The performance of hydrogel radical polymerization under ambient conditions is a major challenge because oxygen is an effective radical quencher and the steps to remove or neutralize it are time consuming and laboriou...The performance of hydrogel radical polymerization under ambient conditions is a major challenge because oxygen is an effective radical quencher and the steps to remove or neutralize it are time consuming and laborious.A self-initiating system consisting of transition metals and acetylacetone has been successfully developed.The system is capable of initiating free radical polymerization of hydrogels at room temperature under aerobic conditions,which is attributed to carbon radicals generated by the oxidation of acetylacetone.Some of these carbon radicals reduce oxygen to generate hydroxyl radicals,which together induce self-coagulation of hydrogels.The polymerization system was effective for a variety of monomer and hydrogel swelling and shrinking schemes,and the reaction remained successful when exposed to saturated oxygen.In conclusion,the results demonstrate that the present strategy is an effective approach to addressing the challenge of deoxygenation in polymer synthesis,and provides a convenient method for synthesizing multifunctional hydrogels under ambient conditions.展开更多
Demand for fast-charging lithium-ion batteries(LIBs)has escalated incredibly in the past few years.A conventional method to improve the performance is to chemically partly substitute the transition metal with another ...Demand for fast-charging lithium-ion batteries(LIBs)has escalated incredibly in the past few years.A conventional method to improve the performance is to chemically partly substitute the transition metal with another to increase its conductivity.In this study,we have chosen to investigate the lithium diffusion in doped anatase(TiO_(2))anodes for high-rate LIBs.Substitutional doping of TiO_(2)with the pentavalent Nb has previously been shown to increase the high-rate performances of this anode material dramatically.Despite the conventional belief,we explicitly show that Nb is mobile and diffusing at room temperature,and different diffusion mechanisms are discussed.Diffusing Nb in TiO_(2)has staggering implications concerning most chemically substituted LIBs and their performance.While the only mobile ion is typically asserted to be Li,this study clearly shows that the transition metals are also diffusing,together with the Li.This implies that a method that can hinder the diffusion of transition metals will increase the performance of our current LIBs even further.展开更多
Over the past few decades,first-row transition metal complexes have emerged as promising candidates for photocatalyst design.By strategically selecting ligands and optimizing their structures and configurations,resear...Over the past few decades,first-row transition metal complexes have emerged as promising candidates for photocatalyst design.By strategically selecting ligands and optimizing their structures and configurations,researchers have developed a range of photoactive complexes of copper,nickel,iron,cobalt,chromium,and manganese,which exhibit distinct photoactivity compared to conventional heavy metal complexes and organic dyes.Despite these advances,their application in organic synthesis remains in its early stages.This comprehensive review endeavors to trace the evolution of photoactive first-row transition metal complexes,with a particular focus on Cr,Mn,Co,and Fe systems as triplet-state photosensitizers and/or photoredox catalysts in organic transformations.Through a detailed analysis of design principles,reaction mechanisms,and synthetic utility,we highlight both the transformative potential and current limitations of these cost-effective,Earth-abundant metal complexes in photocatalysis.展开更多
Two-dimensional(2D)transition metal sulfides(TMDs)are emerging and highly well received 2D materials,which are considered as an ideal 2D platform for studying various electronic properties and potential applications d...Two-dimensional(2D)transition metal sulfides(TMDs)are emerging and highly well received 2D materials,which are considered as an ideal 2D platform for studying various electronic properties and potential applications due to their chemical diversity.Converting 2D TMDs into one-dimensional(1D)TMDs nanotubes can not only retain some advantages of 2D nanosheets but also providing a unique direction to explore the novel properties of TMDs materials in the 1D limit.However,the controllable preparation of high-quality nanotubes remains a major challenge.It is very necessary to review the advanced development of one-dimensional transition metal dichalcogenide nanotubes from preparation to application.Here,we first summarize a series of bottom-up synthesis methods of 1D TMDs,such as template growth and metal catalyzed method.Then,top-down synthesis methods are summarized,which included selfcuring and stacking of TMDs nanosheets.In addition,we discuss some key applications that utilize the properties of 1D-TMDs nanotubes in the areas of catalyst preparation,energy storage,and electronic devices.Last but not least,we prospect the preparation methods of high-quality 1D-TMDs nanotubes,which will lay a foundation for the synthesis of high-performance optoelectronic devices,catalysts,and energy storage components.展开更多
Recent advancements in electrocatalysis have highlighted the exceptional application value of amorphous electrocatalysts. Withtheir unique atomic configurations, these electrocatalysts exhibit superior catalytic perfo...Recent advancements in electrocatalysis have highlighted the exceptional application value of amorphous electrocatalysts. Withtheir unique atomic configurations, these electrocatalysts exhibit superior catalytic performance compared to that of their crystalline coun-terparts. Transition metal(TM) amorphous ribbon-shaped electrocatalysts have recently emerged as a new frontier in the catalysis field.Dealloying is widely considered a fascinating method for enhancing the electrocatalyst performance. In this review, we comprehensivelyexamine the principles of water electrolysis, discuss the prevalent methods for fabricating ribbon-configured electrocatalysts, and providean overview of amorphous alloys. Furthermore, we discuss binary, ternary, and high-entropy amorphous TM-based electrocatalysts,which satisfy the requirements necessary for effective water electrolysis. We also propose strategies to enhance the activity of amorphousTM-based ribbons, including morphology control, defect engineering, composition optimization, and heterostructure creation in differentelectrolytes. Our focus extends to the latest developments in the design of heterogeneous micro/nanostructures, management of prepara-tion techniques, and synthesis of different compositions. Finally, we address the ongoing challenges and provide a perspective on the fu-ture development of broadly applicable, self-supporting TM ribbon-shaped electrocatalysts.展开更多
