期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
High-work-function transparent electrode with an enhanced air-stable conductivity based on AgNiCu core-shell nanowires for Schottky photodiode
1
作者 Tingting Yan Wei Yang +1 位作者 Limin Wu Xiaosheng Fang 《Journal of Materials Science & Technology》 2025年第6期95-102,共8页
Silver nanowires(Ag NWs)have promising application potential in electronic displays because of their superior flexibility and transparency.Doping Ni in Ag NWs has proven to be an effective strategy to im-prove its wor... Silver nanowires(Ag NWs)have promising application potential in electronic displays because of their superior flexibility and transparency.Doping Ni in Ag NWs has proven to be an effective strategy to im-prove its work function.However,AgNi NWs-based electrodes suffer from poor electrical conductivity under air exposure due to the low-conductivity NiO generated on its surface.Here,Cu was further doped in AgNi NWs to form AgNiCu NWs and regulate its surface oxide under long-term air exposure.Finally,it is demonstrated that the conductivity of AgNiCu NWs can acquire an improved tolerable tempera-ture(over 240℃)and prolonged high-temperature tolerance time(over 150 min)by finely regulating the doping content Cu,indicating an enhanced air-stable conductivity.The optimized AgNiCu NWs also achieve superior transparent conductivity as pure Ag NWs and high work function as AgNi NWs,which has been successfully applied in constructing an n-type photodiode with an effective rectification effect. 展开更多
关键词 Mental nanowires Cu-doping Air-stable conductivity transparent electrode PHOTODIODE
原文传递
Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes 被引量:2
2
作者 Jianmin Yang Li Chang +2 位作者 Xiqi Zhang Ziquan Cao Lei Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期441-455,共15页
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr... The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials. 展开更多
关键词 Ionic liquids ASSEMBLY Silver nanowires MXene nanosheets Flexible transparent electrodes
在线阅读 下载PDF
Langmuir-Blodgett assembly of ultra-large graphene oxide films for transparent electrodes 被引量:1
3
作者 郑庆彬 师丽芳 杨俊和 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2504-2511,共8页
Monolayer ultra-large graphene oxide (UL-GO) sheets with diameter up to about 100 μm were synthesized based on a chemical method. Transparent conductive films were produced using the UL-GO sheets that were deposite... Monolayer ultra-large graphene oxide (UL-GO) sheets with diameter up to about 100 μm were synthesized based on a chemical method. Transparent conductive films were produced using the UL-GO sheets that were deposited layer-by-layer on a substrate by the Langmuir-Blodgett (L-B) assembly technique. The films produced from UL-GO sheets with a close-packed flat structure exhibit exceptionally high electrical conductivity and transparency after thermal reduction. A remarkable sheet resistance of 605 -/sq at 86% transparency is obtained, which outperforms the graphene films grown on a Ni substrate by chemical vapor deposition. The technique used to produce transparent conductive films is facile, inexpensive and tunable for mass production. 展开更多
关键词 graphene oxide Langmuir-Blodgett assembly transparent electrode thermal reduction
在线阅读 下载PDF
Recent advances in nanofiber-based flexible transparent electrodes 被引量:3
4
作者 Houchao Zhang Xiaoyang Zhu +11 位作者 Yuping Tai Junyi Zhou Hongke Li Zhenghao Li Rui Wang Jinbao Zhang Youchao Zhang Wensong Ge Fan Zhang Luanfa Sun Guangming Zhang Hongbo Lan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期144-198,共55页
Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alterna... Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics. 展开更多
关键词 NANOFIBER flexible transparent electrodes additive manufacturing flexible optoelectronic devices
在线阅读 下载PDF
High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes 被引量:5
5
作者 He Zhang Shang Wang +6 位作者 Yanhong Tian Jiayue Wen Chunjin Hang Zhen Zheng Yilong Huang Su Ding Chenxi Wang 《Nano Materials Science》 CAS 2020年第2期164-171,共8页
