BACKGROUND Carriers of chromosomal balanced translocations are often physically healthy with no obvious developmental problems.However,potential chromosomal imbalance in their gametes can lead to implantation failure,...BACKGROUND Carriers of chromosomal balanced translocations are often physically healthy with no obvious developmental problems.However,potential chromosomal imbalance in their gametes can lead to implantation failure,miscarriage,or the birth of a child with a chromosomal abnormality.CASE SUMMARY We report six cases of chromosomal translocations involving three families,including the specific Robertson(Roche)translocation.Case 1:The karyotype of the proband was 46,XX,t(18;19)(q22;p12).Case 2:Interventional prenatal diagnosis at 18 weeks of gestation confirmed that the karyotype of the fetus was 46,XY,t(18;19)(q22;p12).Case 3:The karyotype of the proband was 46,XY,t(5;18)(p13;p11).Case 4:Interventional prenatal diagnosis at 14+6 weeks confirmed that the karyotype of the fetus was 46,XX,der(18)t(5;18)(p13;p11)pat.Case 5:The karyotype of the proband was 45,XY,der(14;22)(q10;q10).Case 6:Interventional prenatal diagnosis at 19+4 weeks confirmed that the karyotype of the fetus was 45,XX,rob(14;22)(q10;q10).CONCLUSION Carriers of chromosomal translocations have a high risk of adverse pregnancy outcomes,though they can still have normal offspring.This report on six cases of chromosomal translocations from three families could serve as a reference for future prenatal diagnosis of chromosomal translocations and decision-making on whether to continue the pregnancy.展开更多
Phosphorus(P)is an essential nutrient for crop growth,making it important for maintaining food security as the global population continues to increase.Plants acquire P primarily via the uptake of inorganic phosphate(P...Phosphorus(P)is an essential nutrient for crop growth,making it important for maintaining food security as the global population continues to increase.Plants acquire P primarily via the uptake of inorganic phosphate(Pi)in soil through their roots.Pi,which is usually sequestered in soils,is not easily absorbed by plants and represses plant growth.Plants have developed a series of mechanisms to cope with P deficiency.Moreover,P fertilizer applications are critical for maximizing crop yield.Maize is a major cereal crop cultivated worldwide.Increasing its P-use efficiency is important for optimizing maize production.Over the past two decades,considerable progresses have been achieved in studies aimed at adapting maize varieties to changes in environmental P supply.Here,we present an overview of the morphological,physiological,and molecular mechanisms involved in P acquisition,translocation,and redistribution in maize and combine the advances in Arabidopsis and rice,to better elucidate the progress of P nutrition.Additionally,we summarize the correlation between P and abiotic stress responses.Clarifying the mechanisms relevant to improving P absorption and use in maize can guide future research on sustainable agriculture.展开更多
Wheat leaf rust,caused by Puccinia triticina(Pt),is one of the most devastating diseases in common wheat(Triticum aestivum L.)and can lead to heavy yield loss(Chai et al.2020).Leaf rust can result in 50%yield loss dur...Wheat leaf rust,caused by Puccinia triticina(Pt),is one of the most devastating diseases in common wheat(Triticum aestivum L.)and can lead to heavy yield loss(Chai et al.2020).Leaf rust can result in 50%yield loss during epidemic years(Huerta-Espino et al.2011;Gebrewahid et al.2020;Kolomiets et al.2021).Breeding varieties resistant to leaf rust have been recognized as the most effective and economical method to mitigate wheat losses caused by Pt.The narrow genetic basis of wheat constrains the number of cultivars resistant to leaf rust(Jin et al.2021).展开更多
Soil and foliar applications of silicon(Si)and selenium(Se)fertilizers can inhibit the transfer of heavy metals from the soil to crops.However,it remains unclear how Si and Se affect the bioavailability of cadmium(Cd)...Soil and foliar applications of silicon(Si)and selenium(Se)fertilizers can inhibit the transfer of heavy metals from the soil to crops.However,it remains unclear how Si and Se affect the bioavailability of cadmium(Cd)and lead(Pb)in soil and thereby their transfer to rice in Cd and Pb-polluted fields.In this study,seven treatments were set up in a field experiment conducted in a nonferrous metal mining area in Tongling City,Anhui Province,China:no Si/Se fertilization control(CK),basal Si/Se fertilization(Si-1/Se-1),basal and topdressing Si/Se fertilization(Si-2/Se-2),and basal,topdressing,and foliar Si/Se fertilization(Si-3/Se-3).The results indicated that compared to CK,rice yield increased by 3.94%-14.56%in the other treatments,with the most significant increase observed in Si-3 and Se-3.Additionally,the Cd content in brown rice decreased by 15.42%-51.55%,while Pb content decreased by 16.49%-47.18%.In all treatments except Si-1,both metal contents decreased to below the limits specified in China's food safety standard(GB 2762-2022).Furthermore,they impeded the translocation of these metals to the brown rice,thereby effectively diminishing metal accumulation in rice grain.The effect of Se fertilizer was better than Si fertilizer in decreasing the bioconcentration factors of Cd and Pb and inhibiting their translocation to brown rice.At the same time,the applications of Si and Se increased the Si and Se contents of rice aboveground parts,respectively,and the Se content of brown rice in Se-3 increased by 77.56%,meeting the Se enrichment standard(GB/T 22499-2008).The contents of diethylenetriamine pentaacetic acid-extractable Cd and Pb in soil decreased in all Si/Se treatments by 25.53%and 22.37%in Se-3,respectively.All Si/Se treatments reduced the acid-exchangeable and reducible Cd and Pb in soil and transformed them into the more stable oxidizable and residual fractions.This study revealed that the bioavailability of Cd and Pb in soil and their translocation to brown rice were significantly reduced by the basal application combined with topdressing and foliar application of Si and Se fertilizers.展开更多
Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition.The gut microbiome,highly responsive to external environment...Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition.The gut microbiome,highly responsive to external environmental factors,plays a crucial role in host adaptability and may facilitate local adaptation within species.Concurrently,the genetic background of host populations influences gut microbiome composition,highlighting the bidirectional relationship between host and microbiome.Despite this,our understanding of gut microbiome plasticity and its role in host adaptability remains limited,particularly in reptiles.To clarify this issue,we conducted a reciprocal translocation experiment with gravid females of the Qinghai toad-headed lizards(Phrynocephalus vlangalii)between high-altitude(2?600 m a.s.l.)and superhigh-altitude(3?600 m a.s.l.)environments on Dangjin Mountain of the Qinghai-Xizang Plateau,China.One year later,we assessed the phenotypes and gut microbiomes of their offspring.Results revealed significant plasticity in gut microbiome diversity and structure in response to contrasting elevations.Highaltitude conditions increased diversity,and maternal effects appeared to enable high-altitude lizards to maintain elevated diversity when exposed to superhigh-altitude environments.Additionally,superhigh-altitude lizards displayed distinct gut microbiome structures with notable host specificity,potentially linked to their lower growth rates.Overall,these findings underscore the importance of the gut microbiome in facilitating reptilian adaptation to rapid environmental changes across altitudinal gradients.Furthermore,this study provides critical insights into microbial mechanisms underpinning local adaptation and adaptative plasticity,offering a foundation for future research on host-microbiome interactions in evolutionary and ecological contexts.展开更多
