Background: Maxillofacial war injuries usually cause severe facial organ defects and deformities, handicapping the patient's daily activities, even result in a tendency to commit suicide. The application of maxill...Background: Maxillofacial war injuries usually cause severe facial organ defects and deformities, handicapping the patient's daily activities, even result in a tendency to commit suicide. The application of maxillofacial prosthesis is an alternative to surgery in functional–aesthetic facial reconstruction. Computer aided design and computer aided manufacturing has opened up a new approach to the fabrication of maxillofacial prosthesis. An intelligentized rapid simulative design and manufacture system for prosthesis was developed to facilitate the prosthesis fabrication procedure.Methods: Maxillofacial prosthesis rapid simulation design and rapid fabrication system consists of three components: digital impression, intelligentized prosthesis designing, and rapid manufacturing. The patients' maxillofacial digital impressions were taken with Structured-light 3D scanner; and then the 3D model of prostheses and their negative molds could be designed in specific software; finally, with the resin molds fabricated by rapid prototyping machine, the prostheses could be produced directly and quickly.Results: Fifteen patients of maxillofacial defect caused by traumatic injuries received prosthesis rehabilitation provided by the established system. The contour of the prostheses coordinated properly with the appearance of the patients, and the uniform-thickness border sealed well to adjacent tissues. All the patients were satisfied with their prostheses.Conclusions: The rapid simulative rehabilitation system of maxillofacial defects has been approaching completion. It could provide advanced technological reservation for the Army in the issue of maxillofacial defect rehabilitation.展开更多
<b><span style="font-family:Verdana;">Background: </span></b></span><span><span><span style="font-family:""><span style="font-family:Ver...<b><span style="font-family:Verdana;">Background: </span></b></span><span><span><span style="font-family:""><span style="font-family:Verdana;">Serious trauma is the main cause of death for people under 40 years old. According to the WHO, in 2002, nearly 1.2 million people died worldwide from road traffic injuries. The vast majority (90%) are from low and middle-income countries. The diagnostic performance, the quality of the treatments offered, and the optimization of trauma care channels, make it possible to improve the management of serious trauma. This is not always the case in our context of a country with limited resources. </span><b><span style="font-family:Verdana;">Objectives: </span></b><span style="font-family:Verdana;">T</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">he objective is </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">o describe the epidemiological, diagnostic and therapeutic aspects of premortal death in patients with traumatic injuries. </span><b><span style="font-family:Verdana;">Methods: </span></b><span style="font-family:Verdana;">This was a descriptive study with retrospective collection in the trauma emergency department of Yalgado Ouedraogo Teaching Hospital (Ouagadougou, Burkina Faso). All patients who died on the ward while in the hospital or on arrival were included. </span><b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">192 deaths were listed. The annual mortality was 1.6%, the sex ratio was 6.1 and the average age was 36 years. Road traffic accidents were the main etiology:</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">163 deaths (85%). Head injuries were the most common injuries: 45.3% of deceased patients had a Glasgow score ≤ 8. There was no pre-hospital care in 63% of the patients who died. The first six hours, on-call periods and the weekend were correlated with the death rate. </span><b><span style="font-family:Verdana;">Discussion: </span></b><span style="font-family:Verdana;">the high mortality in road traffic accident injuries in Africa is </span><span style="font-family:Verdana;">due to the weakness of pre-hospital care, the non-medicalization of the</span><span style="font-family:Verdana;"> transport of the injured and also the non-wearing of helmets by motorcyclists. The MGAP </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(Mechanism, Glasgow coma scale, Age, arterial Pressure)</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">score is reliable in predicting the mortality of serious injuries.展开更多
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela ...Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasomedependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.展开更多
Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for pati...Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”展开更多
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In ...Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.展开更多
BACKGROUND:The objective of this retrospective hospital-based study was to describe the epidemiological features of traumatic spinal cord injury(TSCI)in the intensive care unit(ICU)and assess the incidence and possibl...BACKGROUND:The objective of this retrospective hospital-based study was to describe the epidemiological features of traumatic spinal cord injury(TSCI)in the intensive care unit(ICU)and assess the incidence and possible risk factors for venous thromboembolism(VTE)following TSCI.METHODS:We retrospectively reviewed the medical records of 370 patients with TSCI who were admitted between January 2018 and March 2023.The following parameters were collected:age,sex,body mass index,occupation,underlying diseases,smoking history,education level,etiology of injury,injury segments,American Spinal Injury Association(ASIA)Impairment Scale score,severity of injury,injury severity score(ISS),VTE risk score(Caprini