected in the temperature series correspond to the Gleissberg (80-year) and Schwabe (11-year) periodicities of solar activity respectively, the 2.11-2.62 years cycles are considered to be influenced by QBO (Quasi-Biennial-Oscillation) and the local environmental change.
基金supported by the National Natural Science Foundation of China (40801004, 40671184)the Research Fund for the Doctoral Program of Higher Education (20070027019)
文摘Based on the analysis of the correlation between the tree-ring width of Pinus tabulaeformis and the climate factors in the western Hedong sandy land of Ningxia, a conversion equation between the annual precipitation and the tree-ring width since 1899 was reconstructed. The results of cross verification indicated that the conversion equation is stable and the reconstructed results are reliable. The result of reconstructed annual precipitation showed the remarkable fluctuation of precipitation and dry-to-wet variation before the 1940s. The smaller fluctuation and high frequent changes of precipitation occurred during the period of 1940s-1980s and after the 1980s the change trend of the precipitation became high periodic extent and low frequent. The study found that there were some coincidences with the climate change in Changling Mountains, Helan Mountains and the east of Qilian Mountains. The relatively dry periods in the beginning of 20th century, 1920s to 1930s, the end of the 20th century and 2004 to 2006 in the western Hedong sandy land of Ningxia accelerated the desertification, while the relatively humid period during the periods of the 1910s-1920s, 1930s-1940s and 1990s is favorable to prevent and control the desertification, and to weaken the climate warming and drying. The periods of annual precipitation variation in the western Hedong sandy land of Ningxia since 1899 are approximately 2-4 years, 5-7 years and 10 years.
基金funded by the Russian Foundation for Basic Research (17-04-00315)the Russian Science Foundation (14-14-00219)
文摘Regional tree-ring width chronology of the Scots pine (Pinus sylvestris L.) was constructed from 8 sites in the forest-steppe belt situated in the foothills of the Selenga River basin, Russia. Moisture information contained in tree-ring width chronology was obtained through linear regression reconstruction models of annual August–July precipitation and annual water discharge of the Selenga River during the period 1767–2015. Comparison of the smoothed series allowed estimating long-term variation component of these moisture regime parameters with a high precision. At the same time, regional drought indices are less correlated with pine radial growth, because they have contribution of the other environmental variables, which are much less reflected in the tree-ring of the investigated pine forest stands. Reconstructed dynamic of the moisture regime parameters is supported by documental evident of many socially significant events in the regional history, such as crop failures caused by both droughts and floods, and catastrophic fire in the Irkutsk City in 1879. Also, dependence of the amount of precipitation in the study area on the atmospheric circulation in Central Asia is revealed to have a similar pattern with other regions, i.e., a negative relationship of precipitation with the development of large high atmospheric pressure area within its center in the Altai and Tianshan mountains.
基金supported by the Climate Change Special Project of China Meteorological Administration (CCSF201438)the Meteorology Public Welfare Industry Research Special Project (GYHY201106013-3 and GYHY200806011)the Basic Research Operating Expenses of the Central-level Public Welfare Research Institutes (IDM201204)
文摘August-June precipitation has been reconstructed back to AD 1720 for the northern Greater Higgnan Mountains, China, by use ofPinus sylvestris var. mongolica tree-ring width. The reconstruction explains the variance of 39% in observed precipitation from 1973 to 2008. Some extremely dry/wet signals in historical documents and other precipitation reconstructions in previous studies are precisely captured in our reconstruction. Wet periods occurred during the periods of 1730 to 1746, 1789 to 1812, 1844 to 1903, 1920 to 1930, 1942 to 1961, and 1985 to 1998; while periods of 1747 to 1788, 1813 to 1843, 1904 to 1919, 1931 to 1941, and 1962 to 1984 were relatively dry. Power spectral and wavelet analyses demon- strated the existence of significant 24-year, 12-year, and 2-year cycles of variability.