In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing a...In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing and strategies in mitigating Cd-stressed rice,the precise mechanisms underlying the health restoration of Cd-toxic rice and the assurance of grain safety remain elusive.This study explored Cd translocation and detoxification in the shoots of rice regulated by various Si fertilization regimes:Si(T)(all Si added before transplanting),Si(J)(all Si added at jointing),and Si(TJ)(half Si added both before transplanting and at jointing).The findings revealed that the regime of Si(TJ)was more beneficial to rice health and grain safety than Si(T)and Si(J).The osmotic regulators such as proline,soluble sugars,and soluble proteins were significantly boosted by Si(TJ)compared to other Si treatments,and which enhanced membrane integrity,balanced intracellular pH,and increased Cd tolerance of rice.Furthermore,Si(TJ)was more effective than Si(T)and Si(J)on the Cd sequestration in the cell wall,Cd bio-passivation,and the down-regulated expression of the Cd transport genes.The concentrations of Cd in the xylem and phloem treated with Si(TJ)were reduced significantly.Additionally,Si(TJ)facilitated much more Cd bound with the outer layer proteins of grains,and promoted Cd chelation and complexation by phytic acid,phenolics,and flavonoids.Overall,Si(TJ)outperformed Si(T)and Si(J)in harmonizing the phycological processes,inhibiting Cd translocation,and enhancing Cd detoxification in rice plant.Thereby the split Si application strategy offers potential for reducing Cd toxicity in rice grain.展开更多
Mitochondrial damage is closely related to the occurrence of many diseases.However,accurate monitoring and reporting of mitochondrial damage are not easy.Here,we developed a small molecule fluorescent probe named CB-C...Mitochondrial damage is closely related to the occurrence of many diseases.However,accurate monitoring and reporting of mitochondrial damage are not easy.Here,we developed a small molecule fluorescent probe named CB-Cl,which has splendid spectral properties(large Stokes shift,strong affinity for RNA,etc.)and excellent targeting ability to intracellular mitochondria.After mitochondria were damaged by external stimuli,CB-Cl would light up the nucleolus as a signal reporter.The cascade imaging of mitochondria and nucleolus using CB-Cl can monitor and visualize the mitochondrial status in living cells in real-time.Based on the above advantages,the probe CB-Cl has reference significance for the related research of mitochondrial damage and the prevention and treatment of related diseases.展开更多
[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six differen...[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six different treatment were set up:blank control(CK1),slow-release urea 75 kg/hm^(2)(C1),slow-release urea 150 kg/hm^(2)(C2),slow-release urea 225 kg/hm^(2)(C3),slow-release urea 300 kg/hm^(2)(C4)and ordinary urea 300 kg/hm^(2)(CK2),to study the change law of dry matter accumulation and translocation in summer maize.[Results]Treatment slow-release urea 225 kg/hm^(2)(C4)showed summer maize yield,dry matter translocation between organs,grain contribution rate and proportion of grain dry matter in the full ripe stage higher than other treatments.Considering the weight loss and cost factors,slow-release urea 225 kg/hm^(2)(C3)could be recommended as the fertilizing amount for summer maize.[Conclusions]This study provides theoretical reference for rational selection of fertilizers for reducing fertilizer application and increasing fertilizer efficiency,and for production of summer maize in Shajiang black soil region.展开更多
The tree ring has been regarded as an emerging archive to reconstruct historical atmospheric mercury(Hg)trends,but with the large knowledge gaps in the reliability.In this study,we comprehensively evaluated the Hg sou...The tree ring has been regarded as an emerging archive to reconstruct historical atmospheric mercury(Hg)trends,but with the large knowledge gaps in the reliability.In this study,we comprehensively evaluated the Hg source,radial translocation and age effect of Masson pine(Pinus massoniana)tree ring at Mt.Jinyun in Chongqing,to assess the suitability of such tree ring as the archive of atmospheric Hg.Results showed that distinct variabilities among Masson pine tree-ring Hg concentration profiles.The Hg concentration significantly increased along with stem height(P<0.05),indicating the Hg in tree rings mainly derived from foliage uptake atmospheric Hg.We found a distinct age effect that the tree ring of young trees had the higher Hg concentration.Besides,we used the advection-diffusion model to demonstrate how Hg concentration shifted by the advection or/and diffusion in tree rings.The modeling results showed that the advection induced radial translocation during the young growth period of tree was a plausible mechanism to result in the tree-ring Hg record largely different from the trend of anthropogenic Hg emissions in Chongqing.We finally suggest that in further Hg dendrochemistry,better discarding the tree-ring Hg profile of the young growth period to reduce impacts of the radial translocation and age effect.展开更多
Nanopore sequencing harnesses changes in ionic current as nucleotides traverse a nanopore,enabling real-time decoding of DNA/RNA sequences.The instruments for the dynamic behavior of substances in the nanopore on the ...Nanopore sequencing harnesses changes in ionic current as nucleotides traverse a nanopore,enabling real-time decoding of DNA/RNA sequences.The instruments for the dynamic behavior of substances in the nanopore on the molecular scale are still very limited experimentally.This study employs all-atom molecular dynamics(MD)simulations to explore the impact of charge densities on graphene nanopore in the translocation of single-stranded DNA(ssDNA).We find that the magnitude of graphene’s charge,rather than the charge disparity between ssDNA and graphene,significantly influences ssDNA adsorption and translocation speed.Specifically,high negative charge densities on graphene nanopores are shown to substantially slow down ssDNA translocation,highlighting the importance of hydrodynamic effects and electrostatic repulsions.This indicates translocation is crucial for achieving distinct ionic current blockades,which plays a central role for DNA sequencing accuracy.Our findings suggest that negatively charged graphene nanopores hold considerable potential for optimizing DNA sequencing,marking a critical advancement in this field.展开更多