score),treatment,VTE prophylaxis,ICU length of stay,length of hospital stay,concomitant injuries,and complications.Descriptive statistics were used to summarize the demographic and clinical characteristics of the study participants.Logistic regression analysis was used to determine the risk factors for VTE.RESULTS:The mean age of patients with TSCI was 55.5±13.4 years,with a male-to-female ratio of 6.5:1.The leading cause of TSCI was falls from height(46.5%),followed by traffic accidents(36.5%).The cervical spinal cord was the most affected segment,followed by the thoracolumbar region.Among all the patients,362(97.8%)had concomitant injuries.Complications were observed in 255 patients(68.9%)during hospitalization.The incidence rate of VTE was 25.1%.Logistic regression analysis revealed that age(OR=1.721,95%CI:1.207-2.454,P=0.003),mechanical ventilation(OR=3.427,95%CI:1.873-6.271,P<0.001),and non-use of chemical prophylaxis(OR=2.986,95%CI:1.749-5.099,P<0.001)were risk factors for VTE.CONCLUSION:Falls from height and traffic accidents were the main causes of TSCIs in the ICU,especially for male patients with cervical spinal cord injuries.VTE is a frequent complication in patients with TSCI in the ICU.Age,mechanical ventilation,and non-use of chemical prophylaxis were found to be independent risk factors for VTE following TSCI.展开更多
Introduction: Traumatic Brain Injury (TBI) is a major public health problem causing significant morbidity and mortality in young adults. This study aimed to describe the epidemiological, diagnostic, therapeutic, and e...Introduction: Traumatic Brain Injury (TBI) is a major public health problem causing significant morbidity and mortality in young adults. This study aimed to describe the epidemiological, diagnostic, therapeutic, and evolutionary aspects of TBI. Materials and Methods: This was a prospective, descriptive study conducted from 1 April 2022 to 31 March 2023 on patients admitted to and treated for cranioencephalic trauma in the General Surgery department of Kara Regional Hospital. Results: Eighty-three (83) patients with cranioencephalic trauma were managed out of 773 patients admitted to the department during the study period. The mean age was 34 ± 14.98 years and the sex ratio was 3.6 in favour of men. Motorbike taxi drivers were the social group most affected (n = 33, 40%). The causes of trauma were dominated by public road accidents (n = 80;96%). TBI was mild (n = 40;48%), moderate (n = 35;42%) and severe (n = 8;10%). Cerebral CT scans were performed in 19 patients (23%). Cerebral contusion (n = 4) was the most frequent cerebral lesion. Six patients (7%) with severe head injuries were transferred to Kara University Hospital. Six deaths (7%) occurred in patients with severe head injuries. The main sequelae were intermittent headaches in all patients reviewed, and memory problems (6%). Conclusion: Traumatic brain injuries are common at Kara Regional Hospital. Severe cranial trauma is less frequent but leads to death because of financial difficulties and limited technical facilities.展开更多
Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microgl...Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury.In this article,we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury.We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia.We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia,such as the Toll-like receptor 4/nuclear factor-kappa B,mitogen-activated protein kinase,Janus kinase/signal transducer and activator of transcription,phosphoinositide 3-kinase/protein kinase B,Notch,and high mobility group box 1 pathways,can alleviate the inflammatory response triggered by microglia in traumatic brain injury,thereby exerting neuroprotective effects.We also reviewed the strategies developed on the basis of these pathways,such as drug and cell replacement therapies.Drugs that modulate inflammatory factors,such as rosuvastatin,have been shown to promote the polarization of antiinflammatory microglia and reduce the inflammatory response caused by traumatic brain injury.Mesenchymal stem cells possess anti-inflammatory properties,and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury.Additionally,advancements in mesenchymal stem cell-delivery methods—such as combinations of novel biomaterials,genetic engineering,and mesenchymal stem cell exosome therapy—have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models.However,numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed.In the future,new technologies,such as single-cell RNA sequencing and transcriptome analysis,can facilitate further experimental studies.Moreover,research involving non-human primates can help translate these treatment strategies to clinical practice.展开更多
Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the curr...Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the current understanding of the bidirectional relationship between blood-brain barrier disruption and neuroinflammation in traumatic brain injury,along with emerging combination therapeutic strategies.Literature review indicates that blood-brain barrier disruption and neuroinflammatory responses are key pathological features following traumatic brain injury.In the acute phase after traumatic brain injury,the pathological characteristics include primary blood-brain barrier disruption and the activation of inflammatory cascades.In the subacute phase,the pathological features are characterized by repair mechanisms and inflammatory modulation.In the chronic phase,the pathological features show persistent low-grade inflammation and incomplete recovery of the blood-brain barrier.Various physiological changes,such as structural alterations of the blood-brain barrier,inflammatory cascades,and extracellular matrix remodeling,interact with each other and are influenced by genetic,age,sex,and environmental factors.The dynamic balance between blood-brain barrier permeability