基金This study was supported by the CAS"Light of West China"Program(2018-XBQNXZ-B-017,2015-XBQN-B-22)the 100 Talents Program of the Chinese Academy of Sciences(Y931201)the High Level Talent Introduction Project of Xinjiang Uygur Autonomous Region(Y942171).
文摘Determining the mechanisms controlling the changes of wet and dry conditions will improve our understanding of climate change over the past hundred years,which is of great significance to the study of climate and environmental changes in the arid regions of Central Asia.Forest trees are ecologically significant in the local environment,and therefore the tree ring analysis can provide a clear record of regional historical climate.This study analyzed the correlation between the tree ring width chronology of Juniperus turkestanica Komarov and the standardized precipitation evapotranspiration index(SPEI)in Northwest Tajikistan,based on 56 tree ring samples collected from Shahristan in the Pamir region.Climate data including precipitation,temperature and the SPEI were downloaded from the Climate Research Unit(CRU)TS 4.00.The COFECHA program was used for cross-dating,and the ARSTAN program was used to remove the growth trend of the tree itself and the influence of non-climatic factors on the growth of the trees.A significant correlation was found between the radial growth of J.turkestanica trees and the monthly mean SPEI of February–April.The monthly mean SPEI sequence of February–April during the period of 1895–2016 was reconstructed,and the reconstruction equation explained 42.5%of the variance.During the past 122 a(1895–2016),the study area has experienced three wetter periods(precipitation above average):1901–1919,1945–1983 and 1995–2010,and four drier periods(precipitation below average):1895–1900,1920–1944,1984–1994 and 2011–2016.The spatial correlation analysis revealed that the monthly mean SPEI reconstruction sequence of February–April could be used to characterize the large-scale dry-wet variations in Northwest Tajikistan during the period of 1895–2016.This study could provide comparative data for validating the projections of climate models and scientific basis for managing water resources in Tajikistan in the context of climate change.
基金supported by the National Natural Science Foundation of China (No.42077417,41671042).
文摘Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and tree-ring chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June-August and the com-bination of temperatures and moisture in the current May-July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBLO1 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBLO2 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May-July,while on the western slope,it was affected by the relative humidity in the previous June-August,the current May-July and the precipitation in the current May-July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction.
基金the National Natural Science Foundation of China(No.4207741741671042)。
文摘Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and treering chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June–August and the combination of temperatures and moisture in the current May–July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBL01 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBL02 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May–July,while on the western slope,it was affected by the relative humidity in the previous June–August,the current May–July and the precipitation in the current May–July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction.
基金supported by the National Natural Science Foundation of China(NSFC)Projects[grant numbers 42271476 and 41771227]Key Technology Projects of the Hubei Provincial Company of the China National Tobacco Corporation(grant number 027Y2021-020 and 027Y2022-006)Young Scholar of Wuhan University 351 Talent Program[grant number 202017].
文摘In dendroclimatology,tree ring chronology is ordinarily established to reveal the fluctuation law of climate change on the interannual,interdecadal,and centennial scales.However,since traditional dendrochronology can only use one variable(tree ring width)to reflect environmentally related information,this causes the richer information recorded in the tree rings to be discarded.In this study,we examined the potential of hyperspectral chronological indices(shortened as“hyperspectral index/indices”)with samples collected in Shennongjia woodland in central China.The correlation analysis of the tree ring series on different samples indicated that hyperspectral indices outperform the traditional width index in chronology statistics including Signal-to-noise Ratio(SNR)and Expressed Population Signal(EPS).The reliability test shows that hyperspectral chronologies have more periods reaching the threshold of EPS or Subsample Signal Strength(SSS)>0.85,which means that hyperspectral chronologies provide more reliable periods for accurate climate reconstruction.Based on this,chronologies built by the three dendroclimatic indices were used to reconstruct the average temperature changes in Shennongjia over the last 103 years.The reconstruction results indicate that in our study area,the traditional width index model failed the split-sample calibration test and exhibited a low reconstruction accuracy,while the hyperspectral index model has a higher explained variance of 46.4%(p<0.01),compared to the width index(21.4%)and the grayscale index(38.3%).Our research results show that hyperspectral indices have greater potential for climate reconstruction in regions with lower susceptibility to climate stress.This is attributed to their ability to effectively extract subtle climate signals from the spectral variations on the surface of tree rings.Such ring spectral changes may be caused by complex and currently unknown responses of the trees to the climate.