Transition metal possesses a unique d-orbital electronic structure,which imparts a diverse range of physical and chemical properties.These properties render them significant in fields such as chemistry and materials s...Transition metal possesses a unique d-orbital electronic structure,which imparts a diverse range of physical and chemical properties.These properties render them significant in fields such as chemistry and materials science.The distinctive optical,electrical,and magnetic properties of these complexes can be attributed to the variations in the quantity of d-orbital electrons,thereby influencing their spin and orbital characteristics.The d-orbitals facilitate the formation of stable multidirectional bonds with ligands,resulting in a variety of geometric structures and rich coordination chemistry.These interactions result in variations in energy levels,thereby producing diverse electrical properties,including low attenuation coefficients,high rectification ratios,and unique multichannel transmission.Moreover,the unpaired electrons inthe d-orbitals can give rise to diverse magnetic behaviors,leading to magnetic effects such as spin-related interfaces,switches,and magnetoresistance.This paves the way for extensive possibilities in the design and application of single-molecule devices.This review elaborates on singlemolecule physical properties of transition metal complexes,including length attenuation,rectification,multi-channel transmission,thermoelectric effect,and spin regulation,which are vital for the functionalization and regulation of molecular electronics.In addition,this review also explores the correlation between these physical properties and the electronic structure of transition metals,discussing the broad prospects of transition metal complexes in the fields of nanoelectronics,optoelectronics,and quantum technology.展开更多
The transition metal-catalyzed C–H activation have been considered as increasingly useful approach for installing new functional groups onto organic small molecules due to their high step-and atom-economy,the abundan...The transition metal-catalyzed C–H activation have been considered as increasingly useful approach for installing new functional groups onto organic small molecules due to their high step-and atom-economy,the abundance of hydrocarbon compounds,and the potential for late-stage functionalization of complex organic molecules.The ortho-and meta-C-H activation and functionalization of aromatic compounds have been widely explored in recent years,however the distal para-C-H activation and functionalization has remained a significant challenge because of the difficulty in forming energetically favorable metallacyclic transition states.The utilization of appropriate directing groups or templates as well as the meticulous design of catalysts and ligands has proven to be effective in transition-metal-catalyzed remote para-C-H bonds activation and functionalization of aromatic compounds.This review aims to summarize the strategies for controlling para-selective C–H functionalization using the directing group,template engineering,and catalyst/ligand design under transition metals catalysis in recent years.展开更多
The labels of VU1 and VU2 in Fig.1(b)of the paper[Chin.Phys.B 34046801(2025)]were not correctly placed.The correct figure is provided.This modification does not affect the result presented in the paper.
At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenid...At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenides(TMDs)has excellent photothermal properties and plays a key role in photothermal seawater desalination.In recent years,a lot of progress has been made regarding TMDs in photothermal seawater desalination,so it is necessary to review the progress of TMDs structure regulation in improving photothermal properties to further enhance the development of this filed.In this review,firstly,various structural regulation methods of TMDs to optimize its properties and improve the performance of photothermal seawater desalination are comprehensively summarized.Secondly,the relationship between unique structure and its photothermal properties of TMDs is further detailedly discussed.Last but not least,we have provided some suggestions in the solar desalination applying TMDs in future.This review would provide a very important reference for the research of structure regulation of TMDs for effective photothermal seawater desalination.展开更多
Transition metals have garnered significant attention for their roles in addressing energy shortages and environmental water pollution.Their multivalent states and unique electron transfer properties facilitate charge...Transition metals have garnered significant attention for their roles in addressing energy shortages and environmental water pollution.Their multivalent states and unique electron transfer properties facilitate charge transfer in the conversion reaction,expedite energy conversion,and achieve low-energy water treatment.This review comprehensively explores the fundamental mechanisms and practical applications of transition metals in water treatment,including adsorption,photocatalysis,electrocatalysis,photoelectrocatalysis,and other technologies.The feasibility of water treatment using transition metal-based materials is demonstrated through theoretical studies on typical transition metals employed in these water treatment technologies while emphasizing the potential for optimizing material performance through strategies like structural design,defect engineering,crystal engineering,composite materials,surface modification,and atomic catalysts.In addition,the utilization of transition metal-based materials in practical wastewater treatment is comprehensively reviewed.Finally,the challenges and perspectives of transition metal-based materials in practical wastewater treatment are outlined,providing a theoretical foundation and guidance for future research and engineering advancements.展开更多