and neuroinflammation is regulated by hormones,particularly sex hormones and stress-related hormones.Additionally,the role of gastrointestinal hormones is receiving increasing attention.Current treatment strategies for traumatic brain injury include various methods such as conventional drug combinations,multimodality neuromonitoring,hyperbaric oxygen therapy,and non-invasive brain stimulation.Artificial intelligence also shows potential in treatment decision-making and personalized therapy.Emerging sequential combination strategies and precision medicine approaches can help improve treatment outcomes;however,challenges remain,such as inadequate research on the mechanisms of the chronic phase traumatic brain injury and difficulties with technology integration.Future research on traumatic brain injury should focus on personalized treatment strategies,the standardization of techniques,costeffectiveness evaluations,and addressing the needs of patients with comorbidities.A multidisciplinary approach should be used to enhance treatment and improve patient outcomes.展开更多
Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-i...Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.展开更多
Acute central nervous system injuries,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,traumatic brain injury,and spinal co rd injury,are a major global health challenge.Identifying optimal ...Acute central nervous system injuries,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,traumatic brain injury,and spinal co rd injury,are a major global health challenge.Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities.Mitochondria are susceptible to damage after acute central nervous system injury,and this leads to the release of toxic levels of reactive oxygen species,which induce cell death.Mitophagy,a selective form of autophagy,is crucial in eliminating redundant or damaged mitochondria during these events.Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries.In this review,we provide a comprehensive overview of the process,classification,and related mechanisms of mitophagy.We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy.In the final section of this review,we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area.展开更多
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these...Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.展开更多
The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to b...The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.展开更多
Obese individuals who subsequently sustain a traumatic brain injury(TBI)exhibit worsened outcomes including longer periods of rehabilitation(Eagle et al.,2023).In obese individuals,prolonged symptomology is associated...Obese individuals who subsequently sustain a traumatic brain injury(TBI)exhibit worsened outcomes including longer periods of rehabilitation(Eagle et al.,2023).In obese individuals,prolonged symptomology is associated with increased levels of circulato ry pro-inflammatory marke rs up to 1 year postTBI(Eagle et al.,2023).展开更多
This study investigates the combined effects of multi-modality therapy, including mild hyperbaric therapy (mHBT), photobiomodulation (PBM), and molecular hydrogen therapy (MH), on cognitive rehabilitation in individua...This study investigates the combined effects of multi-modality therapy, including mild hyperbaric therapy (mHBT), photobiomodulation (PBM), and molecular hydrogen therapy (MH), on cognitive rehabilitation in individuals with mild-to-moderate traumatic brain injury (TBI). A total of 15 participants (7 males, 8 females, ages ranging from 20 to 78 years) diagnosed with mild-to-moderate TBI underwent 10 sessions of combined therapy. Cognitive performance was assessed using standardized neuropsychological tests before and after treatment, measuring cognitive processing speed, neural responsiveness, and executive function. The results demonstrated significant improvements across all metrics, including a 28.3 ms reduction in P300 latency, a 1.2 mV increase in P300 voltage, and reductions in completion times for the Trail-Making Tests A (14 seconds) and B (19 seconds). These findings suggest that multi-modality therapy may enhance cognitive recovery in TBI patients, with notable benefits across age and gender groups. Further research with larger sample sizes and extended follow-up is required to validate these results and explore their broader clinical applications.展开更多
BACKGROUND Traumatic subdural effusion is a common complication of traumatic brain injury,especially after decompressive craniectomy(DC).For neurosurgeons,early diagnosis and timely treatment are particularly importan...BACKGROUND Traumatic subdural effusion is a common complication of traumatic brain injury,especially after decompressive craniectomy(DC).For neurosurgeons,early diagnosis and timely treatment are particularly important,which can help improve patient prognosis and enhance quality of life.CASE SUMMARY A 47 year old male underwent DC for traumatic brain herniation.After surgery,he developed stubborn subdural effusion(SDE)on the contralateral side and underwent multiple subdural drilling and drainage surgeries,but only temporarily improved the patient’s symptoms.After the final cranioplasty,the contralateral SDE completely disappeared.The patient did not experience any new contralateral neurological dysfunction,and the Glasgow prognostic score was 11 points(E4V1M6).CONCLUSION For neurosurgeons,accurate assessment of the condition is necessary when treating patients with stubborn SDE after DC surgery,and timely cranioplasty can be performed to avoid multiple surgeries.This is a safe and effective surgical method for treating traumatic subdural effusion.展开更多
