期刊文献+
共找到1,241篇文章
< 1 2 63 >
每页显示 20 50 100
Solution‑Processed Thin Film Transparent Photovoltaics:Present Challenges and Future Development
1
作者 Tianle Liu Munerah M.S.Almutairi +5 位作者 Jie Ma Aisling Stewart Zhaohui Xing Mengxia Liu Bo Hou Yuljae Cho 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期566-600,共35页
Electrical energy is essential for modern society to sustain economic growths.The soaring demand for the electrical energy,together with an awareness of the environmental impact of fossil fuels,has been driving a shif... Electrical energy is essential for modern society to sustain economic growths.The soaring demand for the electrical energy,together with an awareness of the environmental impact of fossil fuels,has been driving a shift towards the utilization of solar energy.However,traditional solar energy solutions often require extensive spaces for a panel installation,limiting their practicality in a dense urban environment.To overcome the spatial constraint,researchers have developed transparent photovoltaics(TPV),enabling windows and facades in vehicles and buildings to generate electric energy.Current TPV advancements are focused on improving both transparency and power output to rival commercially available silicon solar panels.In this review,we first briefly introduce wavelength-and non-wavelengthselective strategies to achieve transparency.Figures of merit and theoretical limits of TPVs are discussed to comprehensively understand the status of current TPV technology.Then we highlight recent progress in different types of TPVs,with a particular focus on solution-processed thin-film photovoltaics(PVs),including colloidal quantum dot PVs,metal halide perovskite PVs and organic PVs.The applications of TPVs are also reviewed,with emphasis on agrivoltaics,smart windows and facades.Finally,current challenges and future opportunities in TPV research are pointed out. 展开更多
关键词 transparent semiconductors Solution-processable transparent solar cell Emerging solar cell materials Buildingintegrated photovoltaics
在线阅读 下载PDF
Ultra‑Transparent and Multifunctional IZVO Mesh Electrodes for Next‑Generation Flexible Optoelectronics
2
作者 Kiran A.Nirmal Tukaram D.Dongale +3 位作者 Atul C.Khot Chenjie Yao Nahyun Kim Tae Geun Kim 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期293-309,共17页
Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,a... Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,and soft robotics.Conducting meshes represent a promising alternative to traditional,brittle,metal oxide conductors due to their high electrical conductivity,optical transparency,and enhanced mechanical flexibility.In this paper,we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using selfcracking-assisted templates.Using this method,we produced an electrode with ultra-transparency(97.39%),high conductance(Rs=21.24Ωsq^(−1)),elevated work function(5.16 eV),and good mechanical stability.We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics,organic light-emitting diodes,and flexible transparent memristor devices for neuromorphic computing,resulting in exceptional device performance.In addition,the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility,rendering them a promising option for application in flexible optoelectronics. 展开更多
关键词 Self-cracking template Vanadium-doped indium zinc oxide mesh Organic solar cells Organic light-emitting diodes Flexible transparent memory
在线阅读 下载PDF
Yb:Sc_(2)O_(3) Transparent Ceramics Fabricated from Co-precipitated Nano-powders:Microstructure and Optical Property
3
作者 YE Junhao ZHOU Zhenzhen +8 位作者 HU Chen WANG Yanbin JING Yanqiu LI Tingsong CHENG Ziqiu WU Junlin IVANOV Maxim HRENIAK Dariusz LI Jiang 《无机材料学报》 北大核心 2025年第2期215-224,共10页
Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2... Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment. 展开更多
关键词 NANO-POWDER Yb:Sc_(2)O_(3) transparent ceramic hot isostatic pressing optical property
在线阅读 下载PDF
A Transparent Polymer‑Composite Film for Window Energy Conservation
4
作者 Xianhu Liu Haoyu Zhang +3 位作者 Yamin Pan Jun Ma Chuntai Liu Changyu Shen 《Nano-Micro Letters》 2025年第7期1-11,共11页