Copper nanowires(Cu NWs)are considered an excellent alternative to indium tin oxide(ITO)in flexible transparency electrodes(FTEs).However,the mixed particles and surface oxidation of Cu NWs degrade the transmittance a... Copper nanowires(Cu NWs)are considered an excellent alternative to indium tin oxide(ITO)in flexible transparency electrodes(FTEs).However,the mixed particles and surface oxidation of Cu NWs degrade the transmittance and conductivity of the electrodes.Therefore,highly purified Cu NWs without oxidation are vital for high-performance FTEs.Herein,a facile and effective purification process is introduced to purify Cu NWs in a water and n-hexane system,which takes advantage of the differences in hydrophilicity between Cu NWs and Cu NPs caused by their different adsorption affinities to octadecylamine(ODA).At the same sheet resistance,the transmittance of the purified Cu NW-based FTEs improved approximately 2%compared to that of non-purified Cu NW-based FTEs.Immersion of the electrode in glacial acetic acid removed the surface organics and oxides.After only 40 s of treatment,the sheet resistance dramatically decreased from 10^5 Ohm/sq to 31 Ohm/sq with a transmittance of 85%.In addition,the Cu NW-based FTE conductors showed excellent flexibility(remaining stable after 1000 bending cycles).The Cu NW-based FTEs were further applied to fabricate a flexible transparent heater.At a voltage of 10 V,the temperature of the heater reached 73℃,demonstrating the potential applications of this material in various fields. 展开更多
关键词 Copper nanowires PURIFICATION transparent electrode Flexible electronics
在线阅读 下载PDF
Analysis and simulation of lateral PIN photodiode gated by transparent electrode fabricated on fully-depleted SOI film 被引量:2
6
作者 谢海情 曾云 +1 位作者 曾健平 王太宏 《Journal of Central South University》 SCIE EI CAS 2011年第3期744-748,共5页
A novel device, lateral PIN photodiode gated by transparent electrode (LPIN PD-GTE) fabricated on fully-depleted SOI film was proposed. ITO film was adopted in the device as gate electrode to reduce the light absorp... A novel device, lateral PIN photodiode gated by transparent electrode (LPIN PD-GTE) fabricated on fully-depleted SOI film was proposed. ITO film was adopted in the device as gate electrode to reduce the light absorption. Thin Si film was fully depleted under gate voltage to achieve low dark current and high photo4o-dark current ratio. The model of gate voltage was obtained and the numerical simulations were presented by ATLAS. Current-voltage characteristics of LPIN PD-GTE obtained in dark (dark current) and under 570 nm illumination (photo current) were studied to achieve the greatest photo-to-dark current ratio for active channel length from 2 to 12 /am. The results show that the photo-to-dark current ratio is 2.0×10^7, with dark current of around 5×10^-4 pA under VGK=0.6 V, PrN=5 mW/cm2, for a total area of 10μm×10μm in fully depleted SOI technology. Thus, the LPIN PD-GTE can be suitable for high-grade photoelectric systems such as blue DVD. 展开更多
关键词 lateral PIN photodiode transparent electrode physical model photo-to-dark current ratio SILICON-ON-INSULATOR
在线阅读 下载PDF
Bifunctional flexible electrochromic energy storage devices based on silver nanowire flexible transparent electrodes 被引量:2
7
作者 He Zhang Fangyuan Sun +8 位作者 Ge Cao Dongyan Zhou Guofan Zhang Jiayun Feng Shang Wang Fengyu Su Yanqing Tian Yan Jun Liu Yanhong Tian 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期307-316,共10页
Flexible electrochromic energy storage devices(FECESDs)for powering flexible electronics have attracted considerable attention.Silver nanowires(AgNWs)are one kind of the most promising flexible transparent electrodes(... Flexible electrochromic energy storage devices(FECESDs)for powering flexible electronics have attracted considerable attention.Silver nanowires(AgNWs)are one kind of the most promising flexible transparent electrodes(FTEs)materials for the emerging flexible devices.Currently,fabricating FECESD based on AgNWs FTEs is still hindered by their intrinsic poor electrochemical stability.To address this issue,a hybrid AgNWs/Co(OH)_(2)/PEDOT:PSS electrode is proposed.The PEDOT:PSS could not only improve the resistance against electrochemical corrosion of AgNWs,but also work as functional layer to