The neuroinflammatory response mediated by microglial activation plays an important role in the secondary nerve injury of traumatic brain injury.The post-transcriptional modification of N^(6)-methyladenosine is ubiqui...The neuroinflammatory response mediated by microglial activation plays an important role in the secondary nerve injury of traumatic brain injury.The post-transcriptional modification of N^(6)-methyladenosine is ubiquitous in the immune response of the central nervous system.The fat mass and obesity-related protein catalyzes the demethylation of N^(6)-methyladenosine modifications on mRNA and is widely expressed in various tissues,participating in the regulation of multiple diseases’biological processes.However,the role of fat mass and obesity in microglial activation and the subsequent neuroinflammatory response after traumatic brain injury is unclear.In this study,we found that the expression of fat mass and obesity was significantly down-regulated in both lipopolysaccharide-treated BV2 cells and a traumatic brain injury mouse model.After fat mass and obesity interference,BV2 cells exhibited a pro-inflammatory phenotype as shown by the increased proportion of CD11b^(+)/CD86^(+)cells and the secretion of pro-inflammatory cytokines.Fat mass and obesity-mediated N^(6)-methyladenosine demethylation accelerated the degradation of ADAM17 mRNA,while silencing of fat mass and obesity enhanced the stability of ADAM17 mRNA.Therefore,down-regulation of fat mass and obesity expression leads to the abnormally high expression of ADAM17 in microglia.These results indicate that the activation of microglia and neuroinflammatory response regulated by fat mass and obesity-related N^(6)-methyladenosine modification plays an important role in the pro-inflammatory process of secondary injury following traumatic brain injury.展开更多
Objective:To develop and validate a risk prediction model for catheter-related thrombosis(CRT)in pediatric patients with severe traumatic brain injury(sTBI).Methods:Using convenience sampling,216 pediatric patients wi...Objective:To develop and validate a risk prediction model for catheter-related thrombosis(CRT)in pediatric patients with severe traumatic brain injury(sTBI).Methods:Using convenience sampling,216 pediatric patients with sTBI admitted to the Surgical Intensive Care Unit of Kunming Children’s Hospital between June 2022 and May 2025 were enrolled and randomly divided into a training set of 151 cases and a validation set of 65 cases.Influencing factors were identified through univariate analysis and logistic regression analysis to construct the prediction model.The model’s discrimination and calibration were evaluated by the area under the receiver operating characteristic(ROC)curve(AUC)and the Hosmer–Lemeshow goodness-of-fit test.Results:Univariate analysis showed that admission GCS score,CVC insertion site,D-dimer level,and duration of mechanical ventilation were risk factors for CRT in children with sTBI(P<0.05).The logistic regression equation was constructed as follows:Logit(P)=2.74–1.95×GCS score+0.25×D-dimer(μg/mL)+0.02×duration of mechanical ventilation(h).Based on this model,the AUC was 0.87 in the training set and 0.88 in the validation set.The Hosmer–Lemeshow goodness-of-fit test indicated good agreement between the model’s calibration curve and the ideal curve.Conclusion:The developed prediction model demonstrates good predictive performance and can serve as a reference for the early clinical identification of CRT risk in pediatric patients with sTBI.展开更多
Integration of artificial intelligence increases in all aspects of human life,particularly in healthcare systems.Traumatic brain injury is a significant cause of mortality and long-term disability,with an important im...Integration of artificial intelligence increases in all aspects of human life,particularly in healthcare systems.Traumatic brain injury is a significant cause of mortality and long-term disability,with an important impact on the socioeconomic system of healthcare.The role of artificial intelligence in imaging and outcome prediction for traumatic brain injury patients is reviewed with a particular emphasis to the characteristics of machine and deep learning methods.Evidence of potential improvement in the clinical practice in discussed.展开更多
基金funded by National Natural Science Foundation of China (81271188)supported by National Key Technology R&D Program of China (2012BAI07B02)
文摘Background: Maxillofacial war injuries usually cause severe facial organ defects and deformities, handicapping the patient's daily activities, even result in a tendency to commit suicide. The application of maxillofacial prosthesis is an alternative to surgery in functional–aesthetic facial reconstruction. Computer aided design and computer aided manufacturing has opened up a new approach to the fabrication of maxillofacial prosthesis. An intelligentized rapid simulative design and manufacture system for prosthesis was developed to facilitate the prosthesis fabrication procedure.Methods: Maxillofacial prosthesis rapid simulation design and rapid fabrication system consists of three components: digital impression, intelligentized prosthesis designing, and rapid manufacturing. The patients' maxillofacial digital impressions were taken with Structured-light 3D scanner; and then the 3D model of prostheses and their negative molds could be designed in specific software; finally, with the resin molds fabricated by rapid prototyping machine, the prostheses could be produced directly and quickly.Results: Fifteen patients of maxillofacial defect caused by traumatic injuries received prosthesis rehabilitation provided by the established system. The contour of the prostheses coordinated properly with the appearance of the patients, and the uniform-thickness border sealed well to adjacent tissues. All the patients were satisfied with their prostheses.Conclusions: The rapid simulative rehabilitation system of maxillofacial defects has been approaching completion. It could provide advanced technological reservation for the Army in the issue of maxillofacial defect rehabilitation.