The polymer translocation through a nanopore from a donor space(or named cis side) to a receiver space(trans side) in the chaperone-induced crowded environment has attracted increasing attention in recent years due to...The polymer translocation through a nanopore from a donor space(or named cis side) to a receiver space(trans side) in the chaperone-induced crowded environment has attracted increasing attention in recent years due to its significance in biological systems and technological applications. In this work, we mainly focus on the effects of chaperone concentration and chaperone-polymer interaction on the polymer translocation. By assuming the polymer translocation to be a quasi-equilibrium process, the free energy F of the polymer can be estimated by Rosenbluth-Rosenbluth method and then the translocation time τ can be calculated by Fokker-Plank equation based on the obtained free energy landscape. Our calculation results show that the translocation time can be controlled by independently tuning the chaperone concentration and chaperone-polymer interaction at the cis side or the trans side. There exists a critical chaperone-polymer attraction ε~*=-0.2 at which the volume exclusion and interaction effects of the chaperone can balance each other. Additionally, we also find that at large chaperone-polymer attraction, the translocation time is mainly governed by the diffusion coefficient of the polymer.展开更多
Background Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity,...Background Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity, which impairs myocardial function. Adipsin may play an important protective role in the pathogenesis of DCM. The aim of this study is to investigate the regulatory effect of Adipsin on DCM lipotoxicity and its molecular mechanism.MethodsA high-fat diet (HFD)-induced type 2 diabetes mellitus model was constructed in mice with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg). Liquid chromatography-tandem mass spectrometry (LC–MS/MS), glutathione-S-transferase (GST) pull-down technique, Co-immunoprecipitation (Co-IP) and immunofluorescence colocalization analyses were used to investigate the molecules which can directly interact with Adipsin. The immunocolloidal gold method was also used to detect the interaction between Adipsin and its downstream modulator.ResultsThe expression of Adipsin was significantly downregulated in the HFD-induced DCM model (P < 0.05). Adipose tissue-specific overexpression of Adipsin significantly improved cardiac function and alleviated cardiac remodeling in DCM (P < 0.05). Adipsin overexpression also alleviated mitochondrial oxidative phosphorylation function in diabetic stress (P < 0.05). LC–MS/MS analysis, GST pull-down technique and Co-IP studies revealed that interleukin-1 receptor-associated kinase-like 2 (Irak2) was a downstream regulator of Adipsin. Immunofluorescence analysis also revealed that Adipsin was co-localized with Irak2 in cardiomyocytes. Immunocolloidal gold electron microscopy and Western blotting analysis indicated that Adipsin inhibited the mitochondrial translocation of Irak2 in DCM, thus dampening the interaction between Irak2 and prohibitin (Phb)-optic atrophy protein 1 (Opa1) on mitochondria and improving the structural integrity and function of mitochondria (P < 0.05). Interestingly, in the presence of Irak2 knockdown, Adipsin overexpression did not further alleviate myocardial mitochondrial destruction and cardiac dysfunction, suggesting a downstream role of Irak2 in Adipsin-induced responses (P < 0.05). Consistent with these findings, overexpression of Adipsin after Irak2 knockdown did not further reduce the accumulation of lipids and their metabolites in the cardiac myocardium, nor did it enhance the oxidation capacity of cardiomyocytes expose to palmitate (PA) (P < 0.05). These results indicated that Irak2 may be a downstream regulator of Adipsin.ConclusionsAdipsin improves fatty acid β-oxidation and alleviates mitochondrial injury in DCM. The mechanism is related to Irak2 interaction and inhibition of Irak2 mitochondrial translocation.展开更多
Dynamics of dry- or fresh-weight of fruit, peel photosynthetic rate and chlorophyll content, and the characteristics of translocation and distribution of radiolabelled assimilates from leaf or fruit were examined in d...Dynamics of dry- or fresh-weight of fruit, peel photosynthetic rate and chlorophyll content, and the characteristics of translocation and distribution of radiolabelled assimilates from leaf or fruit were examined in developing satsuma mandarin (Citrus unshiu Marc. cv. Miyagawa wase) fruit from primary stage of fruit enlargement up to fruit full ripe. Change in fruit photosynthetic rate was some what related to the change in the chlorophyll content of peel. Fruit photosynthetic rate markedly declined as chlorophyll degradation occurred in the peel. Before full ripe stage of the fruit, photosynthates produced by a 14C-fed leaf were mainly distributed to juice sacs even during periods when dry matter accumulation in peel was more rapid than that in juice sacs. At the full ripe stage, peel photosynthetic rate approached zero and peel became the major sink of leaf photosynthates. Most of the peel assimilates, however, remained in situ for up to 48 h after feeding 14CO 2 to the fruit, only a small portion being transported to other parts of fruit. The percentage of fruit photosynthates exported decreased with fruit development and ripening, but the peak rate of export to juice sacs amount to as high as 12%. The sugar content and dry weights of peel and juice sacs in shaded fruit were lower than that in the control fruit. These results show that peel assimilate was mainly consumed in peel respiration and growth and thus the dependence on leaf photosynthates decreased. Part of this assimiate was used in sugar accumulation in juice sacs of fruit.展开更多
[Objective] To compare the translocation and distribution of imidacloprid in tobacco with spray and root irrigation application methods. [Methods] Pot experiment in the greenhouse was carried out, and LC-MSMS was used...[Objective] To compare the translocation and distribution of imidacloprid in tobacco with spray and root irrigation application methods. [Methods] Pot experiment in the greenhouse was carried out, and LC-MSMS was used to determine the con- tent of imidacloprid in different parts of tobacco plants (roots, stems, the upper, middle and lower leaves) at different time. [Results] The imidacloprid could be absorbed by root and could be transported to all parts of the tobacco plant after irrigating root, but the original deposition amount was larger and the transport efficiency was lower after spraying. [Conclusion] The translocation and distribution of imidacloprid by spraying was more uniform and the holding efficiency was better, but imidacloprid with root irrigation could act on leaf directly, and had better readily availability.展开更多
[Objective] The aim of experiment was to provide a new germplasm for wheat breeding by further using desirable genes in 2V chromosome of Haynaldia villosa.[Method] Through hybridization between common wheat(Triticum a...[Objective] The aim of experiment was to provide a new germplasm for wheat breeding by further using desirable genes in 2V chromosome of Haynaldia villosa.[Method] Through hybridization between common wheat(Triticum aestivum)-Haynaldia villosa disomic substitution line and common wheat Nonglin26-3C chromosome of Aegilops triuncialis disomic addition line,the analysis methods such as chromosome C-banding,genomic in situ hybridization and molecular marker technique were comprehensively applied and combined characters investigation.[Result] The wheat-Haynaldia villosa translocation line(T6BS·6BL-2VS)was selected from hybrid progenies to conduct characters investigation,which found some bristles on glume ridge of T6BS·6BL-2VS.[Conclusion] The translocation line induced by gametocidal chromosome was a small segment translocation line and the gene of bristle on glume ridge of Haynaldia villosa was located between the middle and the terminal of 2VS.展开更多