realize the color-changing and energy storage properties.Moreover,the Co(OH)_(2)interlayer further improved the color-changing and energy storage performance.Based on the improvement,we assembled the symmetrical FECESDs.Under the same condition,the areal capacitance(0.8 mF cm^(−2))and coloration efficiency(269.80 cm^(2)C−1)of AgNWs/Co(OH)_(2)/PEDOT:PSS FECESDs were obviously higher than AgNWs/PEDOT:PSS FECESDs.Furthermore,the obtained FECESDs exhibited excellent stability against the mechanical deformation.The areal capacitance remained stable during 1000 times cyclic bending with a 25 mm curvature radius.These results demonstrated the broad application potential of the AgNWs/Co(OH)_(2)/PEDOT:PSS FECESD for the emerging portable and multifunctional electronics. 展开更多
关键词 electrochromic device energy storage device silver nanowires flexible transparent electrode
在线阅读 下载PDF
Structural, Optical and Electrical Properties of Ga Doped ZnO/Cu grid/Ga Doped ZnO Transparent Electrodes 被引量:2
8
作者 Cholho Jang Qingjun Jiang +1 位作者 Jianguo Lu Zhizhen Ye 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第11期1108-1110,共3页
Ga doped ZnO (OZO)/Cu grid/GZO transparent conductive electrode (TCE) structures were fabricated at room temperature (RT) by using electron beam evaporation (EBE) for the Cu grids and RF magnetron sputtering f... Ga doped ZnO (OZO)/Cu grid/GZO transparent conductive electrode (TCE) structures were fabricated at room temperature (RT) by using electron beam evaporation (EBE) for the Cu grids and RF magnetron sputtering for the GZO layers. In this work, we investigated the electrical and optical characteristics of GZO/Cu grid/GZO multilayer electrode for thin film solar cells by using evaporated Cu grid and sputtered GZO thin films to enhance the optical transparency without significantly affecting their conductivity. The optical transmittance and sheet resistance of GZO/Cu grid/GZO multilayer are higher than those of GZO/Cu film/GZO multilayer independent of Cu grid separation distance and increase with increasing Cu grid separation distances. The calculation of both transmittance and sheet resistance of GZO/Cu grid] GZO multilayer was based on Cu filling factor correlated with the geometry of Cu grid. The calculated values for the transmittance and sheet resistance of the GZO/Cu grid/GZO multilayer were similar to the experimentally observed ones. The highest figure of merit ФTc is 5.18× 10^-3Ω^-1 for the GZO/Cu grid] GZO multilayer with Cu grid separation distance of 1 mm was obtained, in this case, the transmittance and resistivity were 82.72% and 2.17 × 10 ^-4Ωcm, respectively. The transmittance and resistivity are accentahle for nractical thin film snlar cell annlicatinn~ 展开更多
关键词 transparent electrode Electron beam evaporation Cu grid Ga doped ZnO Multilayer film
原文传递
Thin-layer Spectroelectrochemistry of 3,3′,5,5′-Tetramethyl-benzidine on Pt Minigrid Optically Transparent Electrode
9
作者 KuiJIAO TaoYANG ZengJianWANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第5期655-658,共4页
The electrooxidation behavior of 3, 3′,5, 5′-tetramethylbenzidine(TMB) was investigated using a platinum minigrid optically transparent thin-layer spectroelectrochemical cell. TMB underwent one two-electron electroo... The electrooxidation behavior of 3, 3′,5, 5′-tetramethylbenzidine(TMB) was investigated using a platinum minigrid optically transparent thin-layer spectroelectrochemical cell. TMB underwent one two-electron electrooxidation process to yield quinonediimine in the pH range from 2.0 to < 4.0, and two consecutive one-electron electrooxidation processes, gave the mediate product free radical of TMB first, then gave the oxidation product quinonediimine in the pH range from 4.0 to < 7.0. In the pH range from 7.0 to 10.0, the electrooxidation of TMB was also one two-electron electrooxidation process to yield an azo compound. The formal potential E0'and the electron transfer number of the electrooxidation of TMB at pH 2.0 and pH 8.4 were determined by spectroelectrochemical techniques. 展开更多
关键词 Thin-layer spectroelectrochemistry 3 3′ 5 5′-tetramethylbenzidine platinum minigrid optically transparent electrode electrooxidation.