文摘<b><span style="font-family:Verdana;">Background: </span></b></span><span><span><span style="font-family:""><span style="font-family:Verdana;">Serious trauma is the main cause of death for people under 40 years old. According to the WHO, in 2002, nearly 1.2 million people died worldwide from road traffic injuries. The vast majority (90%) are from low and middle-income countries. The diagnostic performance, the quality of the treatments offered, and the optimization of trauma care channels, make it possible to improve the management of serious trauma. This is not always the case in our context of a country with limited resources. </span><b><span style="font-family:Verdana;">Objectives: </span></b><span style="font-family:Verdana;">T</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">he objective is </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">o describe the epidemiological, diagnostic and therapeutic aspects of premortal death in patients with traumatic injuries. </span><b><span style="font-family:Verdana;">Methods: </span></b><span style="font-family:Verdana;">This was a descriptive study with retrospective collection in the trauma emergency department of Yalgado Ouedraogo Teaching Hospital (Ouagadougou, Burkina Faso). All patients who died on the ward while in the hospital or on arrival were included. </span><b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">192 deaths were listed. The annual mortality was 1.6%, the sex ratio was 6.1 and the average age was 36 years. Road traffic accidents were the main etiology:</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">163 deaths (85%). Head injuries were the most common injuries: 45.3% of deceased patients had a Glasgow score ≤ 8. There was no pre-hospital care in 63% of the patients who died. The first six hours, on-call periods and the weekend were correlated with the death rate. </span><b><span style="font-family:Verdana;">Discussion: </span></b><span style="font-family:Verdana;">the high mortality in road traffic accident injuries in Africa is </span><span style="font-family:Verdana;">due to the weakness of pre-hospital care, the non-medicalization of the</span><span style="font-family:Verdana;"> transport of the injured and also the non-wearing of helmets by motorcyclists. The MGAP </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(Mechanism, Glasgow coma scale, Age, arterial Pressure)</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">score is reliable in predicting the mortality of serious injuries.
文摘Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasomedependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
基金supported by the National Natural Science Foundation of China,No.82174112(to PZ)Science and Technology Project of Haihe Laboratory of Modern Chinese Medicine,No.22HHZYSS00015(to PZ)State-Sponsored Postdoctoral Researcher Program,No.GZC20231925(to LN)。
文摘Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
基金supported by the Fundamental Research Program of Shanxi Province of China,No.20210302124277the Science Foundation of Shanxi Bethune Hospital,No.2021YJ13(both to JW)。
文摘Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.
基金supported in part by grants from the Science and Technology Plan Project of Linhai(2023YW05)Medical Health Science and Technology Project of Zhejiang(2024KY555).