[Objective] The aim was to study the polymorphism of CMYA3 gene in the 148 pigs of hybrid offspring of 13/17 Robertsonian translocation pigs [2n = 37,rob (13;17)] intercrossing.[Method] PCR-RFLP method was adopted.[...[Objective] The aim was to study the polymorphism of CMYA3 gene in the 148 pigs of hybrid offspring of 13/17 Robertsonian translocation pigs [2n = 37,rob (13;17)] intercrossing.[Method] PCR-RFLP method was adopted.[Result] A 507 bp fragment of CMYA3 gene was obtained by PCR amplification,and then amplification product by using restriction nuclease Bsh1236Ⅰ was detected by agarose gel electrophoresis.As a result,both alleles (A and B) of the loci were found in the population.The frequencies of allele A and B were 0.699 and 0.301.The genotype frequencies of AA,AB and BB were 0.615,0.169 and 0.216.The frequencies of allele A and genotype AA were significantly higher than allele B and genotype BB in populations.[Conclusion] The study will provide theoretical basis for molecular breeding and marker-assisted selection of 13/17 Robertsonian translocation pigs.展开更多
The behavior of wheat-rye translocation chromosome and alien chromosome including Thinopyrum and Haynaldia chromosome at meiosis was investigated in two hybrids by fluorescence in situ hybridization (FISH). Misdivisio...The behavior of wheat-rye translocation chromosome and alien chromosome including Thinopyrum and Haynaldia chromosome at meiosis was investigated in two hybrids by fluorescence in situ hybridization (FISH). Misdivision of translocation chromosome at anaphase I and rye chromatin micronucleus at tetrad stage were observed, A plant with one normal 1BL/1RS translocation chromosome and one 1BL/1RS translocation chromosome deleted about 1/3 of rye chromosome arm in length was identified. One plant with wheat-Thinopyrum non-Robertson translocation chromosome was also detected in the F-2 population of Yi4212 x Yi4095. That could be the results of unequal misdivision of wheat-rye 1BL/1RS translocation chromosome and Thinopyrum chromosome during meiosis. No interaction between translocation chromosome and alien chromosome at meiosis was supported by the data of the distribution frequencies of translocation chromosome and Thinopyrum or Haynaldia chromosome in the progeny of two hybrids. The results may be useful to cultivate new germplasms with different length of rye 1R short arm and wheat-alien non-Robertson translocation tines under wheat background.展开更多
In order to develop more wheat-Haynaldia villosa translocations involving different chromosomes and chromosome segments of H. villosa, T. durum-H, villosa amphiploid was irradiated with ^60Co γ-rays at doses of 800, ...In order to develop more wheat-Haynaldia villosa translocations involving different chromosomes and chromosome segments of H. villosa, T. durum-H, villosa amphiploid was irradiated with ^60Co γ-rays at doses of 800, 1,200, and 1,600 rad. Pollen collected from the spikes 1, 2, and 3 days after irradiation were transferred to emasculated spikes of the common wheat cv. ‘Chinese Spring'. Genomic in situ hybridization was used to identify wheat-H, villosa chromosome translocations in the M1 generation. Transmission of the identified translocation chromosomes was analyzed in the BC1, BC2, and BC3 generations. The results indicated that all three irradiation doses were highly efficient for inducing wheat-alien translocations without affecting the viability of the M1 seeds. Within the range of 800-1,600 rad, both the efficiency of translocation induction and the frequency of interstitial chromosome breakage-fusion increased as the irradiation dosage increased. A higher translocation induction frequency was observed using pollen collected from the spikes 1 day after irradiation over that of 2 or 3 days after irradiation. More than 70% of the translocations detected in the M1 generation were transmitted to the BC1 through the female gametes. All translocations recovered in the BC1 generation were recovered in the following BC2, and BC3 generations. The transmission ability of different translocation types in different genetic backgrounds showed an order of ‘whole-arm translocation 〉 small alien segment translocation 〉 large alien segment translocation', through either male or female gametes, In general, the transmission ability through the female gametes was higher than that through the male gametes. By this approach, 14 translocation lines that involved different H. villosa chromosomes have been identified in the BC3 using EST-STS markers, and eight of them were homozygous.展开更多
The translocation of a polymer through a pore that is much smaller than its size is a fundamental and actively researched topic in polymer physics.An understanding of the principles governing polymer translocation pro...The translocation of a polymer through a pore that is much smaller than its size is a fundamental and actively researched topic in polymer physics.An understanding of the principles governing polymer translocation provides important guidance for various practical applications,such as the separation and purification of polymers,nanopore-based single-molecule deoxyribonucleic acid/ribonucleic acid(DNA/RNA)sequencing,transmembrane transport of DNA or RNA,and infection of bacterial cells by bacteriophages.The past several decades have seen great progresses on the study of polymer translocation.Here we present an overview of theoretical,experimental,and simulational stduies on polymer translocation,focusing on the roles played by several important factors,including initial polymer conformations,external fields,polymer topology and architectures,and confinement degree.We highlight the physical mechanisms of different types of polymer translocations,and the main controversies about the basic rules of translocation dynamics.We compare and contrast the behaviors of force-induced versus flow-induced translocations and the effects of unknotted versus knotted polymers.Finally,we mention several opportunities and challenges in the study of polymer translocation.展开更多
The effect of the interaction between nanopore and chain monomer on the translocation of a single polymer chain confined in a finite size square through an interacting nanopore to a large space has been studied by two...The effect of the interaction between nanopore and chain monomer on the translocation of a single polymer chain confined in a finite size square through an interacting nanopore to a large space has been studied by two-dimensional bond fluctuation model with Monte Carlo simulation. Results indicate that the free energy barrier before the successful translocation of the chain depends linearly on the chain length as well as the nanopore length for different pore-polymer interaction, and the attractive interaction reduces the free energy barrier, leading to the reduction of the average trapping time.展开更多
基金Supported by The Science and Technology Department of Jilin Province,China,No.YDZJ202301ZYTS002The Jilin Province Medical and Health Talents Project,No.2019SRCJ010.
