In this paper we study the function , for z∈C. We derive a functional equation that relates G(z) and G(1−z) for all z∈C, and we prove: 1) that G and the Riemann zeta function ζ have exactly the same zeros in the cr...In this paper we study the function , for z∈C. We derive a functional equation that relates G(z) and G(1−z) for all z∈C, and we prove: 1) that G and the Riemann zeta function ζ have exactly the same zeros in the critical region D:= {z∈C:ℜz∈(0,1)};2) the Riemann hypothesis, i.e., that all of the zeros of G in D are located on the critical line := {z∈D:ℜz =1/2};and that 3) all the zeros of the Riemann zeta function located on the critical line are simple.展开更多
文摘In this paper we study the function , for z∈C. We derive a functional equation that relates G(z) and G(1−z) for all z∈C, and we prove: 1) that G and the Riemann zeta function ζ have exactly the same zeros in the critical region D:= {z∈C:ℜz∈(0,1)};2) the Riemann hypothesis, i.e., that all of the zeros of G in D are located on the critical line := {z∈D:ℜz =1/2};and that 3) all the zeros of the Riemann zeta function located on the critical line are simple.