文摘BACKGROUND:The objective of this retrospective hospital-based study was to describe the epidemiological features of traumatic spinal cord injury(TSCI)in the intensive care unit(ICU)and assess the incidence and possible risk factors for venous thromboembolism(VTE)following TSCI.METHODS:We retrospectively reviewed the medical records of 370 patients with TSCI who were admitted between January 2018 and March 2023.The following parameters were collected:age,sex,body mass index,occupation,underlying diseases,smoking history,education level,etiology of injury,injury segments,American Spinal Injury Association(ASIA)Impairment Scale score,severity of injury,injury severity score(ISS),VTE risk score(Caprini score),treatment,VTE prophylaxis,ICU length of stay,length of hospital stay,concomitant injuries,and complications.Descriptive statistics were used to summarize the demographic and clinical characteristics of the study participants.Logistic regression analysis was used to determine the risk factors for VTE.RESULTS:The mean age of patients with TSCI was 55.5±13.4 years,with a male-to-female ratio of 6.5:1.The leading cause of TSCI was falls from height(46.5%),followed by traffic accidents(36.5%).The cervical spinal cord was the most affected segment,followed by the thoracolumbar region.Among all the patients,362(97.8%)had concomitant injuries.Complications were observed in 255 patients(68.9%)during hospitalization.The incidence rate of VTE was 25.1%.Logistic regression analysis revealed that age(OR=1.721,95%CI:1.207-2.454,P=0.003),mechanical ventilation(OR=3.427,95%CI:1.873-6.271,P<0.001),and non-use of chemical prophylaxis(OR=2.986,95%CI:1.749-5.099,P<0.001)were risk factors for VTE.CONCLUSION:Falls from height and traffic accidents were the main causes of TSCIs in the ICU,especially for male patients with cervical spinal cord injuries.VTE is a frequent complication in patients with TSCI in the ICU.Age,mechanical ventilation,and non-use of chemical prophylaxis were found to be independent risk factors for VTE following TSCI.
文摘Introduction: Traumatic Brain Injury (TBI) is a major public health problem causing significant morbidity and mortality in young adults. This study aimed to describe the epidemiological, diagnostic, therapeutic, and evolutionary aspects of TBI. Materials and Methods: This was a prospective, descriptive study conducted from 1 April 2022 to 31 March 2023 on patients admitted to and treated for cranioencephalic trauma in the General Surgery department of Kara Regional Hospital. Results: Eighty-three (83) patients with cranioencephalic trauma were managed out of 773 patients admitted to the department during the study period. The mean age was 34 ± 14.98 years and the sex ratio was 3.6 in favour of men. Motorbike taxi drivers were the social group most affected (n = 33, 40%). The causes of trauma were dominated by public road accidents (n = 80;96%). TBI was mild (n = 40;48%), moderate (n = 35;42%) and severe (n = 8;10%). Cerebral CT scans were performed in 19 patients (23%). Cerebral contusion (n = 4) was the most frequent cerebral lesion. Six patients (7%) with severe head injuries were transferred to Kara University Hospital. Six deaths (7%) occurred in patients with severe head injuries. The main sequelae were intermittent headaches in all patients reviewed, and memory problems (6%). Conclusion: Traumatic brain injuries are common at Kara Regional Hospital. Severe cranial trauma is less frequent but leads to death because of financial difficulties and limited technical facilities.
基金supported by the Natural Science Foundation of Yunnan Province,No.202401AS070086(to ZW)the National Key Research and Development Program of China,No.2018YFA0801403(to ZW)+1 种基金Yunnan Science and Technology Talent and Platform Plan,No.202105AC160041(to ZW)the Natural Science Foundation of China,No.31960120(to ZW)。
文摘Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury.In this article,we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury.We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia.We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia,such as the Toll-like receptor 4/nuclear factor-kappa B,mitogen-activated protein kinase,Janus kinase/signal transducer and activator of transcription,phosphoinositide 3-kinase/protein kinase B,Notch,and high mobility group box 1 pathways,can alleviate the inflammatory response triggered by microglia in traumatic brain injury,thereby exerting neuroprotective effects.We also reviewed the strategies developed on the basis of these pathways,such as drug and cell replacement therapies.Drugs that modulate inflammatory factors,such as rosuvastatin,have been shown to promote the polarization of antiinflammatory microglia and reduce the inflammatory response caused by traumatic brain injury.Mesenchymal stem cells possess anti-inflammatory properties,and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury.Additionally,advancements in mesenchymal stem cell-delivery methods—such as combinations of novel biomaterials,genetic engineering,and mesenchymal stem cell exosome therapy—have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models.However,numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed.In the future,new technologies,such as single-cell RNA sequencing and transcriptome analysis,can facilitate further experimental studies.Moreover,research involving non-human primates can help translate these treatment strategies to clinical practice.
基金supported by Open Scientific Research Program of Military Logistics,No.BLB20J009(to YZhao).