As living standards improve,the energy consumption for regulating indoor temperature keeps increasing.Windows,in particular,enhance indoor brightness but also lead to increased energy loss,especially in sunny weather.... As living standards improve,the energy consumption for regulating indoor temperature keeps increasing.Windows,in particular,enhance indoor brightness but also lead to increased energy loss,especially in sunny weather.Developing a product that can maintain indoor brightness while reducing energy consumption is a challenge.We developed a facile,spectrally selective transparent ultrahigh-molecular-weight polyethylene composite film to address this trade-off.It is based on a blend of antimony-doped tin oxide and then spin-coated hydrophobic fumed silica,achieving a high visible light transmittance(>70%)and high shielding rates for ultraviolet(>90%)and near-infrared(>70%).When applied to the acrylic window of containers and placed outside,this film can cause a 10℃ temperature drop compared to a pure polymer film.Moreover,in building energy simulations,the annual energy savings could be between 14.1%~31.9%per year.The development of energy-efficient and eco-friendly transparent films is crucial for reducing energy consumption and promoting sustainability in the window environment. 展开更多
关键词 Energy conservation POLYMER transparent films COMPOSITE Radiative cooling
在线阅读 下载PDF
High-work-function transparent electrode with an enhanced air-stable conductivity based on AgNiCu core-shell nanowires for Schottky photodiode
5
作者 Tingting Yan Wei Yang +1 位作者 Limin Wu Xiaosheng Fang 《Journal of Materials Science & Technology》 2025年第6期95-102,共8页
Silver nanowires(Ag NWs)have promising application potential in electronic displays because of their superior flexibility and transparency.Doping Ni in Ag NWs has proven to be an effective strategy to im-prove its wor... Silver nanowires(Ag NWs)have promising application potential in electronic displays because of their superior flexibility and transparency.Doping Ni in Ag NWs has proven to be an effective strategy to im-prove its work function.However,AgNi NWs-based electrodes suffer from poor electrical conductivity under air exposure due to the low-conductivity NiO generated on its surface.Here,Cu was further doped in AgNi NWs to form AgNiCu NWs and regulate its surface oxide under long-term air exposure.Finally,it is demonstrated that the conductivity of AgNiCu NWs can acquire an improved tolerable tempera-ture(over 240℃)and prolonged high-temperature tolerance time(over 150 min)by finely regulating the doping content Cu,indicating an enhanced air-stable conductivity.The optimized AgNiCu NWs also achieve superior transparent conductivity as pure Ag NWs and high work function as AgNi NWs,which has been successfully applied in constructing an n-type photodiode with an effective rectification effect. 展开更多
关键词 Mental nanowires Cu-doping Air-stable conductivity transparent electrode PHOTODIODE
原文传递
Focal volume optics for composite structuring in transparent solids
6
作者 Bo Zhang Zhuo Wang +3 位作者 Dezhi Tan Min Gu Yuanzheng Yue Jianrong Qiu 《International Journal of Extreme Manufacturing》 2025年第1期357-366,共10页
Achieving high-level integration of composite micro-nano structures with different structural characteristics through a minimalist and universal process has long been the goal pursued by advanced manufacturing researc... Achieving high-level integration of composite micro-nano structures with different structural characteristics through a minimalist and universal process has long been the goal pursued by advanced manufacturing research but is rarely explored due to the absence of instructive mechanisms.Here,we revealed a controllable ultrafast laser-induced focal volume light field and experimentally succeeded in highly efficient one-step composite structuring in multiple transparent solids.A pair of spatially coupled twin periodic structures reflecting light distribution in the focal volume are simultaneously created and independently tuned by engineering ultrafast laser-matter interaction.We demonstrated that the generated composite micro-nano structures are applicable to multi-dimensional information integration,nonlinear diffractive elements,and multi-functional optical modulation.This work presents the experimental verification of highly universal all-optical fabrication of composite micro-nano structures with independent controllability in multiple degrees of freedom,expands the current cognition of ultrafast laser-based material modification in transparent solids,and establishes a new scientific aspect of strong-field optics,namely,focal volume optics for composite structuring transparent solids. 展开更多
关键词 ultrafast laser focal volume light field composite structuring transparent solids advanced manufacturing
在线阅读 下载PDF
Broadband Optically Transparent Absorber and Multi-Band Stealth Based on Organic Metasurface
7
作者 Chuwen Lan Yutong Gao +4 位作者 Zehua Gao Hongye Wang Ke Bi Ming Lei Guoan Zhao 《Chinese Physics Letters》 2025年第5期93-99,共7页