基金supported by the National Natural Science Foundation of China (41275120, 41605047)the Shanghai Cooperation Organization Science and Technology Partnership (2017E01032)+1 种基金the Special Foundation for Asian Regional Cooperation (Climate Reconstruction of Tian Shan in China, Kyrgyzstan and Tajikistan)the Autonomous Region Youth Science and Technology Innovation Talents Training Project (qn2015bs025)
文摘Reconstructing the hydrological change based on dendrohydrological data has important implications for understanding the dynamic distribution and evolution pattern of a given river. The widespread, long-living coniferous forests on the Altay Mountains provide a good example for carrying out the dendrohydrological studies. In this study, a regional composite tree-ring width chronology developed by Lariat sibirica Ledeb. and Picea obovata Ledeb. was used to reconstruct a 301-year annual (from preceding July to succeeding June) streamflow for the Haba River, which originates in the southern Altay Mountains, Xinjiang, China. Results indicated that the reconstructed streamflow series and the observations were fitting well, and explained 47.5% of the variation in the observed streamflow of 1957-2008. Moreover, floods and droughts in 1949-2000 were precisely captured by the streamflow reconstruction. Based on the frequencies of the wettest/driest years and decades, we identified the 19th century as the century with the largest occurrence of hydrological fluctuations for the last 300 years. After applying a 21-year moving average, we found five wet (1724-1758, 1780-1810, 1822-1853, 1931-1967, and 1986-2004) and four dry (1759-1779, 1811-1821, 1854-1930, and 1968-1985) periods in the streamflow reconstruction. Furthermore, four periods (1770-1796, 1816-1836, 1884-1949, and 1973-1997) identified by the streamflow series had an obvious increasing trend. The increasing trend of streamflow since the 1970s was the biggest in the last 300 years and coincided with the recent warming-wetting trend in northwestern China. A significant correlation between streamflow and precipitation in the Altay Mountains indicated that the streamflow reconstruction contained not only local, but also broad-scale, hydro-climatic signals. The 24-year, 12-year, and 2.2-4.5-year cycles of the reconstruction revealed that the streamflow variability of the Haba River may be influenced by solar activity and the atmosphere-ocean system.
基金National Natural Science Foundation of China, No.40371118National Natural Science Foundation of China, No.90502009
文摘Standardization is one of the important procedures in dendroclimatology. We used abundant Qilian juniper (Sabina przewalskii Kom.) tree-ring samples from the eastern margin of the Qaidam Basin to develop a new standardization method, i.e. total growth curve (TGC). The samples that contained the complete pith and reached to the growing culmination around the 40th-60th year were used to fit TGC, and the generalized negative exponential function was used to fit the curve. Usually, most cores cannot reach the arboreal pith for some reasons and it is difficult to determine the arboreal cambial age. The empirical model of initial radial growth (IRG) was employed to estimate the number of rings missing from the pith by the same data and IRG model explained 90.9% of the variance. When developing the chronology, the cambial ages of cores that contained the complete pith were regarded as beginning from the first year and others were determined by the numbers of missing and included rings in the core. Standardization was accomplished by dividing each tree-ring series by corresponding TGC. The chronologies developed by TGC can retain more low-frequency variational information and TGC helps to develop more reliable tree-ring width chronology.