The thermal conductivity of two-dimensional transition metal dichalcogenides(TMDs)materials is significantly reduced compared to bulk materials due to the quantum size effect,which renders them highly application prom...The thermal conductivity of two-dimensional transition metal dichalcogenides(TMDs)materials is significantly reduced compared to bulk materials due to the quantum size effect,which renders them highly application promising as thermoelectric materials.Here,we employ first-principles methods combined with the non-equilibrium Green's functional formalisms(NEGF-DFT)to reveal the impact of pressure on the thermoelectric performance of monolayer,bilayer and heterostructure TMDs(2H-MoS_(2),2H-WS_(2)and MoS_(2)@WS_(2))materials.The thermoelectric performance of monolayer and heterostructure is significantly enhanced under specific low pressure,and the figure of merit(ZT)of monolayer MoS_(2)and WS_(2)can reaching up to 2.79 and 2.68 at 700 K.Conversely,for bilayer materials,pressure led to a decrease in ZT.The simultaneous discovery of a unique phenomenon in Mobased TMDs materials is that they can undergo transformation from N-type to P-type thermoelectric materials with high electrical conductivity under higher pressure.This is because the pressure causes different effects on the carrier motion at different high symmetry points.Additionally,another bilayer stacking mode is constructed,which successfully surpasses the thermoelectric performance of traditional bilayer MoS_(2)by a specific pressure.This study shows a method to enhance the thermoelectric performance,and more importantly provides a theory that can predict the effect of pressure on the thermoelectric performance of all structures constructed from TMDs materials.展开更多
Hydrogen evolution reaction(HER)plays a crucial role in developing clean and renewable hydrogen energy technologies.However,conventional HER catalysts rely on expensive and scarce noble metals,which is a significant c...Hydrogen evolution reaction(HER)plays a crucial role in developing clean and renewable hydrogen energy technologies.However,conventional HER catalysts rely on expensive and scarce noble metals,which is a significant challenge for practical application.Recently,twodimensional transition metal dichalcogenides(2D-TMDs)have emerged as attractive and cost-effective alternatives for efficient electrocatalysis in the HER.Substantial efforts have been dedicated to advancing the synthesis and application of 2D-TMDs.This review highlights the design and synthesis of high-performance 2D-TMDs-based HER electrocatalysts by combining theoretical calculations with experimental methods.Subsequently,recent advances in synthesizing different types of 2D TMDs with enhanced HER activity are summarized.Finally,the conclusion and perspectives of the 2D TMDs-based HER electrocatalysts are discussed.We expect that this review will provide new insights into the design and development of highly efficient 2D TMDs-based HER electrocatalysts for industrial applications.展开更多
Designing high-performance electrocatalysts is one of the key challenges in the development of microbial electrochemical hydrogen production.Transition metal-based(TM-based)electrocatalysts are introduced as an astoni...Designing high-performance electrocatalysts is one of the key challenges in the development of microbial electrochemical hydrogen production.Transition metal-based(TM-based)electrocatalysts are introduced as an astonishing alternative for future catalysts by addressing several disadvantages,like the high cost and low performance of noble metal and metal-free electrocatalysts,respectively.In this critical review,a comprehensive analysis of the major development of all families of TMbased catalysts from the beginning development of microbial electrolysis cells in the last 15 years is presented.Importantly,pivotal design parameters such as selecting efficient synthesis methods based on the type of material,main criteria during each synthesizing method,and the pros and cons of various procedures are highlighted and compared.Moreover,procedures for tuning and tailoring the structures,advanced strategies to promote active sites,and the potential for implementing novel unexplored TM-based hybrid structures suggested.Furthermore,consideration for large-scale application of TM-based catalysts for future mass production,including life cycle assessment,cost assessment,economic analysis,and recently pilot-scale studies were highlighted.Of great importance,the potential of utilizing artificial intelligence and advanced computational methods such as active learning,microkinetic modeling,and physics-informed machine learning in designing high-performance electrodes in successful practices was elucidated.Finally,a conceptual framework for future studies and remaining challenges on different aspects of TM-based electrocatalysts in microbial electrolysis cells is proposed.展开更多
Calculating the inter-layer ion diffusion barrier, a crucial metric for evaluating the rate performance of 2D electrode materials, is time-consuming using the transition state search approach. A novel electrostatic po...Calculating the inter-layer ion diffusion barrier, a crucial metric for evaluating the rate performance of 2D electrode materials, is time-consuming using the transition state search approach. A novel electrostatic potential distribution image (EPDI) transfer learning method has been proposed to efficiently and accurately predict the lithium diffusion barriers on metal element-doped transition metal dichalcogenide (TMD) surfaces. Through the analysis of the mean electrostatic potential (MEP) around binding sites, a positive correlation between binding energy and MEP in VIB-TMDs was identified. Subsequently, transfer learning techniques were used to develop a DenseNet121-TL model for establishing a more accurate mapping between the binding energy and electrostatic potential distribution. Trained on training sets containing 33% and 50% transition state search calculation results, which save 66% and 50% of the calculation time, respectively, the model achieves accurate predictions of the saddle point binding energy with mean absolute errors (MAEs) of 0.0444 and 0.0287 eV on the testing set. Based on the prediction of saddle point binding energies, we obtained a diffusion minimum energy profile with an MAE of 0.0235 eV. Furthermore, by analyzing the diffusion data, we observed that the diffusion barrier was lowered by 10% on V-doped TiS2 compared to the stoichiometric surface. Our findings are expected to provide new insights for the high-throughput calculation of ion diffusion on 2D materials.