在线阅读 下载PDF
Polyimide passivation-enabled high-work function graphene transparent electrode for organic light-emitting diodes with enhanced reliability
10
作者 Rui Liu Yu Liu +4 位作者 Dingdong Zhang Jinhong Du Xu Han Shuangdeng Yuan Wencai Ren 《InfoMat》 2025年第3期130-141,共12页
Chemical vapor deposition(CVD)-gown graphene has tremendous potential as a transparent electrode for the next generation of flexible optoelectronics such as organic light-emitting diodes(OLEDs).A semiconductor coating... Chemical vapor deposition(CVD)-gown graphene has tremendous potential as a transparent electrode for the next generation of flexible optoelectronics such as organic light-emitting diodes(OLEDs).A semiconductor coating is critical to improve the work function but usually makes graphene rougher and more conductive,which increases leakage,and then significantly restrict device effi-ciency improvement and worsens reliability.Here an insulating polyimide bearing carbazole-substituted triphenylamine units and bis(trifluoromethyl)phenyl groups(CzTPA PI/2CF_(3))with high thermal stability is synthesized to passivate graphene.The similar surface free energy allows the uniform coating of CzTPA PI/2CF_(3)/N-methylpyrrolidone on graphene.Despite of a slight decrease in conductivity,CzTPA PI/2CF_(3)passivation enables a substantial reduction in surface roughness and improvement in work function.By using such CzTPA PI/2CF_(3)-passivated graphene as anode,a flexible green OLED is demonstrated with a maximum current,power,and external quantum efficien-cies of 88.4 cd A^(-1),115.7 lm W^(-1),and 24.8%,respectively,which are among the best of the reported results.Moreover,the CzTPA PI/2CF_(3)passivation enhances the device reliability with extending half-life and reducing dispersion coefficient of efficiency.The study promotes the practical use of graphene transparent electrodes for flexible optoelectronics. 展开更多
关键词 GRAPHENE organic light-emitting diodes PASSIVATION POLYIMIDE transparent electrodes
原文传递
Self-confined electrohydrodynamic printing on micro-structured substrate for flexible transparent electrodes with embedded metal mesh
11
作者 Baoli Wang Rui Hu +2 位作者 Dong Ye Yanqiao Pan YongAn Huang 《National Science Open》 2025年第2期17-31,共15页
Flexible transparent electrodes(FTEs)have attracted much attention due to their advantages of excellent optical/electrical conductivities and good mechanical fatigue strength.However,their fabrication presents several... Flexible transparent electrodes(FTEs)have attracted much attention due to their advantages of excellent optical/electrical conductivities and good mechanical fatigue strength.However,their fabrication presents several challenges,including fabricating wires with a high aspect ratio and sufficient tensile resistance.In this study,an embedded Ag/Cu metal-mesh FTE with a high figure of merit 24,708(sheet resistance 0.08Ω/sq and 83.4%optical transmittance)is fabricated through the proposed method called self-confined electrohydrodynamic printing and selective electroplating of Cu.This method employs structured surfaces and patterned hydrophilic/hydrophobic properties to enable highly controllable deposition of solutions(e.g.,positioning,line width,consistency),allowing the complete filling of imprinted microgrooves with a high aspect ratio of 2(e.g.,4μm width and 8μm depth)with Ag/Cu metal.Moreover,the resulting FTEs demonstrate good resistance stability under repetitive bending and stretching and exhibit excellent performance in flexible transparent heaters and electromagnetic shielding films. 展开更多
关键词 flexible transparent electrodes embedded metal mesh electrohydrodynamic printing stretchable electronics
原文传递
Fabrication of Silver Nanowire Transparent Electrodes at Room Temperature 被引量:40
12
作者 Takehiro Tokuno Masaya Nogi Makoto Karakawa Jinting Jiu Thi Thi Nge Yoshio Aso Katsuaki Suganuma 《Nano Research》 SCIE EI CAS CSCD 2011年第12期1215-1222,共8页
Silver nanowires (AgNWs) surrounded by insulating poly(vinylpyrrolidone) have been synthesized by a polyol process and employed as transparent electrodes. The AgNW transparent electrodes can be fabricated by heatt... Silver nanowires (AgNWs) surrounded by insulating poly(vinylpyrrolidone) have been synthesized by a polyol process and employed as transparent electrodes. The AgNW transparent electrodes can be fabricated by heattreatment at about 200 ℃ which forms connecting junctions between AgNWs. Such a heating process is, however, one of the drawbacks of the fabrication of AgNW electrodes on heat-sensitive substrates. Here it has been demonstrated that the electrical conductivity of AgNW electrodes can be improved by mechanical pressing at 25 MPa for 5 s at room temperature. This simple process results