基金funded by National Natural Science Foundation of China(No.31370587)
文摘Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were examined.Correlation analysis showed that similar correlations between tree-ring width chronologies and climatic factors demonstrated that radial growth responded to climate change on both slopes.The radial growth of L.chinensis was mainly limited by temperature,especially the growing season.In contrast,both chronologies were negatively correlated with precipitation in May of the previous year and April of the current year.Spatial climate-correlation analyses with gridded land-surface climate data revealed that our tree-ring width chronologies contained a strong regional temperature signal over much of northcentral and eastern China.Spatial correlation with seasurface temperature fields highlights the influence of the Pacific Ocean,Indian Ocean,and North Atlantic Ocean.Wavelet coherence analysis indicated the existence of some decadal and interannual cycles in the two tree-ring width chronologies.This may suggest the influences of El Nin˜o-Southern Oscillation and solar activity on tree growth in the Qinling Mountains.These findings will help us understand the growth response of L.chinensis to climate change in the Qinling region,and they provide critical information for future climate reconstructions based on this species in semi-humid regions.
基金The Strategic Priority Research Program from the Chinese Academy of Sciences No.XDA05080201 National Natural Science Foundation of China, No.41071061
文摘There are differing views regarding the climatic factors that limit radial growth of Qilian juniper (Juniperus przewalskii Kom.) at the upper treelines on the northeastern Tibetan Plateau. In this study, trees from an upper tree northeastern Tibetan Plateau were selected to limits the radial growth of Qilian juniper. Using ine site in the Anyemaqen Mountains of the present new evidence that low temperature a signal-free regional curve standardization (SF-RCS) method, a ring-width chronology for Qilian juniper was developed extending from AD 1082 to 2010. The results of correlation analysis between tree-ring index and instrumental climatic variables showed that both winter (December in the previous year and January in the current year) and summer (July and August in the current year) temperatures were signifi- cantly and positively correlated with the tree-ring index. Precipitation in June was also significantly and positively correlated with the tree-ring index, but was not as important as low temperature in controlling tree growth. To test the key limiting climatic factor for tree radial growth at different altitudes, an indicator termed the "relative distance to upper treeline" (RDUT) was developed to quantify the representativeness of collected samples for the forest's upper treeline. The RDUT showed that the upper 20% of the forest belt may be an important boundary in terms of capturing the temperature signal from tree-ring width at the upper treelines on the northeastern Tibetan Plateau. Our findings enhance the existing understanding that temperature is the limiting factor at upper treelines on the northeastern Tibetan Plateau, and will be useful in the reconstruction of past temperature in future studies.
文摘A dendroclimatic study was conducted in the treeline ecotone of Barun Valley, eastern Nepal, to determine the tree-ring climate response and ring width trend of Abies spectabilis. A 160-year-old chronology, from 1850 to 2010, was developed from 38 tree-ring samples. No higher growth in recent decades was observed in tree-ring width in this area. The mean temperature of the current year in February and in the combined winter months of December, January, and February showed significant positive correlation with tree-ring width, although no significant correlation was found between tree-ring width and the precipitation pattern of the region. This tree-ring climate response result is different from that in other studies in Nepal, which could be attributed to location and elevation.
基金financial supports for this study were obtained from the Pan African University(PAU)African Union(AU)Addis Ababa,Ethiopia as part of its PhD scholarship scheme
文摘Background: Climate-induced challenge remains a growing concern in the dry tropics, threatening carbon sink potential of tropical dry forests. Hence, understanding their responses to the changing climate is of high priority to facilitate sustainable management of the remnant dry forests. In this study, we examined the long-term climate-growth relations of main tree species in the remnant dry Afromontane forests in northern Ethiopia. The aim of this study was to assess the dendrochronological potential of selected dry Afromontane tree species and to study the influence of climatic variables (temperature and rainfall) on radial growth. It was hypothesized that there are potential tree species with discernible annual growth rings owing to the uni-modality of rainfall in the region. Ring width measurements were based on increment core samples and stem discs collected from a total of 106 trees belonging to three tree species (Juniperus procera, Olea europaea p. cuspidate and Podocarpus falcatus). Thesubsp. collected samples were prepared, crossdated, and analyzed using standard dendrochronological methods. The formation of annual growth rings of the study species was verified based on successful crossdatability and by correlating tree-ring widths with rainfall. Results: The results showed that all the sampled tree species form distinct growth boundaries though differences in the distinctiveness were observed among the species. Positive and significant correlations were found between the tree-ring widths and rainfall, implying that rainfall plays a vital role in determining tree growth in the region. The study confirmed the formation of annual growth rings through successful crossdating, thus highlighted the potential applicability of dendroclimatic studies in the region. Conclusions: Overall, the results proved the strong linkage between tree-ring chronologies and climate variability in the study region, which further strengthens the potential of dendrochronological studies developing in Ethiopia, and also has great implications for further paleo-climatic reconstructions and in the restoration of degraded lands. Further knowledge on the growth characteristics of tree species from the region is required to improve the network of tree-ring data and quality of the chronology so as to successfully reconstruct historic environmental changes.