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMDs),endowed with exceptional light-matter interaction strength,have become a pivotal platform in advanced optoelectronics,enabling atomically precise control of ex...Two-dimensional(2D)transition metal dichalcogenides(TMDs),endowed with exceptional light-matter interaction strength,have become a pivotal platform in advanced optoelectronics,enabling atomically precise control of excitonic phenomena and offering transformative potential for engineering next-generation optoelectronic devices.In contrast to the narrowband absorption characteristics of conventional band-edge excitons,which are limited by the bandgap energy,highenergy excitons not only demonstrate broad momentum matching capability in the ultraviolet regime due to band nesting effects,but also exhibit distinct absorption peak signatures owing to robust excitonic stabilization under 2D confinement.These unique photophysical properties have established such systems as a prominent research frontier in contemporary exciton physics.This review primarily outlines the distinctive physical characteristics of high-energy excitons in TMDs from the perspectives of band structure,excitonic characteristics,and optical properties.Subsequently,we systematically delineate cutting-edge developments in TMD-based photonic devices exploiting high-energy excitonic band-nesting phenomena,with dedicated emphasis on the strategic engineering of nanoscale heterostructures for tailored optoelectronic functionality.Finally,the discussion concludes with an examination of the challenges associated with the design of high-energy exciton devices and their potential future applications.展开更多
Development of accurate analytical protocols for cancer biomarkers is used for the initial prescreening of malignant tumors,disease surveillance,and efficacy assessment with significant clinical benefits.In this work,...Development of accurate analytical protocols for cancer biomarkers is used for the initial prescreening of malignant tumors,disease surveillance,and efficacy assessment with significant clinical benefits.In this work,we reported a liposome-mediated signal-off photoelectrochemical(PEC)immunoassay for the sensitive detection of carcinoembryonic antigen(CEA)using ternary transition metal sulfide CuS/ZnCdS as the photoactive material.Good photocurrents were acquired on the basis of specific oxidation reaction of dopamine on the CuS/ZnCdS.The energy band relationship of CuS/ZnCdS was determined,and the wellmatched oxidation potential of dopamine was verified.To achieve accurate recovery of low-abundance CEA,systematic PEC evaluation from human serum samples was performed by combining with classical immunoreaction and liposome-induced dopamine amplification strategy with high stability and selectivity.Under optimum conditions,PEC immunoassay displayed good photocurrent responses toward target CEA with a dynamic linear range of 0.1-50 ng/mL with a detection limit of 31.6 pg/mL.Importantly,this system by combining with a discussion of energy level matching between semiconductor energy bands and small-molecules opens a new horizon for development of high-efficient PEC immunoassays.展开更多
Ammonia(NH_(3))plays an important role in the world economy and its demand is steadily rising alongside the progress of modern society.The electrocatalytic nitrogen reduction reaction(NRR)is presently regarded as a hi...Ammonia(NH_(3))plays an important role in the world economy and its demand is steadily rising alongside the progress of modern society.The electrocatalytic nitrogen reduction reaction(NRR)is presently regarded as a high-po-tential method for the synthesis of NH_(3).Nev-ertheless,the development of efficient NRR electrocatalysts remains a challenging task.In this study,various transition metal(TM)sin-gle atoms(TM=Sc-Zn,Y-Cd except Tc,and Ta-Pt)anchored onγ-graphyne(γ-GY)are sys-tematically investigated as NRR electrocatalysts using density functional theory(DFT)cal-culations.According to several criteria regarding the adsorption stability of isolated TM sin-gle atoms onγ-graphyne,the adsorption properties of N_(2) on these TM single atoms,the ad-sorption competition between N_(2) and H,and the free energy change in the initial protonation process for N_(2),we find that Os@γ-GY and Re@γ-GY may be suitable electrocatalysts for NRR,and analyze the reasons why the two types of single atoms can well adsorb and activate N_(2) molecules.From the reaction pathways of NRR catalyzed by the two single-atom systems,we further find that NRR is hindered by the step of*NH_(2) hydrogenation to*NH_(3) on Re@γ-GY but can proceed well on Os@γ-GY.Thus,Os@γ-GY behaves best in catalyzing NRR among theγ-GY anchored single atom systems studied.This work has the potential to offer valuable recommendations for the development of novel and highly effective NRR electrocat-alysts.展开更多
Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structu...Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.展开更多
Developing nonprecious electrocatalysts with bifunctional performances for oxygen reduction(ORR)and evolution reactions(OER)remains a crucial challenge in rechargeable Zn-air batteries(RZABs).In this study,we report t...Developing nonprecious electrocatalysts with bifunctional performances for oxygen reduction(ORR)and evolution reactions(OER)remains a crucial challenge in rechargeable Zn-air batteries(RZABs).In this study,we report the synthesis of a three-dimensional(3D)porous N,P-doped carbon-wrapped cobalt phosphide composite(Co2P@3DNPC)via direct calcination of a novel organic/inorganic porous coordi-nation polymer by an in-situ phosphating strategy.DFT calculations demonstrate the intricate interac-tions occurring during the PEI-directed grinding self-assembly process among Co^(2+),phytic acid(PA),and polyethylenimine(PEI).Specifically,Co^(2+)ions initially adsorb onto PEI molecules before integrating with PA to form a 3D coordination polymer matrix.As-fabricated Co2P@3DNPC composite exhibits impressive ORR/OER bifunctional performances,with a half-wave potential of 0.78 V and an overpotential of 1.71 V,respectively.Its bifunctional activities enable a power density of 148.5 mW cm^(-2)in rechargeable ZABs,with remarkable stability(>480 h)during a discharge-charge cycle.The interconnected porous structure and embedded Co2P nanoparticles optimize the electrode-electrolyte interfacial contact,boosting energy density and cycle life of as-assembled ZABs.This innovative approach paves the way for efficient,cost-effective production of bifunctional electrocatalysts for RZABs.展开更多