文摘BACKGROUND Carriers of chromosomal balanced translocations are often physically healthy with no obvious developmental problems.However,potential chromosomal imbalance in their gametes can lead to implantation failure,miscarriage,or the birth of a child with a chromosomal abnormality.CASE SUMMARY We report six cases of chromosomal translocations involving three families,including the specific Robertson(Roche)translocation.Case 1:The karyotype of the proband was 46,XX,t(18;19)(q22;p12).Case 2:Interventional prenatal diagnosis at 18 weeks of gestation confirmed that the karyotype of the fetus was 46,XY,t(18;19)(q22;p12).Case 3:The karyotype of the proband was 46,XY,t(5;18)(p13;p11).Case 4:Interventional prenatal diagnosis at 14+6 weeks confirmed that the karyotype of the fetus was 46,XX,der(18)t(5;18)(p13;p11)pat.Case 5:The karyotype of the proband was 45,XY,der(14;22)(q10;q10).Case 6:Interventional prenatal diagnosis at 19+4 weeks confirmed that the karyotype of the fetus was 45,XX,rob(14;22)(q10;q10).CONCLUSION Carriers of chromosomal translocations have a high risk of adverse pregnancy outcomes,though they can still have normal offspring.This report on six cases of chromosomal translocations from three families could serve as a reference for future prenatal diagnosis of chromosomal translocations and decision-making on whether to continue the pregnancy.
基金supported by grants from the National Key Research and Development Program of China(2021YFF1000500)the National Natural Science Foundation of China(32370272,31970273,and 31921001).
文摘Phosphorus(P)is an essential nutrient for crop growth,making it important for maintaining food security as the global population continues to increase.Plants acquire P primarily via the uptake of inorganic phosphate(Pi)in soil through their roots.Pi,which is usually sequestered in soils,is not easily absorbed by plants and represses plant growth.Plants have developed a series of mechanisms to cope with P deficiency.Moreover,P fertilizer applications are critical for maximizing crop yield.Maize is a major cereal crop cultivated worldwide.Increasing its P-use efficiency is important for optimizing maize production.Over the past two decades,considerable progresses have been achieved in studies aimed at adapting maize varieties to changes in environmental P supply.Here,we present an overview of the morphological,physiological,and molecular mechanisms involved in P acquisition,translocation,and redistribution in maize and combine the advances in Arabidopsis and rice,to better elucidate the progress of P nutrition.Additionally,we summarize the correlation between P and abiotic stress responses.Clarifying the mechanisms relevant to improving P absorption and use in maize can guide future research on sustainable agriculture.
基金funded by the National Natural Science Foundation of China(32272083)。
文摘Wheat leaf rust,caused by Puccinia triticina(Pt),is one of the most devastating diseases in common wheat(Triticum aestivum L.)and can lead to heavy yield loss(Chai et al.2020).Leaf rust can result in 50%yield loss during epidemic years(Huerta-Espino et al.2011;Gebrewahid et al.2020;Kolomiets et al.2021).Breeding varieties resistant to leaf rust have been recognized as the most effective and economical method to mitigate wheat losses caused by Pt.The narrow genetic basis of wheat constrains the number of cultivars resistant to leaf rust(Jin et al.2021).
基金supported by the Key Research and Development Program of Anhui Province,China(No.2022m07020004)the Natural Resources Science and Technology Project of Anhui Province,China(No.2022-k-8).
文摘Soil and foliar applications of silicon(Si)and selenium(Se)fertilizers can inhibit the transfer of heavy metals from the soil to crops.However,it remains unclear how Si and Se affect the bioavailability of cadmium(Cd)and lead(Pb)in soil and thereby their transfer to rice in Cd and Pb-polluted fields.In this study,seven treatments were set up in a field experiment conducted in a nonferrous metal mining area in Tongling City,Anhui Province,China:no Si/Se fertilization control(CK),basal Si/Se fertilization(Si-1/Se-1),basal and topdressing Si/Se fertilization(Si-2/Se-2),and basal,topdressing,and foliar Si/Se fertilization(Si-3/Se-3).The results indicated that compared to CK,rice yield increased by 3.94%-14.56%in the other treatments,with the most significant increase observed in Si-3 and Se-3.Additionally,the Cd content in brown rice decreased by 15.42%-51.55%,while Pb content decreased by 16.49%-47.18%.In all treatments except Si-1,both metal contents decreased to below the limits specified in China's food safety standard(GB 2762-2022).Furthermore,they impeded the translocation of these metals to the brown rice,thereby effectively diminishing metal accumulation in rice grain.The effect of Se fertilizer was better than Si fertilizer in decreasing the bioconcentration factors of Cd and Pb and inhibiting their translocation to brown rice.At the same time,the applications of Si and Se increased the Si and Se contents of rice aboveground parts,respectively,and the Se content of brown rice in Se-3 increased by 77.56%,meeting the Se enrichment standard(GB/T 22499-2008).The contents of diethylenetriamine pentaacetic acid-extractable Cd and Pb in soil decreased in all Si/Se treatments by 25.53%and 22.37%in Se-3,respectively.All Si/Se treatments reduced the acid-exchangeable and reducible Cd and Pb in soil and transformed them into the more stable oxidizable and residual fractions.This study revealed that the bioavailability of Cd and Pb in soil and their translocation to brown rice were significantly reduced by the basal application combined with topdressing and foliar application of Si and Se fertilizers.