文摘Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the current understanding of the bidirectional relationship between blood-brain barrier disruption and neuroinflammation in traumatic brain injury,along with emerging combination therapeutic strategies.Literature review indicates that blood-brain barrier disruption and neuroinflammatory responses are key pathological features following traumatic brain injury.In the acute phase after traumatic brain injury,the pathological characteristics include primary blood-brain barrier disruption and the activation of inflammatory cascades.In the subacute phase,the pathological features are characterized by repair mechanisms and inflammatory modulation.In the chronic phase,the pathological features show persistent low-grade inflammation and incomplete recovery of the blood-brain barrier.Various physiological changes,such as structural alterations of the blood-brain barrier,inflammatory cascades,and extracellular matrix remodeling,interact with each other and are influenced by genetic,age,sex,and environmental factors.The dynamic balance between blood-brain barrier permeability and neuroinflammation is regulated by hormones,particularly sex hormones and stress-related hormones.Additionally,the role of gastrointestinal hormones is receiving increasing attention.Current treatment strategies for traumatic brain injury include various methods such as conventional drug combinations,multimodality neuromonitoring,hyperbaric oxygen therapy,and non-invasive brain stimulation.Artificial intelligence also shows potential in treatment decision-making and personalized therapy.Emerging sequential combination strategies and precision medicine approaches can help improve treatment outcomes;however,challenges remain,such as inadequate research on the mechanisms of the chronic phase traumatic brain injury and difficulties with technology integration.Future research on traumatic brain injury should focus on personalized treatment strategies,the standardization of techniques,costeffectiveness evaluations,and addressing the needs of patients with comorbidities.A multidisciplinary approach should be used to enhance treatment and improve patient outcomes.
基金supported by research grants from the Ningbo Science and Technology Plan Project,No.2022Z143hezuo(to BL)the National Natural Science Foundation of China,No.82201520(to XD)。
文摘Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.
基金supported by the National Natural Science Foundation of China,Nos.81920108017(to YX),82130036(to YX),82371326(to XC),82171310(to XC)the STI2030-Major Projects,No.2022ZD0211800(to YX)Jiangsu Province Key Medical Discipline,No.ZDXK202216(to YX)。
文摘Acute central nervous system injuries,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,traumatic brain injury,and spinal co rd injury,are a major global health challenge.Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities.Mitochondria are susceptible to damage after acute central nervous system injury,and this leads to the release of toxic levels of reactive oxygen species,which induce cell death.Mitophagy,a selective form of autophagy,is crucial in eliminating redundant or damaged mitochondria during these events.Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries.In this review,we provide a comprehensive overview of the process,classification,and related mechanisms of mitophagy.We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy.In the final section of this review,we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area.
基金supported by the National Natural Science Foundation of China, Nos. 82271411 (to RG), 51803072 (to WLiu)grants from the Department of Finance of Jilin Province, Nos. 2022SCZ25 (to RG), 2022SCZ10 (to WLiu), 2021SCZ07 (to RG)+2 种基金Jilin Provincial Science and Technology Program, No. YDZJ202201ZYTS038 (to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University, No. 2022qnpy11 (to WLuo)The Project of China-Japan Union Hospital of Jilin University, No. XHQMX20233 (to RG)
文摘Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.
基金supported by the TARCC,Welch Foundation Award(I-1724)the Decherd Foundationthe Pape Adams Foundation,NIH grants NS092616,NS127375,NS117065,NS111776。
文摘The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.
文摘Obese individuals who subsequently sustain a traumatic brain injury(TBI)exhibit worsened outcomes including longer periods of rehabilitation(Eagle et al.,2023).In obese individuals,prolonged symptomology is associated with increased levels of circulato ry pro-inflammatory marke rs up to 1 year postTBI(Eagle et al.,2023).
文摘This study investigates the combined effects of multi-modality therapy, including mild hyperbaric therapy (mHBT), photobiomodulation (PBM), and molecular hydrogen therapy (MH), on cognitive rehabilitation in individuals with mild-to-moderate traumatic brain injury (TBI). A total of 15 participants (7 males, 8 females, ages ranging from 20 to 78 years) diagnosed with mild-to-moderate TBI underwent 10 sessions of combined therapy. Cognitive performance was assessed using standardized neuropsychological tests before and after treatment, measuring cognitive processing speed, neural responsiveness, and executive function. The results demonstrated significant improvements across all metrics, including a 28.3 ms reduction in P300 latency, a 1.2 mV increase in P300 voltage, and reductions in completion times for the Trail-Making Tests A (14 seconds) and B (19 seconds). These findings suggest that multi-modality therapy may enhance cognitive recovery in TBI patients, with notable benefits across age and gender groups. Further research with larger sample sizes and extended follow-up is required to validate these results and explore their broader clinical applications.