Hydrogen evolution reaction(HER)in acidic media has been spotlighted for hydrogen production since it is a favourable kinetics with the supplied protons from a counterpart compared to that within alkaline environment....Hydrogen evolution reaction(HER)in acidic media has been spotlighted for hydrogen production since it is a favourable kinetics with the supplied protons from a counterpart compared to that within alkaline environment.However,there is no choice but to use a platinum-based catalyst yet.As for a noble metal-free electrocatalyst,incorporation of earth-abundant transition metal(TM)atoms into nanocarbon platforms has been extensively adopted.Although a data-driven methodology facilitates the rational design of TM-anchored carbon catalysts,its practical application suffers from either a simplified theoretical model or the prohibitive cost and complexity of experimental data generation.Herein,an effective and facile catalyst design strategy is proposed based on machine learning(ML)and its model verification using electrochemical methods accompanied by density functional theory simulations.Based on a Bayesian genetic algorithm ML model,the Ni-incorporated carbon quantum dots(Ni@CQD)loaded on a three-dimensional reduced graphene oxide conductor are proposed as the best HER catalyst amongst the various TM-incorporated CQDs under the optimal conditions of catalyst loading,electrode type,and temperature and pH of electrolyte.The ML results are validated with electrochemical experiments,where the Ni@CQD catalyst exhibited superior HER activity,requiring an overpotential of 151 mV to achieve 10 mAcm^(−2) with a Tafel slope of 52 mV dec^(−1) and impressive durability in acidic media up to 100 h.This methodology can provide an effective route for the rational design of highly active electrocatalysts for commercial applications.展开更多
基金funded by the National Key R&D Program of China(No.2022YFF0904000)Cross-disciplinary Innovation Project of Jilin University(No.JLUXKJC2021ZZ01)the financial support from National Natural Science Foundation of China(No.62201497).
文摘The performance of hydrogel radical polymerization under ambient conditions is a major challenge because oxygen is an effective radical quencher and the steps to remove or neutralize it are time consuming and laborious.A self-initiating system consisting of transition metals and acetylacetone has been successfully developed.The system is capable of initiating free radical polymerization of hydrogels at room temperature under aerobic conditions,which is attributed to carbon radicals generated by the oxidation of acetylacetone.Some of these carbon radicals reduce oxygen to generate hydroxyl radicals,which together induce self-coagulation of hydrogels.The polymerization system was effective for a variety of monomer and hydrogel swelling and shrinking schemes,and the reaction remained successful when exposed to saturated oxygen.In conclusion,the results demonstrate that the present strategy is an effective approach to addressing the challenge of deoxygenation in polymer synthesis,and provides a convenient method for synthesizing multifunctional hydrogels under ambient conditions.
基金supported by Vetenskapsrådet(2022-06217)supported by the Swedish Research Council(VR)through a Starting Grant(Dnr.2017-05078)+7 种基金M.M.through a Marie Sklodowska-Curie Action and the Swedish Research Council-VR(Dnr.2014-6426 and 2016-06955)Carl Tryggers Foundation for Scientific Research(CTS-18:272)supported by the Swedish Research Council(VR)through Grant 2022-06217the Foundation Blanceflor fellow scholarships for 2023 and 2024the Ruth and Nils-Erik Stenbäck Foundationthe funding from the Area of Advance-Material Sciences from Chalmers University of Technologysupported byÅForsk via the grant 22-378supported by the Japan Society for the Promotion Science(JSPS)KAKENHI Grant Nos.JP20K1149,JP23H01840 and JP24H00042.
文摘Demand for fast-charging lithium-ion batteries(LIBs)has escalated incredibly in the past few years.A conventional method to improve the performance is to chemically partly substitute the transition metal with another to increase its conductivity.In this study,we have chosen to investigate the lithium diffusion in doped anatase(TiO_(2))anodes for high-rate LIBs.Substitutional doping of TiO_(2)with the pentavalent Nb has previously been shown to increase the high-rate performances of this anode material dramatically.Despite the conventional belief,we explicitly show that Nb is mobile and diffusing at room temperature,and different diffusion mechanisms are discussed.Diffusing Nb in TiO_(2)has staggering implications concerning most chemically substituted LIBs and their performance.While the only mobile ion is typically asserted to be Li,this study clearly shows that the transition metals are also diffusing,together with the Li.This implies that a method that can hinder the diffusion of transition metals will increase the performance of our current LIBs even further.
基金the National Natural Science Foundation of China(Nos.22071206 and 22350009)Fujian Provincial Natural Science Foundation of China(No.2024J010002).
文摘Over the past few decades,first-row transition metal complexes have emerged as promising candidates for photocatalyst design.By strategically selecting ligands and optimizing their structures and configurations,researchers have developed a range of photoactive complexes of copper,nickel,iron,cobalt,chromium,and manganese,which exhibit distinct photoactivity compared to conventional heavy metal complexes and organic dyes.Despite these advances,their application in organic synthesis remains in its early stages.This comprehensive review endeavors to trace the evolution of photoactive first-row transition metal complexes,with a particular focus on Cr,Mn,Co,and Fe systems as triplet-state photosensitizers and/or photoredox catalysts in organic transformations.Through a detailed analysis of design principles,reaction mechanisms,and synthetic utility,we highlight both the transformative potential and current limitations of these cost-effective,Earth-abundant metal complexes in photocatalysis.