基金supported by the National Natural Science Foundation of China (31861143023,31872252)Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20050201)。
文摘Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition.The gut microbiome,highly responsive to external environmental factors,plays a crucial role in host adaptability and may facilitate local adaptation within species.Concurrently,the genetic background of host populations influences gut microbiome composition,highlighting the bidirectional relationship between host and microbiome.Despite this,our understanding of gut microbiome plasticity and its role in host adaptability remains limited,particularly in reptiles.To clarify this issue,we conducted a reciprocal translocation experiment with gravid females of the Qinghai toad-headed lizards(Phrynocephalus vlangalii)between high-altitude(2?600 m a.s.l.)and superhigh-altitude(3?600 m a.s.l.)environments on Dangjin Mountain of the Qinghai-Xizang Plateau,China.One year later,we assessed the phenotypes and gut microbiomes of their offspring.Results revealed significant plasticity in gut microbiome diversity and structure in response to contrasting elevations.Highaltitude conditions increased diversity,and maternal effects appeared to enable high-altitude lizards to maintain elevated diversity when exposed to superhigh-altitude environments.Additionally,superhigh-altitude lizards displayed distinct gut microbiome structures with notable host specificity,potentially linked to their lower growth rates.Overall,these findings underscore the importance of the gut microbiome in facilitating reptilian adaptation to rapid environmental changes across altitudinal gradients.Furthermore,this study provides critical insights into microbial mechanisms underpinning local adaptation and adaptative plasticity,offering a foundation for future research on host-microbiome interactions in evolutionary and ecological contexts.
基金supported by the Science and Technology Planning Program of Guangdong Province(2013B020310010 and 2019B030301007)the Open Foundation of Key Laboratory for Agricultural Environment,Ministry of Agriculture and Rural Affairs,P.R.China.
文摘In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing and strategies in mitigating Cd-stressed rice,the precise mechanisms underlying the health restoration of Cd-toxic rice and the assurance of grain safety remain elusive.This study explored Cd translocation and detoxification in the shoots of rice regulated by various Si fertilization regimes:Si(T)(all Si added before transplanting),Si(J)(all Si added at jointing),and Si(TJ)(half Si added both before transplanting and at jointing).The findings revealed that the regime of Si(TJ)was more beneficial to rice health and grain safety than Si(T)and Si(J).The osmotic regulators such as proline,soluble sugars,and soluble proteins were significantly boosted by Si(TJ)compared to other Si treatments,and which enhanced membrane integrity,balanced intracellular pH,and increased Cd tolerance of rice.Furthermore,Si(TJ)was more effective than Si(T)and Si(J)on the Cd sequestration in the cell wall,Cd bio-passivation,and the down-regulated expression of the Cd transport genes.The concentrations of Cd in the xylem and phloem treated with Si(TJ)were reduced significantly.Additionally,Si(TJ)facilitated much more Cd bound with the outer layer proteins of grains,and promoted Cd chelation and complexation by phytic acid,phenolics,and flavonoids.Overall,Si(TJ)outperformed Si(T)and Si(J)in harmonizing the phycological processes,inhibiting Cd translocation,and enhancing Cd detoxification in rice plant.Thereby the split Si application strategy offers potential for reducing Cd toxicity in rice grain.
基金the Shenzhen Science and Technology Research and Development Funds(No.JCYJ20190806155409104)National Natural Science Foundation of China(Nos.52150222,21672130 and 52073163)+1 种基金Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110356)the Qilu Young Scholars Program of Shandong University.
文摘Mitochondrial damage is closely related to the occurrence of many diseases.However,accurate monitoring and reporting of mitochondrial damage are not easy.Here,we developed a small molecule fluorescent probe named CB-Cl,which has splendid spectral properties(large Stokes shift,strong affinity for RNA,etc.)and excellent targeting ability to intracellular mitochondria.After mitochondria were damaged by external stimuli,CB-Cl would light up the nucleolus as a signal reporter.The cascade imaging of mitochondria and nucleolus using CB-Cl can monitor and visualize the mitochondrial status in living cells in real-time.Based on the above advantages,the probe CB-Cl has reference significance for the related research of mitochondrial damage and the prevention and treatment of related diseases.
文摘[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six different treatment were set up:blank control(CK1),slow-release urea 75 kg/hm^(2)(C1),slow-release urea 150 kg/hm^(2)(C2),slow-release urea 225 kg/hm^(2)(C3),slow-release urea 300 kg/hm^(2)(C4)and ordinary urea 300 kg/hm^(2)(CK2),to study the change law of dry matter accumulation and translocation in summer maize.[Results]Treatment slow-release urea 225 kg/hm^(2)(C4)showed summer maize yield,dry matter translocation between organs,grain contribution rate and proportion of grain dry matter in the full ripe stage higher than other treatments.Considering the weight loss and cost factors,slow-release urea 225 kg/hm^(2)(C3)could be recommended as the fertilizing amount for summer maize.[Conclusions]This study provides theoretical reference for rational selection of fertilizers for reducing fertilizer application and increasing fertilizer efficiency,and for production of summer maize in Shajiang black soil region.
基金supported by the Natural Science Foundation of Chongqing(No.cstc2020jcyj-msxmX0063)the National Natural Science Foundation of China(No.41977272)。
文摘The tree ring has been regarded as an emerging archive to reconstruct historical atmospheric mercury(Hg)trends,but with the large knowledge gaps in the reliability.In this study,we comprehensively evaluated the Hg source,radial translocation and age effect of Masson pine(Pinus massoniana)tree ring at Mt.Jinyun in Chongqing,to assess the suitability of such tree ring as the archive of atmospheric Hg.Results showed that distinct variabilities among Masson pine tree-ring Hg concentration profiles.The Hg concentration significantly increased along with stem height(P<0.05),indicating the Hg in tree rings mainly derived from foliage uptake atmospheric Hg.We found a distinct age effect that the tree ring of young trees had the higher Hg concentration.Besides,we used the advection-diffusion model to demonstrate how Hg concentration shifted by the advection or/and diffusion in tree rings.The modeling results showed that the advection induced radial translocation during the young growth period of tree was a plausible mechanism to result in the tree-ring Hg record largely different from the trend of anthropogenic Hg emissions in Chongqing.We finally suggest that in further Hg dendrochemistry,better discarding the tree-ring Hg profile of the young growth period to reduce impacts of the radial translocation and age effect.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22373025 and 22227804).
文摘Nanopore sequencing harnesses changes in ionic current as nucleotides traverse a nanopore,enabling real-time decoding of DNA/RNA sequences.The instruments for the dynamic behavior of substances in the nanopore on the molecular scale are still very limited experimentally.This study employs all-atom molecular dynamics(MD)simulations to explore the impact of charge densities on graphene nanopore in the translocation of single-stranded DNA(ssDNA).We find that the magnitude of graphene’s charge,rather than the charge disparity between ssDNA and graphene,significantly influences ssDNA adsorption and translocation speed.Specifically,high negative charge densities on graphene nanopores are shown to substantially slow down ssDNA translocation,highlighting the importance of hydrodynamic effects and electrostatic repulsions.This indicates translocation is crucial for achieving distinct ionic current blockades,which plays a central role for DNA sequencing accuracy.Our findings suggest that negatively charged graphene nanopores hold considerable potential for optimizing DNA sequencing,marking a critical advancement in this field.