in a low sheet resistance of 8.6 Ω/square and a transparency of 80.0%, equivalent to the properties of the AgNW electrodes heated at 200 ℃. This technique makes it possible to fabricate AgNW transparent electrodes on heat-sensitive substrates. The AgNW electrodes on poly(ethylene terephthalate) films exhibited high stability of their electrical conductivities against the repeated bending test. In addition, the surface roughness of the pressed AgNW electrodes is one-third of that of the heat-treated electrode because the AgNW junctions are mechanically compressed. As a result, an organic solar cell fabricated on the pressed AgNW electrodes exhibited a power conversion as much as those fabricated on indium tin oxide electrodes. These findings enable continuous roll-to-roll processing at room temperature, resulting in relatively simple, inexpensive, and scalable processing that is suitable for forthcoming technologies such as organic solar cells, flexible displays, and touch screens. 展开更多
关键词 Silver nanowire transparent electrode room temperature FLEXIBILITY organic solar cell
原文传递
Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS 被引量:18
13
作者 Celine Mayousse Caroline Celle Alexandre Carella Jean-Pierre Simonato 《Nano Research》 SCIE EI CAS CSCD 2014年第3期315-324,共10页
We demonstrate the hydrothermal synthesis of long copper nanowires based on a simple protocol. We show that the purification of the nanowires is very important and can be achieved easily by wet treatment with glacial ... We demonstrate the hydrothermal synthesis of long copper nanowires based on a simple protocol. We show that the purification of the nanowires is very important and can be achieved easily by wet treatment with glacial acetic acid. Fabrication of random networks of purified copper nanowires leads to flexible transparent electrodes with excellent optoelectronic performances (e.g., 55 Ω/sq. at 94% transparency). The process is carried out at room temperature and no post-treatment is necessary. Hybrid materials with the conductive polymer PEDOT:PSS show similar properties (e.g., 46 Ω/sq, at 93% transparency), with improved mechanical properties. Both electrodes were integrated in capacitive touch sensors. 展开更多
关键词 copper nanowires transparent electrodes PEDOT:PSS touch sensor metallic nanowires
原文传递
Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method 被引量:20
14
作者 Teppei Araki Jinting Jiu +4 位作者 Masaya Nogi Hirotaka Koga Shijo Nagao Tohru Sugahara Katsuaki Suganuma 《Nano Research》 SCIE EI CAS CSCD 2014年第2期236-245,共10页
Transparent electrodes made of silver nanowires (AgNWs) exhibit higher flexibility when compared to those made of tin doped indium oxide (ITO) and are expected to be applied in plastic electronics. However, these ... Transparent electrodes made of silver nanowires (AgNWs) exhibit higher flexibility when compared to those made of tin doped indium oxide (ITO) and are expected to be applied in plastic electronics. However, these transparent electrodes composed of AgNWs show high haze because the wires cause strong light scattering in the visible range. Reduction of the wire diameter has been proposed as a way to weaken light scattering, although there have seldom been any studies focusing on the haze because of the difficulty involved in controlling the wire diameter. In this report, we show that the haze can be easily reduced by increasing the length of AgNWs with a large diameter. Ultra-long (u-long) AgNWs with lengths in the range of 20-100 μm and a maximum length of 230 μm have been successfully synthesized by adjusting the reaction temperature and the stirring speed of a one-step polyol process. Compared to typical AgNWs (with diameter and length of 70 nm and 10 μm, respectively) and ITO, a transparent electrode consisting of u-long AgNWs 91 nm in diameter demonstrated a low haze of 3.4%-1.6% and a low sheet resistance of 24-109 Ω/sq. at a transmittance of 94%-97%. Even when fabricated at room temperature without any post-treatment, the electrodes composed of u-long AgNWs achieved a sheet resistance of 19 Ω/sq, at a transmittance of 80%, which is six orders of magnitude lower than that of typical AgNWs. 展开更多
关键词 ultra-long silver nanowires one-step synthesis transparent electrodes HAZE
原文传递
Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors 被引量:13
15
作者 Ranran Wang Haitao Zhai +4 位作者 Tao Wang Xiao Wang Yin Cheng Liangjing Shi Jing Sun 《Nano Research》 SCIE EI CAS CSCD 2016年第7期2138-2148,共11页