基金supported by the National Natural Science Foundation of China(No.22202065).
文摘Two-dimensional(2D)transition metal sulfides(TMDs)are emerging and highly well received 2D materials,which are considered as an ideal 2D platform for studying various electronic properties and potential applications due to their chemical diversity.Converting 2D TMDs into one-dimensional(1D)TMDs nanotubes can not only retain some advantages of 2D nanosheets but also providing a unique direction to explore the novel properties of TMDs materials in the 1D limit.However,the controllable preparation of high-quality nanotubes remains a major challenge.It is very necessary to review the advanced development of one-dimensional transition metal dichalcogenide nanotubes from preparation to application.Here,we first summarize a series of bottom-up synthesis methods of 1D TMDs,such as template growth and metal catalyzed method.Then,top-down synthesis methods are summarized,which included selfcuring and stacking of TMDs nanosheets.In addition,we discuss some key applications that utilize the properties of 1D-TMDs nanotubes in the areas of catalyst preparation,energy storage,and electronic devices.Last but not least,we prospect the preparation methods of high-quality 1D-TMDs nanotubes,which will lay a foundation for the synthesis of high-performance optoelectronic devices,catalysts,and energy storage components.
基金financially supported by the Yancheng Polytechnic College School-Level Scientific Research, China (No. ygy1903)the National Natural Science Foundation of China (Nos. 52001163, 52075237, and 52371157)+2 种基金the Open Project of Taihu Laboratory of Deep-Sea Technology Science, Key Research and Development Plan of Jiangsu Province, China (No. BE2019119)supported by the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD), Chinathe research funding for the Jiangsu Specially-Appointed Professor Program, China。
文摘Recent advancements in electrocatalysis have highlighted the exceptional application value of amorphous electrocatalysts. Withtheir unique atomic configurations, these electrocatalysts exhibit superior catalytic performance compared to that of their crystalline coun-terparts. Transition metal(TM) amorphous ribbon-shaped electrocatalysts have recently emerged as a new frontier in the catalysis field.Dealloying is widely considered a fascinating method for enhancing the electrocatalyst performance. In this review, we comprehensivelyexamine the principles of water electrolysis, discuss the prevalent methods for fabricating ribbon-configured electrocatalysts, and providean overview of amorphous alloys. Furthermore, we discuss binary, ternary, and high-entropy amorphous TM-based electrocatalysts,which satisfy the requirements necessary for effective water electrolysis. We also propose strategies to enhance the activity of amorphousTM-based ribbons, including morphology control, defect engineering, composition optimization, and heterostructure creation in differentelectrolytes. Our focus extends to the latest developments in the design of heterogeneous micro/nanostructures, management of prepara-tion techniques, and synthesis of different compositions. Finally, we address the ongoing challenges and provide a perspective on the fu-ture development of broadly applicable, self-supporting TM ribbon-shaped electrocatalysts.
基金financially supported by the National Key R&D Program of China(Nos.2021YFA1200102,2021YFA1200101,2023YFF1205803,2022YFE0128700)the National Natural Science Foundation of China(Nos.22173050,22150013,21727806,21933001)+1 种基金Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXXM-202407)the Natural Science Foundation of Beijing(No.2222009)
文摘Transition metal possesses a unique d-orbital electronic structure,which imparts a diverse range of physical and chemical properties.These properties render them significant in fields such as chemistry and materials science.The distinctive optical,electrical,and magnetic properties of these complexes can be attributed to the variations in the quantity of d-orbital electrons,thereby influencing their spin and orbital characteristics.The d-orbitals facilitate the formation of stable multidirectional bonds with ligands,resulting in a variety of geometric structures and rich coordination chemistry.These interactions result in variations in energy levels,thereby producing diverse electrical properties,including low attenuation coefficients,high rectification ratios,and unique multichannel transmission.Moreover,the unpaired electrons inthe d-orbitals can give rise to diverse magnetic behaviors,leading to magnetic effects such as spin-related interfaces,switches,and magnetoresistance.This paves the way for extensive possibilities in the design and application of single-molecule devices.This review elaborates on singlemolecule physical properties of transition metal complexes,including length attenuation,rectification,multi-channel transmission,thermoelectric effect,and spin regulation,which are vital for the functionalization and regulation of molecular electronics.In addition,this review also explores the correlation between these physical properties and the electronic structure of transition metals,discussing the broad prospects of transition metal complexes in the fields of nanoelectronics,optoelectronics,and quantum technology.