基金financially supported by the National Natural Science Foundation of China (Nos.11704333 and 20904047)the Natural Science Foundation of Zhejiang Province (Nos.LY17A040001 and LY19F030004)。
文摘The polymer translocation through a nanopore from a donor space(or named cis side) to a receiver space(trans side) in the chaperone-induced crowded environment has attracted increasing attention in recent years due to its significance in biological systems and technological applications. In this work, we mainly focus on the effects of chaperone concentration and chaperone-polymer interaction on the polymer translocation. By assuming the polymer translocation to be a quasi-equilibrium process, the free energy F of the polymer can be estimated by Rosenbluth-Rosenbluth method and then the translocation time τ can be calculated by Fokker-Plank equation based on the obtained free energy landscape. Our calculation results show that the translocation time can be controlled by independently tuning the chaperone concentration and chaperone-polymer interaction at the cis side or the trans side. There exists a critical chaperone-polymer attraction ε~*=-0.2 at which the volume exclusion and interaction effects of the chaperone can balance each other. Additionally, we also find that at large chaperone-polymer attraction, the translocation time is mainly governed by the diffusion coefficient of the polymer.
基金National Natural Science Foundation of China(82070398,81922008)Key Basic Research Projects of Basic Strengthening Plan(2022-JCJQ-ZD-095-00)Top Young Talents Special Support Program in Shaanxi Province(2020).
文摘Background Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity, which impairs myocardial function. Adipsin may play an important protective role in the pathogenesis of DCM. The aim of this study is to investigate the regulatory effect of Adipsin on DCM lipotoxicity and its molecular mechanism.MethodsA high-fat diet (HFD)-induced type 2 diabetes mellitus model was constructed in mice with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg). Liquid chromatography-tandem mass spectrometry (LC–MS/MS), glutathione-S-transferase (GST) pull-down technique, Co-immunoprecipitation (Co-IP) and immunofluorescence colocalization analyses were used to investigate the molecules which can directly interact with Adipsin. The immunocolloidal gold method was also used to detect the interaction between Adipsin and its downstream modulator.ResultsThe expression of Adipsin was significantly downregulated in the HFD-induced DCM model (P < 0.05). Adipose tissue-specific overexpression of Adipsin significantly improved cardiac function and alleviated cardiac remodeling in DCM (P < 0.05). Adipsin overexpression also alleviated mitochondrial oxidative phosphorylation function in diabetic stress (P < 0.05). LC–MS/MS analysis, GST pull-down technique and Co-IP studies revealed that interleukin-1 receptor-associated kinase-like 2 (Irak2) was a downstream regulator of Adipsin. Immunofluorescence analysis also revealed that Adipsin was co-localized with Irak2 in cardiomyocytes. Immunocolloidal gold electron microscopy and Western blotting analysis indicated that Adipsin inhibited the mitochondrial translocation of Irak2 in DCM, thus dampening the interaction between Irak2 and prohibitin (Phb)-optic atrophy protein 1 (Opa1) on mitochondria and improving the structural integrity and function of mitochondria (P < 0.05). Interestingly, in the presence of Irak2 knockdown, Adipsin overexpression did not further alleviate myocardial mitochondrial destruction and cardiac dysfunction, suggesting a downstream role of Irak2 in Adipsin-induced responses (P < 0.05). Consistent with these findings, overexpression of Adipsin after Irak2 knockdown did not further reduce the accumulation of lipids and their metabolites in the cardiac myocardium, nor did it enhance the oxidation capacity of cardiomyocytes expose to palmitate (PA) (P < 0.05). These results indicated that Irak2 may be a downstream regulator of Adipsin.ConclusionsAdipsin improves fatty acid β-oxidation and alleviates mitochondrial injury in DCM. The mechanism is related to Irak2 interaction and inhibition of Irak2 mitochondrial translocation.
文摘Dynamics of dry- or fresh-weight of fruit, peel photosynthetic rate and chlorophyll content, and the characteristics of translocation and distribution of radiolabelled assimilates from leaf or fruit were examined in developing satsuma mandarin (Citrus unshiu Marc. cv. Miyagawa wase) fruit from primary stage of fruit enlargement up to fruit full ripe. Change in fruit photosynthetic rate was some what related to the change in the chlorophyll content of peel. Fruit photosynthetic rate markedly declined as chlorophyll degradation occurred in the peel. Before full ripe stage of the fruit, photosynthates produced by a 14C-fed leaf were mainly distributed to juice sacs even during periods when dry matter accumulation in peel was more rapid than that in juice sacs. At the full ripe stage, peel photosynthetic rate approached zero and peel became the major sink of leaf photosynthates. Most of the peel assimilates, however, remained in situ for up to 48 h after feeding 14CO 2 to the fruit, only a small portion being transported to other parts of fruit. The percentage of fruit photosynthates exported decreased with fruit development and ripening, but the peak rate of export to juice sacs amount to as high as 12%. The sugar content and dry weights of peel and juice sacs in shaded fruit were lower than that in the control fruit. These results show that peel assimilate was mainly consumed in peel respiration and growth and thus the dependence on leaf photosynthates decreased. Part of this assimiate was used in sugar accumulation in juice sacs of fruit.
基金Supported by the Key Science and Technology Project of Jinlin Tobacco Industrial Co.,Ltd.(JS-2015-07)the Scientific and Technological Innovation Project of Chinese Academy of Agricultural Sciences(ASTIP-TRIC06)~~
文摘[Objective] To compare the translocation and distribution of imidacloprid in tobacco with spray and root irrigation application methods. [Methods] Pot experiment in the greenhouse was carried out, and LC-MSMS was used to determine the con- tent of imidacloprid in different parts of tobacco plants (roots, stems, the upper, middle and lower leaves) at different time. [Results] The imidacloprid could be absorbed by root and could be transported to all parts of the tobacco plant after irrigating root, but the original deposition amount was larger and the transport efficiency was lower after spraying. [Conclusion] The translocation and distribution of imidacloprid by spraying was more uniform and the holding efficiency was better, but imidacloprid with root irrigation could act on leaf directly, and had better readily availability.