Optically transparent microwave absorbers and multi-band stealth have extensive potential applications in military defense and wireless communication fields, and thus have attracted considerable attention. So far,most... Optically transparent microwave absorbers and multi-band stealth have extensive potential applications in military defense and wireless communication fields, and thus have attracted considerable attention. So far,most related work is based on inorganic transparent conductive metasurfaces. In this paper, we proposed and experimentally demonstrated a flexible, broadband and optically transparent microwave absorber using an organic metasurface. The metasurface absorber is composed of a sandwich structure, in which electric resonances and magnetic resonances are induced resulting in broadband absorption. A spraying process was developed to prepare this metasurface absorber. Both simulations and experiment show that this metasurface has broadband microwave absorption and good optical transparency. We further found that by using a multi-layer structure, visible, radar,and infrared stealth(multi-band stealth) can be achieved simultaneously. With the advantages of excellent foldability and low cost, the proposed metasurfaces may have applications in military and wireless communication fields. 展开更多
关键词 microwave absorber broadband microwave absorption organic metasurface metasurface absorber microwave absorbers inorganic transparent conductive metasurfaces military defense sandwich structure
原文传递
Electric field oriented deposition manufacturing of low loss,high gain flexible transparent antenna utilizing the skin effect
8
作者 Houchao Zhang Maopeng Jin +10 位作者 Xiaoyang Zhu Youchao Zhang Yansheng Li Shuo Chen Yanjun Bai Hongke Li Zhenghao Li Rui Wang Yuansheng Zhu Fei Wang Hongbo Lan 《International Journal of Extreme Manufacturing》 2025年第5期358-371,共14页
Flexible transparent antennas(FTAs)are widely used in wireless transmission fields,and their technological iterations are accelerating.However,the high losses caused by materials and structures limit the development o... Flexible transparent antennas(FTAs)are widely used in wireless transmission fields,and their technological iterations are accelerating.However,the high losses caused by materials and structures limit the development of FTAs with both high light transmission and high gain,and the rapid iteration rate demands greater process flexibility,which makes it difficult for existing technologies to achieve both demands.Here,we design a novel shell-core structure composite metal mesh(CMM)FTA to achieve extremely low skin depth loss and ohmic loss using skin effect and report a novel hybrid additive manufacturing method based on electric field oriented deposition to achieve efficient and flexible manufacturing of the unique Ag/Cu core-shell structure CMM FTA.The typical sample has a light transmittance of 80%(including substrate)when the sheet resistance is 0.29Ω·sq^(-1),and has excellent bending and torsion resistance.The peak gain in the working band is as high as 5.22 dB,and the efficiency is 80%,which is close to the performance of the opaque Cu patch antenna.It also realizes smooth and stable real-time wireless transmission under bending and long-distance conditions.This method addresses the shortcomings of FTAs,namely their high cost,low manufacturing efficiency,and low performance,especially in the rapid iterative development of antennas. 展开更多
关键词 flexible transparent antenna composite metal mesh electric field oriented deposition skin effect wireless communication
在线阅读 下载PDF
Distributed waveform generation and digitization system based on transparent transmission
9
作者 Lei Lang Kai Chen +2 位作者 Dou Zhu Jing Wang Yi-Chen Yang 《Nuclear Science and Techniques》 2025年第3期60-68,共9页
Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which... Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which interfaces with various data converters and exchanges data with a backend central processor.However,the streaming readout architecture has become a new paradigm for several experiments benefiting from advancements in data transmission and computing technologies.This paper proposes a scalable distributed waveform generation and digitization system that utilizes fiber optical connections for data transmission between frontend nodes and a central processor.By utilizing transparent transmission on top of the data link layer,the clock and data ports of the converters in the frontend nodes are directly mapped to the FPGA firmware at the backend.This streaming readout architecture reduces the complexity of frontend development and maintains the data conversion in proximity to the detector.Each frontend node uses a local clock for waveform digitization.To translate the timing information of events in each channel into the system clock domain within the backend central processing FPGA,a novel method is proposed and evaluated using a demonstrator system. 展开更多
关键词 transparent transmission Waveform generation Waveform digitization Distributed system