文摘BACKGROUND Traumatic subdural effusion is a common complication of traumatic brain injury,especially after decompressive craniectomy(DC).For neurosurgeons,early diagnosis and timely treatment are particularly important,which can help improve patient prognosis and enhance quality of life.CASE SUMMARY A 47 year old male underwent DC for traumatic brain herniation.After surgery,he developed stubborn subdural effusion(SDE)on the contralateral side and underwent multiple subdural drilling and drainage surgeries,but only temporarily improved the patient’s symptoms.After the final cranioplasty,the contralateral SDE completely disappeared.The patient did not experience any new contralateral neurological dysfunction,and the Glasgow prognostic score was 11 points(E4V1M6).CONCLUSION For neurosurgeons,accurate assessment of the condition is necessary when treating patients with stubborn SDE after DC surgery,and timely cranioplasty can be performed to avoid multiple surgeries.This is a safe and effective surgical method for treating traumatic subdural effusion.
基金supported by grants from the Major Projects of Health Science Research Foundation for Middle-Aged and Young Scientist of Fujian Province,China,No.2022ZQNZD01010010the National Natural Science Foundation of China,No.82371390Fujian Province Scientific Foundation,No.2023J01725(all to XC).
文摘The neuroinflammatory response mediated by microglial activation plays an important role in the secondary nerve injury of traumatic brain injury.The post-transcriptional modification of N^(6)-methyladenosine is ubiquitous in the immune response of the central nervous system.The fat mass and obesity-related protein catalyzes the demethylation of N^(6)-methyladenosine modifications on mRNA and is widely expressed in various tissues,participating in the regulation of multiple diseases’biological processes.However,the role of fat mass and obesity in microglial activation and the subsequent neuroinflammatory response after traumatic brain injury is unclear.In this study,we found that the expression of fat mass and obesity was significantly down-regulated in both lipopolysaccharide-treated BV2 cells and a traumatic brain injury mouse model.After fat mass and obesity interference,BV2 cells exhibited a pro-inflammatory phenotype as shown by the increased proportion of CD11b^(+)/CD86^(+)cells and the secretion of pro-inflammatory cytokines.Fat mass and obesity-mediated N^(6)-methyladenosine demethylation accelerated the degradation of ADAM17 mRNA,while silencing of fat mass and obesity enhanced the stability of ADAM17 mRNA.Therefore,down-regulation of fat mass and obesity expression leads to the abnormally high expression of ADAM17 in microglia.These results indicate that the activation of microglia and neuroinflammatory response regulated by fat mass and obesity-related N^(6)-methyladenosine modification plays an important role in the pro-inflammatory process of secondary injury following traumatic brain injury.
基金Health Science Research Project of Kunming Health Committee,Yunnan Province(Project No.:2023-14-04-008)。
文摘Objective:To develop and validate a risk prediction model for catheter-related thrombosis(CRT)in pediatric patients with severe traumatic brain injury(sTBI).Methods:Using convenience sampling,216 pediatric patients with sTBI admitted to the Surgical Intensive Care Unit of Kunming Children’s Hospital between June 2022 and May 2025 were enrolled and randomly divided into a training set of 151 cases and a validation set of 65 cases.Influencing factors were identified through univariate analysis and logistic regression analysis to construct the prediction model.The model’s discrimination and calibration were evaluated by the area under the receiver operating characteristic(ROC)curve(AUC)and the Hosmer–Lemeshow goodness-of-fit test.Results:Univariate analysis showed that admission GCS score,CVC insertion site,D-dimer level,and duration of mechanical ventilation were risk factors for CRT in children with sTBI(P<0.05).The logistic regression equation was constructed as follows:Logit(P)=2.74–1.95×GCS score+0.25×D-dimer(μg/mL)+0.02×duration of mechanical ventilation(h).Based on this model,the AUC was 0.87 in the training set and 0.88 in the validation set.The Hosmer–Lemeshow goodness-of-fit test indicated good agreement between the model’s calibration curve and the ideal curve.Conclusion:The developed prediction model demonstrates good predictive performance and can serve as a reference for the early clinical identification of CRT risk in pediatric patients with sTBI.
文摘Integration of artificial intelligence increases in all aspects of human life,particularly in healthcare systems.Traumatic brain injury is a significant cause of mortality and long-term disability,with an important impact on the socioeconomic system of healthcare.The role of artificial intelligence in imaging and outcome prediction for traumatic brain injury patients is reviewed with a particular emphasis to the characteristics of machine and deep learning methods.Evidence of potential improvement in the clinical practice in discussed.