Copper nanowires (Cu NWs) have attracted increasing attention as building blocks for electronics due to their outstanding electrical properties and low cost. However, organic residues and oxide layers ubiquitously e... Copper nanowires (Cu NWs) have attracted increasing attention as building blocks for electronics due to their outstanding electrical properties and low cost. However, organic residues and oxide layers ubiquitously existing on the surface of Cu NWs impede good inter-wire contact. Commonly used methods such as thermal annealing and acid treatment often lead to nanowire damage. Herein, hydrogen plasma treatment at room temperature has been demonstrated to be effective for simultaneous surface cleaning and selective welding of Cu NWs at junctions. Transparent electrodes with excellent optical-electrical performance (19 ff)-sq-1 @ 90% T) and enhanced stability have been fabricated and integrated into organic solar cells. Besides, Cu NW conductors with superior stretchability and cycling stability under stretching speeds of up to 400 mm-min-' can also be produced by the nanowelding process, and the feasibility of their application in stretchable LED circuits has been demonstrated. 展开更多
关键词 PLASMA nanowelding transparent electrode stretchable conductor organic solar cell
原文传递
Transparent Electronic Skin Device Based on Microstructured Silver Nanowire Electrode 被引量:1
16
作者 吕汉白 平鑫宇 +2 位作者 高睿泉 许亮亮 潘力佳 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第5期603-608,I0002,共7页
Transparent, flexible electronic skin holds a wide range of applications in robotics, humanmachine interfaces, artificial intelligence, prosthetics, and health monitoring. Silver nanowire are mechanically flexible and... Transparent, flexible electronic skin holds a wide range of applications in robotics, humanmachine interfaces, artificial intelligence, prosthetics, and health monitoring. Silver nanowire are mechanically flexible and robust, which exhibit great potential in transparent and electricconducting thin film. Herein, we report on a silver-nanowire spray-coating and electrodemicrostructure replicating strategy to construct a transparent, flexible, and sensitive electronic skin device. The electronic skin device shows highly sensitive piezo-capacitance response to pressure. It is found that micropatterning the surface of dielectric layer polyurethane elastomer by replicating from microstructures of natural-existing surfaces such as lotus leaf, silk, and frosted glass can greatly enhance the piezo-capacitance performance of the device. The microstructured pressure sensors based on silver nanowire exhibit good transparency, excellent flexibility, wide pressure detection range (0-150 kPa), and high sensitivity (1.28 kPa-1). 展开更多
关键词 Electronic skin Pressure sensor transparent electrode AgNWs Microstructure replica Polyurethane
在线阅读 下载PDF
Fabrication of sintering-free flexible copper nanowire/ polymer composite transparent electrodes with enhanced chemical and mechanical stability 被引量:6
17
作者 Cho Rong Chu Changsoo Lee +1 位作者 Jahyun Koo Hyuck Mo Lee 《Nano Research》 SCIE EI CAS CSCD 2016年第7期2162-2173,共12页
The thermal decomposition synthesis of long copper nanowires (CuNWs) was achieved by controlling the synthesis parameters. A detailed study was performed to determine the effect of the molar ratio of copper chloride... The thermal decomposition synthesis of long copper nanowires (CuNWs) was achieved by controlling the synthesis parameters. A detailed study was performed to determine the effect of the molar ratio of copper chloride to nickel acetylacetonate, temperature, and stirring rate on the final shape of the products. Transparent electrodes (TEs) were fabricated by wet treatment with acetic acid (AA), without using a sintering process. The low oxidation stability and high surface roughness are the main disadvantages of the CuNW TEs, which limit their applications. In order to overcome these issues, we prepared CuNW/polymer composite TEs by partial embedding of the CuNWs into poly(methyl methacrylate) (PMMA) on poly(ethylene terephthalate) (PET) substrates. The CuNW/PMMA composite TEs exhibit excellent optoelectronic performance (91.3% at 100.7 ff2/sq), low surface roughness (4.6 nm in height), and good mechanical and chemical stability as compared with CuNW TEs. On the basis of these properties, we believe that CuNW-based composite TEs could serve as low-cost materials for a wide range of new optoelectronic devices. 展开更多
关键词 copper nanowires nanowire/polymercomposite transparent electrode chemical stability mechanical stability
原文传递
UV-assisted flash light welding process to fabricate silver nanowire/graphene on a PET substrate for transparent electrodes 被引量:5
18
作者 Wan-Ho Chung Sung-Hyeon Park +1 位作者 Sung-Jun Joo Hak-Sung Kim 《Nano Research》 SCIE EI CAS CSCD 2018年第4期2190-2203,共14页