在线阅读 下载PDF
Undrained cyclic simple shear characteristics of transparent sand manufactured by fused quartz
10
作者 ZHAO Jin-qiao OU Qiang +4 位作者 JIANG Chun-yong DING Xuan-ming ZHOU Hang YANG Chang-wei DENG Wei-ting 《Journal of Central South University》 2025年第9期3427-3446,共20页
Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear ... Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear tests were conducted on the saturated transparent sand composed of fused quartz and refractive index-matched oil mixture. The results reveal that an increase in the initial shear stress ratio significantly affects the shape of the hysteresis loop, particularly resulting in more pronounced asymmetrical accumulation. Factors such as lower relative density, higher cyclic stress ratios and higher initial shear stress ratio have been shown to accelerate cyclic deformation, cyclic pore water pressure and stiffness degradation. The cyclic liquefaction resistance curves decrease as the initial shear stress ratio increases or as relative density decreases. Booker model and power law function model were applied to predict the pore water pressure for transparent sand. Both models yielded excellent fits for their respective condition, indicating a similar dynamic liquefaction pattern to that of natural sands. Finally, transparent sand displays similar dynamic characteristics in terms of cyclic liquefaction resistance and Kα correction factor. These comparisons indicate that transparent sand can serve as an effective means to mimic many natural sands in dynamic model tests. 展开更多
关键词 transparent sand fused quartz undrained cyclic simple shear tests dynamic characteristics initial shear stress
在线阅读 下载PDF
Ultrafast laser welding of transparent materials:from principles to applications
11
作者 Xianshi Jia Jinlin Luo +6 位作者 Kai Li Cong Wang Zhou Li Mengmeng Wang Zhengyi Jiang Vadim P Veiko Ji’an Duan 《International Journal of Extreme Manufacturing》 2025年第3期2-47,共46页
The ultrafast laser-matter interaction is explored to induce new pioneering principles and technologies into the realms of fundamental science and industrial production.The local thermal melting and connection propert... The ultrafast laser-matter interaction is explored to induce new pioneering principles and technologies into the realms of fundamental science and industrial production.The local thermal melting and connection properties of the ultrafast laser welding technology offer a novel method for welding of diverse transparent materials,thus having wide range of potential applications in aerospace,opto-mechanical systems,sensors,microfluidic,optics,etc.In this comprehensive review,tuning the transient electron activation processes,high-rate laser energy deposition,and dynamic evolution of plasma morphology by the temporal/spatial shaping methods have been demonstrated to facilitate the transition from conventional homogeneous transparent material welding to the more intricate realm of transparent/metal heterogeneous material welding.The welding strength and stability are also improvable through the implementation of real-time,in-situ monitoring techniques and the prompt diagnosis of welding defects.The principles of ultrafast laser welding,bottleneck problems in the welding,novel welding methods,advances in welding performance,in-situ monitoring and diagnosis,and various applications are reviewed.Finally,we offer a forward-looking perspective on the fundamental challenges within the field of ultrafast laser welding and identify key areas for future research,underscoring the imperative need for ongoing innovation and exploration. 展开更多
关键词 ultrafast laser WELDING transparent materials spatial/temporal shaping
在线阅读 下载PDF
Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes 被引量:2
12
作者 Jianmin Yang Li Chang +2 位作者 Xiqi Zhang Ziquan Cao Lei Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期441-455,共15页
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr... The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials. 展开更多
关键词 Ionic liquids ASSEMBLY Silver nanowires MXene nanosheets Flexible transparent electrodes
在线阅读 下载PDF
Flexible, Transparent and Conductive Metal Mesh Films with Ultra‑High FoM for Stretchable Heating and Electromagnetic Interference Shielding 被引量:2
13
作者 Zibo Chen Shaodian Yang +9 位作者 Junhua Huang Yifan Gu Weibo Huang Shaoyong Liu Zhiqiang Lin Zhiping Zeng Yougen Hu Zimin Chen Boru Yang Xuchun Gui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期201-213,共13页
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan... Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications. 展开更多
关键词 Metal mesh transparent conductive film Stretchable heater Electromagnetic interference shielding
在线阅读 下载PDF