基金Supported by the National Natural Science Foundation of China(10475041)the Foundation of Nanjing Xiaozhuang University for the Key Discipline Construction(2005NXY01)the Scientific Research Founda-tion for Talents of Nanjing Xiaozhuang University(2008NXY04)~~
文摘[Objective] The aim of experiment was to provide a new germplasm for wheat breeding by further using desirable genes in 2V chromosome of Haynaldia villosa.[Method] Through hybridization between common wheat(Triticum aestivum)-Haynaldia villosa disomic substitution line and common wheat Nonglin26-3C chromosome of Aegilops triuncialis disomic addition line,the analysis methods such as chromosome C-banding,genomic in situ hybridization and molecular marker technique were comprehensively applied and combined characters investigation.[Result] The wheat-Haynaldia villosa translocation line(T6BS·6BL-2VS)was selected from hybrid progenies to conduct characters investigation,which found some bristles on glume ridge of T6BS·6BL-2VS.[Conclusion] The translocation line induced by gametocidal chromosome was a small segment translocation line and the gene of bristle on glume ridge of Haynaldia villosa was located between the middle and the terminal of 2VS.
基金Supported by Major Specialized Subject of Transgenic Organism New Variety Breeding(20082X08006-003)National Natural Science Foundation of China(30871778 )Construction Engineering Special Fund for Mountain Tai Scholars of Shandong Province~~
文摘[Objective] The aim was to study the polymorphism of CMYA3 gene in the 148 pigs of hybrid offspring of 13/17 Robertsonian translocation pigs [2n = 37,rob (13;17)] intercrossing.[Method] PCR-RFLP method was adopted.[Result] A 507 bp fragment of CMYA3 gene was obtained by PCR amplification,and then amplification product by using restriction nuclease Bsh1236Ⅰ was detected by agarose gel electrophoresis.As a result,both alleles (A and B) of the loci were found in the population.The frequencies of allele A and B were 0.699 and 0.301.The genotype frequencies of AA,AB and BB were 0.615,0.169 and 0.216.The frequencies of allele A and genotype AA were significantly higher than allele B and genotype BB in populations.[Conclusion] The study will provide theoretical basis for molecular breeding and marker-assisted selection of 13/17 Robertsonian translocation pigs.
文摘The behavior of wheat-rye translocation chromosome and alien chromosome including Thinopyrum and Haynaldia chromosome at meiosis was investigated in two hybrids by fluorescence in situ hybridization (FISH). Misdivision of translocation chromosome at anaphase I and rye chromatin micronucleus at tetrad stage were observed, A plant with one normal 1BL/1RS translocation chromosome and one 1BL/1RS translocation chromosome deleted about 1/3 of rye chromosome arm in length was identified. One plant with wheat-Thinopyrum non-Robertson translocation chromosome was also detected in the F-2 population of Yi4212 x Yi4095. That could be the results of unequal misdivision of wheat-rye 1BL/1RS translocation chromosome and Thinopyrum chromosome during meiosis. No interaction between translocation chromosome and alien chromosome at meiosis was supported by the data of the distribution frequencies of translocation chromosome and Thinopyrum or Haynaldia chromosome in the progeny of two hybrids. The results may be useful to cultivate new germplasms with different length of rye 1R short arm and wheat-alien non-Robertson translocation tines under wheat background.
基金supported by the National Natural Science Foundation of China (No.30270827 and 30871519)the High Tech Program of China (No.2006AA100101,2006AA10Z1F6)the Ministry of Educate 111 Project (B08025)
文摘In order to develop more wheat-Haynaldia villosa translocations involving different chromosomes and chromosome segments of H. villosa, T. durum-H, villosa amphiploid was irradiated with ^60Co γ-rays at doses of 800, 1,200, and 1,600 rad. Pollen collected from the spikes 1, 2, and 3 days after irradiation were transferred to emasculated spikes of the common wheat cv. ‘Chinese Spring'. Genomic in situ hybridization was used to identify wheat-H, villosa chromosome translocations in the M1 generation. Transmission of the identified translocation chromosomes was analyzed in the BC1, BC2, and BC3 generations. The results indicated that all three irradiation doses were highly efficient for inducing wheat-alien translocations without affecting the viability of the M1 seeds. Within the range of 800-1,600 rad, both the efficiency of translocation induction and the frequency of interstitial chromosome breakage-fusion increased as the irradiation dosage increased. A higher translocation induction frequency was observed using pollen collected from the spikes 1 day after irradiation over that of 2 or 3 days after irradiation. More than 70% of the translocations detected in the M1 generation were transmitted to the BC1 through the female gametes. All translocations recovered in the BC1 generation were recovered in the following BC2, and BC3 generations. The transmission ability of different translocation types in different genetic backgrounds showed an order of ‘whole-arm translocation 〉 small alien segment translocation 〉 large alien segment translocation', through either male or female gametes, In general, the transmission ability through the female gametes was higher than that through the male gametes. By this approach, 14 translocation lines that involved different H. villosa chromosomes have been identified in the BC3 using EST-STS markers, and eight of them were homozygous.
基金financially supported by the National Key R&D Program of China(No.2020YFA0713601)the National Natural Science Foundation of China(Nos.22073092 and 21790340)the Programs of Chinese Academy of Sciences(No.QYZDYSSW-SLH027)。
文摘The translocation of a polymer through a pore that is much smaller than its size is a fundamental and actively researched topic in polymer physics.An understanding of the principles governing polymer translocation provides important guidance for various practical applications,such as the separation and purification of polymers,nanopore-based single-molecule deoxyribonucleic acid/ribonucleic acid(DNA/RNA)sequencing,transmembrane transport of DNA or RNA,and infection of bacterial cells by bacteriophages.The past several decades have seen great progresses on the study of polymer translocation.Here we present an overview of theoretical,experimental,and simulational stduies on polymer translocation,focusing on the roles played by several important factors,including initial polymer conformations,external fields,polymer topology and architectures,and confinement degree.We highlight the physical mechanisms of different types of polymer translocations,and the main controversies about the basic rules of translocation dynamics.We compare and contrast the behaviors of force-induced versus flow-induced translocations and the effects of unknotted versus knotted polymers.Finally,we mention several opportunities and challenges in the study of polymer translocation.
文摘The effect of the interaction between nanopore and chain monomer on the translocation of a single polymer chain confined in a finite size square through an interacting nanopore to a large space has been studied by two-dimensional bond fluctuation model with Monte Carlo simulation. Results indicate that the free energy barrier before the successful translocation of the chain depends linearly on the chain length as well as the nanopore length for different pore-polymer interaction, and the attractive interaction reduces the free energy barrier, leading to the reduction of the average trapping time.