基金support from the National Natural Science Foundation of China(No.21901206)Postdoctoral Science Foundation of China(No.2022M712589)+2 种基金General Key R&D Projects in Shaanxi Province(No.2023-YBGY-321)Natural Science Foundation of Chongqing(No.CSTB2022NSCQ-MSX0826)National&Local Joint Engineering Research Center for mineral Salt Deep Utilization,Huaiyin Institute of Technology(No.SF202407)for financial support。
文摘The transition metal-catalyzed C–H activation have been considered as increasingly useful approach for installing new functional groups onto organic small molecules due to their high step-and atom-economy,the abundance of hydrocarbon compounds,and the potential for late-stage functionalization of complex organic molecules.The ortho-and meta-C-H activation and functionalization of aromatic compounds have been widely explored in recent years,however the distal para-C-H activation and functionalization has remained a significant challenge because of the difficulty in forming energetically favorable metallacyclic transition states.The utilization of appropriate directing groups or templates as well as the meticulous design of catalysts and ligands has proven to be effective in transition-metal-catalyzed remote para-C-H bonds activation and functionalization of aromatic compounds.This review aims to summarize the strategies for controlling para-selective C–H functionalization using the directing group,template engineering,and catalyst/ligand design under transition metals catalysis in recent years.
文摘The labels of VU1 and VU2 in Fig.1(b)of the paper[Chin.Phys.B 34046801(2025)]were not correctly placed.The correct figure is provided.This modification does not affect the result presented in the paper.
基金financially supported by the National Natural Science Foundation of China(No.51902101)Natural Science Foundation of Jiangsu Province(No.BK20201381)。
文摘At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenides(TMDs)has excellent photothermal properties and plays a key role in photothermal seawater desalination.In recent years,a lot of progress has been made regarding TMDs in photothermal seawater desalination,so it is necessary to review the progress of TMDs structure regulation in improving photothermal properties to further enhance the development of this filed.In this review,firstly,various structural regulation methods of TMDs to optimize its properties and improve the performance of photothermal seawater desalination are comprehensively summarized.Secondly,the relationship between unique structure and its photothermal properties of TMDs is further detailedly discussed.Last but not least,we have provided some suggestions in the solar desalination applying TMDs in future.This review would provide a very important reference for the research of structure regulation of TMDs for effective photothermal seawater desalination.
基金financially supported by the National Natural Science Foundation of China(Nos.22306026 and 52371346)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2023QNRC001)+3 种基金the Ecological Society of China(No.STQT2023C07)the Fundamental Research Funds for the Central Universities(Nos.2242024K40007 and 2242024RCB0058)the Start-up Research Fund of Southeast University(No.RF1028623141)Tang Scholar Program of Southeast University
文摘Transition metals have garnered significant attention for their roles in addressing energy shortages and environmental water pollution.Their multivalent states and unique electron transfer properties facilitate charge transfer in the conversion reaction,expedite energy conversion,and achieve low-energy water treatment.This review comprehensively explores the fundamental mechanisms and practical applications of transition metals in water treatment,including adsorption,photocatalysis,electrocatalysis,photoelectrocatalysis,and other technologies.The feasibility of water treatment using transition metal-based materials is demonstrated through theoretical studies on typical transition metals employed in these water treatment technologies while emphasizing the potential for optimizing material performance through strategies like structural design,defect engineering,crystal engineering,composite materials,surface modification,and atomic catalysts.In addition,the utilization of transition metal-based materials in practical wastewater treatment is comprehensively reviewed.Finally,the challenges and perspectives of transition metal-based materials in practical wastewater treatment are outlined,providing a theoretical foundation and guidance for future research and engineering advancements.
基金financially supported by the National Natural Science Foundation of China (Nos.11874407, 91436102 and 11374353)the Fundamental Research Funds for the Central Universities (No.06500067)
文摘The thermal conductivity of two-dimensional transition metal dichalcogenides(TMDs)materials is significantly reduced compared to bulk materials due to the quantum size effect,which renders them highly application promising as thermoelectric materials.Here,we employ first-principles methods combined with the non-equilibrium Green's functional formalisms(NEGF-DFT)to reveal the impact of pressure on the thermoelectric performance of monolayer,bilayer and heterostructure TMDs(2H-MoS_(2),2H-WS_(2)and MoS_(2)@WS_(2))materials.The thermoelectric performance of monolayer and heterostructure is significantly enhanced under specific low pressure,and the figure of merit(ZT)of monolayer MoS_(2)and WS_(2)can reaching up to 2.79 and 2.68 at 700 K.Conversely,for bilayer materials,pressure led to a decrease in ZT.The simultaneous discovery of a unique phenomenon in Mobased TMDs materials is that they can undergo transformation from N-type to P-type thermoelectric materials with high electrical conductivity under higher pressure.This is because the pressure causes different effects on the carrier motion at different high symmetry points.Additionally,another bilayer stacking mode is constructed,which successfully surpasses the thermoelectric performance of traditional bilayer MoS_(2)by a specific pressure.This study shows a method to enhance the thermoelectric performance,and more importantly provides a theory that can predict the effect of pressure on the thermoelectric performance of all structures constructed from TMDs materials.
基金supported by the National Key Projects for Fundamental Research and Development of China(2021YFA1500803)the National Natural Science Foundation of China(51825205,52120105002,22088102,22279150,22209186)+1 种基金the Beijing Natural Science Foundation(2222080)the Youth Innovation Promotion Association of the CAS(Y2021011)。
文摘Hydrogen evolution reaction(HER)plays a crucial role in developing clean and renewable hydrogen energy technologies.However,conventional HER catalysts rely on expensive and scarce noble metals,which is a significant challenge for practical application.Recently,twodimensional transition metal dichalcogenides(2D-TMDs)have emerged as attractive and cost-effective alternatives for efficient electrocatalysis in the HER.Substantial efforts have been dedicated to advancing the synthesis and application of 2D-TMDs.This review highlights the design and synthesis of high-performance 2D-TMDs-based HER electrocatalysts by combining theoretical calculations with experimental methods.Subsequently,recent advances in synthesizing different types of 2D TMDs with enhanced HER activity are summarized.Finally,the conclusion and perspectives of the 2D TMDs-based HER electrocatalysts are discussed.We expect that this review will provide new insights into the design and development of highly efficient 2D TMDs-based HER electrocatalysts for industrial applications.