Diphylleia Grayi-Inspired Intelligent Temperature-Responsive Transparent Nanofiber Membranes 被引量:1
14
作者 Cengceng Zhao Gaohui Liu +6 位作者 Yanyan Lin Xueqin Li Na Meng Xianfeng Wang Shaoju Fu Jianyong Yu Bin Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期67-78,共12页
Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a ... Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices. 展开更多
关键词 BIOMIMETIC transparent Nanofibrous membrane Temperature response Phase change materials
在线阅读 下载PDF
Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling 被引量:1
15
作者 Meng Lian Wei Ding +5 位作者 Song Liu Yufeng Wang Tianyi Zhu Yue-EMiao Chao Zhang Tianxi Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期231-243,共13页
The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fab... The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fabricated through filtration-induced delaminated gelation and ambient drying.The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber(FCNF)at the solid-liquid interface between the filter and the filtrate during filtration,resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding.By exchanging the solvents from water to hexane,the hydrogen bonding in the FCNF hydrogel is further enhanced,enabling the formation of the DAF with intra-layer mesopores upon ambient drying.The resulting aerogel film is lightweight and ultra-flexible,which pos-sesses desirable properties of high visible-light transmittance(91.0%),low thermal conductivity(33 mW m^(-1) K^(-1)),and high atmospheric-window emissivity(90.1%).Furthermore,the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups,enhancing its durability and UV resistance.Consequently,the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting,thermal insulation,and daytime radiative cooling under direct sunlight.Significantly,the enclosed space protected by the DAF exhibits a temperature reduction of 2.6℃ compared to that shielded by conventional architectural glass. 展开更多
关键词 transparent aerogel Cellulose nanofiber aerogel Delaminated gelation Thermal insulation Passive daytime radiative cooling
在线阅读 下载PDF
Transparent cap adjusted the stent placed for stenosis after endoscopic injection of esophageal varices:A case report 被引量:1
16
作者 Fu-Long Zhang Jing Xu +8 位作者 Yuan-Dong Zhu Qian-Neng Wu Yan Shi Lei Fang Dan Zhou Hai Wang Chao-JunHuang Chun-Hua Zhou Qun Zhu 《World Journal of Clinical Cases》 SCIE 2024年第15期2614-2620,共7页
BACKGROUND The stent embedded in the esophageal mucosa is one of the complications after stenting for esophageal stricture.We present a case of stent adjustment with the aid of a transparent cap after endoscopic injec... BACKGROUND The stent embedded in the esophageal mucosa is one of the complications after stenting for esophageal stricture.We present a case of stent adjustment with the aid of a transparent cap after endoscopic injection of an esophageal varices stent.CASE SUMMARY A 61-year-old male patient came to the hospital with discomfort of the chest after the stent implanted for the stenosis because of endoscopic injection of esophageal varices.The gastroscopy was performed,and the stent embedded into the esophageal mucosa.At first,we pulled the recycling line for shrinking the stent,however,the mucosa could not be removed from the stent.Then a forceps was performed to remove the mucosa in the stent,nevertheless,the bleeding form the mucosa was obvious.And then,we used a transparent cap to scrape the mucosa along the stent,and the mucosa were removed successfully without bleeding.CONCLUSION A transparent cap helps gastroscopy to remove the mucosa embedded in the stent after endoscopic injection of the esophageal varices stent. 展开更多
关键词 STENT transparent cap STENOSIS Endoscopic injection Esophageal varices Case report
暂未订购
Transparent electromagnetic interference shielding materials using MXene 被引量:2
17
作者 Yanli Deng Yaqing Chen +8 位作者 Wei Liu Lili Wu Zhou Wang Dan Xiao Decheng Meng Xingguo Jiang Jiurong Liu Zhihui Zeng Na Wu 《Carbon Energy》 CSCD 2024年第11期322-345,共24页
With the rapid advancement of terahertz technologies,electromagnetic interference(EMI)shielding materials are needed to ensure secure electromagnetic environments.Enormous efforts have been devoted to achieving highly... With the rapid advancement of terahertz technologies,electromagnetic interference(EMI)shielding materials are needed to ensure secure electromagnetic environments.Enormous efforts have been devoted to achieving highly efficient EMI shielding films by enhancing flexibility,lightweight,mechanical robustness,and high shielding efficiency.However,the consideration of the optical properties of these shielding materials is still in its infancy.By incorporating transparency,visual information from protected systems can be preserved for