文摘我国东北地区气候寒冷,低温事件会严重影响树木生长。水曲柳是东北地区珍贵的用材树种,目前关于其纤维解剖特征对低温的响应与适应策略还知之甚少。为此,以小兴安岭地区水曲柳子代测定林为研究对象,采用树轮年代学和木材解剖学方法,研究水曲柳纤维解剖特征与主要气候因子之间关系,明确低温对木材纤维解剖特征的影响。结果表明,小兴安岭地区水曲柳木纤维解剖特征具有较大的年际变化,木纤维细胞数量(fiber cell number,FN)、木纤维细胞总面积(total fiber cell area,TFA)与年轮宽度(ring width,RW)存在极显著正相关关系,在幼龄林阶段均呈现先升后降的变化趋势。木纤维细胞密度(fiber density,FD)和总体平均木纤维细胞壁增强指数(square of the total-to-bound ratio,(T/B)2)呈现逐年下降的趋势。平均木纤维细胞面积(mean fiber cell area,MFA)和木纤维细胞壁厚度(overall mean thickness of all fiber cell walls,CWTall)呈现逐年增加的趋势。水曲柳纤维解剖特征受温度影响较大,尤其是生长季最低温。低温事件使水曲柳的径向生长受到抑制,年轮宽度、木纤维细胞数量、平均木纤维细胞面积、木纤维细胞总面积和木纤维细胞占比(mean percentage of fiber cell area within xylem,RFTA)较非低温年分别显著下降32.6%、20.3%、22.4%、45.9%和9.4%,而木纤维细胞密度升高11.6%。在面对低温事件时,水曲柳会采取减少木纤维细胞数量、提高木纤维细胞密度这一相对保守的生存策略。研究结果为小兴安岭地区耐寒水曲柳选育提供科学依据。
基金This work Was supported by the Key Program of the National Natural Science Foundation of China (Grant No. 40331006) the Key Project of Knowledge Innovation of the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (Grant No. CXI0G-E01-05 -02).
文摘Using five well-replicated Qilian juniper (Sabina przewalskii Kom.) tree-ring width index se- ries, monthly normalized difference vegetation index (NDVI) of grassland, and climatic data from 1982 to 2001, the relationships between tree-ring width index, NDVI of grassland, and climatic data were analyzed firstly. Then, the relationship between tree-ring width index and NDVI of grassland was explored. The re- sults showed that: (1) Temperature and precipitation in June influenced tree-ring width index and NDVI of grassland deeply in Delingha. (2) There were sig- nificant relationships between five tree-ring width index series (DLH1-DLH5) and monthly NDVI of grassland from June to September, with the most significant relationship being between tree-ring width index series and NDVI of grassland in August. (3) The PC1 (the first principal component derived from DLH1-DLH5 series) exhibited good agreement with monthly NDVI of grassland in the grass growth sea- son (from June to September) and the averaged NDVI in the growth season, which was attributed to their common responses to water-supply limit in Delingha. This study may allow an increase in studying the past dynamics of grassland in Delingha in that the variation of grassland NDVI during the last millennium has been reconstructed from PC1.