Graphene oxide and silver nanowires were bar coated onto polyethylene terephthalate (PET) substrates and then welded using an ultraviolet (UV)-assisted flash light irradiation process to achieve both high electric... Graphene oxide and silver nanowires were bar coated onto polyethylene terephthalate (PET) substrates and then welded using an ultraviolet (UV)-assisted flash light irradiation process to achieve both high electrical conductivity and low haze. The irradiation process connected adjacent silver nanowires by welding, while simultaneously reducing the graphene oxide to graphene. This process was performed using a custom W-assisted flash light welding system at room temperature under ambient conditions and was extremely rapid, with processing time of several milliseconds. The effects of varying the weight fractions of the silver nanowires and graphene oxide and of varying the W-assisted flash light welding conditions (light energy and pulse duration) were investigated. The surface morphologies of the welded silver nanowire/graphene films were analyzed using scanning electron microscopy. Optical characterizations, including transmittance and haze measurements, were also conducted using a spectrophotometer. To test their resistance to oxidation, the welded silver nanowire/graphene films were subjected to high temperature in a furnace (100 ℃), and their sheet resistances were measured every hour. The flash light welding process was found to yield silver nanowire/graphene films with high oxidation resistance, high conductivity (14.35 Ω·sq-1), high transmittance (93.46%), and low haze (0.9%). This material showed uniform temperature distribution when applied as a resistive heating film. 展开更多
关键词 silver nanowires graphene oxide transparent electrode flash light welding printed electronics
原文传递
Solution-processable graphene mesh transparent electrodes for organic solar cells 被引量:4
19
作者 Qian Zhang Xiangjian Wan +7 位作者 Fei Xing Lu Huang Guankui Long Ningbo Yi Wang Ni Zhibo Liu Jianguo Tian Yongsheng Chen 《Nano Research》 SCIE EI CAS CSCD 2013年第7期478-484,共7页
Graphene mesh electrodes (GMEs) with good conductivity and transparency have been fabricated by the standard industrial photolithography and 02 plasma etching process using graphene solutions. Organic photovoltaic ... Graphene mesh electrodes (GMEs) with good conductivity and transparency have been fabricated by the standard industrial photolithography and 02 plasma etching process using graphene solutions. Organic photovoltaic (OPV) cells using GMEs as the transparent electrodes with a blend of poly-(3-hexylthiophene) phenyl-C61-butyric acid methyl ester (P3HT/PC61BM) as the active layer have been fabricated and exhibit a power conversion efficiency (PCE) of 2.04%, the highest PCE for solution-processed graphene transparent electrode-based solar cells reported to date. 展开更多
关键词 GRAPHENE transparent electrode PHOTOLITHOGRAPHY mesh electrode organic photovoltaic cells
原文传递
“Reinforced concrete”-like flexible transparent electrode for organic solar cells with high efficiency and mechanical robustness 被引量:3
20
作者 Yang Chen Juanyong Wan +7 位作者 Guiying Xu Xiaoxiao Wu Xinqi Li Yunxiu Shen Fu Yang Xuemei Ou Yaowen Li Yongfang Li 《Science China Chemistry》 SCIE EI CSCD 2022年第6期1164-1172,共9页
Flexible transparent electrodes(FTEs) with robust mechanical stability are crucial for the industrial application of flexible organic solar cells(OSCs). However, their production remains challenging owing to the diffi... Flexible transparent electrodes(FTEs) with robust mechanical stability are crucial for the industrial application of flexible organic solar cells(OSCs). However, their production remains challenging owing to the difficulty in balancing the conductivity,transmittance, and adhesion of FTEs to substrates. Herein, we present the so-called “reinforced concrete” strategy which finetunes the structure of silver nanowires(Ag NWs)-based FTEs with polydopamine(PDA) possessing good adhesion properties and moderate reducibility. The PDA reduces Ag+to form silver nanoparticles(Ag NPs) which grow like “rivets” at the Ag NW junction sites;PDA stabilizes the Ag NW skeleton and improves the adhesion between the Ag NWs and polyethylene terephthalate(PET) substrate and interface layer. The obtained Ag NW:PDA:Ag NP FTE exhibits excellent optoelectronic properties and high mechanical stability. The resulting flexible OSCs exhibit 17.07% efficiency, high flexibility during 10,000 bending test cycles, and robust peeling stability. In addition, this “reinforced concrete”-like FTE provides great advantages for the production of large-area flexible OSCs, thereby paving a new way toward their commercial application. 展开更多
关键词 flexible organic solar cells flexible transparent electrodes silver nanowires POLYDOPAMINE mechanical stability
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部