monitoring interior working conditions,and the optical imperceptibility allows nonoffensive and easy cover of shielding materials for both device and biology.There are many materials that can be applied to transparent EMI shields.In particular,two-dimensional transition metal carbide/nitrides(MXenes),possessing the advantages of superior conductivity,optical properties,favorable flexibility,and facile processibility,have become a great candidate.This work reviews the recent research on developing highly efficient and optically transparent EMI shields in a comprehensive way.Materials from MXenes,indium tin oxide,metal,carbon,and conductive polymers are covered,with a focus on the employment of MXene-based composites in transparent EMI shielding.The prospects and challenges for the future development of MXene-based transparent EMI shields are discussed.This work aims to promote the development of high-performance,optically transparent EMI shields for broader applications by leveraging MXenes. 展开更多
关键词 electromagnetic waves transition metal carbides/nitrides transparent electromagnetic shielding materials
在线阅读 下载PDF
Structural and Luminescent Properties of Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)Green-Emitting Transparent Ceramic Phosphor
18
作者 郝留成 MIAO Xiaojun +4 位作者 LI Kai ZHONG Jianying 涂兵田 YANG Zhangfu 王皓 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期533-540,共8页
A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sint... A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes. 展开更多
关键词 transparent ceramic phosphor green emission MGALON PHOTOLUMINESCENCE
原文传递
Chromosome-level genome assembly of the glass catfish(Kryptopterus vitreolus)reveals molecular clues to its transparent phenotype
19
作者 Chao Bian Rui-Han Li +7 位作者 Zhi-Qiang Ruan Wei-Ting Chen Yu Huang Li-Yue Liu Hong-Ling Zhou Cheong-Meng Chong Xi-Dong Mu Qiong Shi 《Zoological Research》 SCIE CSCD 2024年第5期1027-1036,共10页
Glass catfish(Kryptopterus vitreolus)are notable in the aquarium trade for their highly transparent body pattern.This transparency is due to the loss of most reflective iridophores and light-absorbing melanophores in ... Glass catfish(Kryptopterus vitreolus)are notable in the aquarium trade for their highly transparent body pattern.This transparency is due to the loss of most reflective iridophores and light-absorbing melanophores in the main body,although certain black and silver pigments remain in the face and head.To date,however,the molecular mechanisms underlying this transparent phenotype remain largely unknown.To explore the genetic basis of this transparency,we constructed a chromosome-level haplotypic genome assembly for the glass catfish,encompassing 32 chromosomes and 23344 protein-coding genes,using PacBio and Hi-C sequencing technologies and standard assembly and annotation pipelines.Analysis revealed a premature stop codon in the putative albinism-related tyrp1b gene,encoding tyrosinase-related protein 1,rendering it a nonfunctional pseudogene.Notably,a synteny comparison with over 30 other fish species identified the loss of the endothelin-3(edn3b)gene in the glass catfish genome.To investigate the role of edn3b,we generated edn3b^(−/−)mutant zebrafish,which exhibited a remarkable reduction in black pigments in body surface stripes compared to wild-type zebrafish.These findings indicate that edn3b loss contributes to the transparent phenotype of the glass catfish.Our high-quality chromosome-scale genome assembly and identification of key genes provide important molecular insights into the transparent phenotype of glass catfish.These findings not only enhance our understanding of the molecular mechanisms underlying transparency in glass catfish,but also offer a valuable genetic resource for further research on pigmentation in various animal species. 展开更多
关键词 Glass catfish Whole-genome sequencing edn3b−/−mutant transparent phenotype
在线阅读 下载PDF
Properties of Ultra-low Thermal Expansion LAS Transparent Glass-ceramics Prepared by Spodumene
20
作者 何峰 何子君 +2 位作者 ZHOU Zhiqiang TIAN Yingliang ZHAO Zhiyong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期541-550,共10页
The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of... The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of ZrO_(2)for TiO_(2)is not conductive to precipitate𝛽β-quartz solid solution phase,but can improve the transparency and flexural strength of glass-ceramics.And the glass-ceramic with the highest visible light transmittance(87%)and flexural strength(231.80 MPa)exhibits an ultra-low thermal expansion of-0.028×10^(-7)K^(-1)in the region of 30-700℃. 展开更多
关键词 ultra-low thermal expansion LAS transparent glass-ceramics substitution of ZrO_(2)for TiO_(2) spodumene mineral
原文传递
上一页 1 2 63 下一页 到第
使用帮助 返回顶部