文摘Designing high-performance electrocatalysts is one of the key challenges in the development of microbial electrochemical hydrogen production.Transition metal-based(TM-based)electrocatalysts are introduced as an astonishing alternative for future catalysts by addressing several disadvantages,like the high cost and low performance of noble metal and metal-free electrocatalysts,respectively.In this critical review,a comprehensive analysis of the major development of all families of TMbased catalysts from the beginning development of microbial electrolysis cells in the last 15 years is presented.Importantly,pivotal design parameters such as selecting efficient synthesis methods based on the type of material,main criteria during each synthesizing method,and the pros and cons of various procedures are highlighted and compared.Moreover,procedures for tuning and tailoring the structures,advanced strategies to promote active sites,and the potential for implementing novel unexplored TM-based hybrid structures suggested.Furthermore,consideration for large-scale application of TM-based catalysts for future mass production,including life cycle assessment,cost assessment,economic analysis,and recently pilot-scale studies were highlighted.Of great importance,the potential of utilizing artificial intelligence and advanced computational methods such as active learning,microkinetic modeling,and physics-informed machine learning in designing high-performance electrodes in successful practices was elucidated.Finally,a conceptual framework for future studies and remaining challenges on different aspects of TM-based electrocatalysts in microbial electrolysis cells is proposed.
基金supported by the National Natural Science Foundation of China(Nos.51974056 and 51474047)the Foundation of the Supercomputing Center of Dalian University of Technology,and the Foundation of the Key Laboratory of Solidification Control and Digital Preparation Technology(Liaoning Province),China.
文摘Calculating the inter-layer ion diffusion barrier, a crucial metric for evaluating the rate performance of 2D electrode materials, is time-consuming using the transition state search approach. A novel electrostatic potential distribution image (EPDI) transfer learning method has been proposed to efficiently and accurately predict the lithium diffusion barriers on metal element-doped transition metal dichalcogenide (TMD) surfaces. Through the analysis of the mean electrostatic potential (MEP) around binding sites, a positive correlation between binding energy and MEP in VIB-TMDs was identified. Subsequently, transfer learning techniques were used to develop a DenseNet121-TL model for establishing a more accurate mapping between the binding energy and electrostatic potential distribution. Trained on training sets containing 33% and 50% transition state search calculation results, which save 66% and 50% of the calculation time, respectively, the model achieves accurate predictions of the saddle point binding energy with mean absolute errors (MAEs) of 0.0444 and 0.0287 eV on the testing set. Based on the prediction of saddle point binding energies, we obtained a diffusion minimum energy profile with an MAE of 0.0235 eV. Furthermore, by analyzing the diffusion data, we observed that the diffusion barrier was lowered by 10% on V-doped TiS2 compared to the stoichiometric surface. Our findings are expected to provide new insights for the high-throughput calculation of ion diffusion on 2D materials.
基金Project supported by the National Natural Science Foundation Fund for Distinguished Young Scholars(Grant No.52025022)the National Natural Science Foundation of China(Grant Nos.62574038,12474421,62275045,and 12074060)+1 种基金the National Key R&D Program of China(Grant No.2023YFB3610200)the Fund from Jilin Province(Grant Nos.JJKH20241413KJ and 20240601049RC)。
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDs),endowed with exceptional light-matter interaction strength,have become a pivotal platform in advanced optoelectronics,enabling atomically precise control of excitonic phenomena and offering transformative potential for engineering next-generation optoelectronic devices.In contrast to the narrowband absorption characteristics of conventional band-edge excitons,which are limited by the bandgap energy,highenergy excitons not only demonstrate broad momentum matching capability in the ultraviolet regime due to band nesting effects,but also exhibit distinct absorption peak signatures owing to robust excitonic stabilization under 2D confinement.These unique photophysical properties have established such systems as a prominent research frontier in contemporary exciton physics.This review primarily outlines the distinctive physical characteristics of high-energy excitons in TMDs from the perspectives of band structure,excitonic characteristics,and optical properties.Subsequently,we systematically delineate cutting-edge developments in TMD-based photonic devices exploiting high-energy excitonic band-nesting phenomena,with dedicated emphasis on the strategic engineering of nanoscale heterostructures for tailored optoelectronic functionality.Finally,the discussion concludes with an examination of the challenges associated with the design of high-energy exciton devices and their potential future applications.
基金financial support from the National Natural Science Foundation of China(Nos.22274022 and 21874022).
文摘Development of accurate analytical protocols for cancer biomarkers is used for the initial prescreening of malignant tumors,disease surveillance,and efficacy assessment with significant clinical benefits.In this work,we reported a liposome-mediated signal-off photoelectrochemical(PEC)immunoassay for the sensitive detection of carcinoembryonic antigen(CEA)using ternary transition metal sulfide CuS/ZnCdS as the photoactive material.Good photocurrents were acquired on the basis of specific oxidation reaction of dopamine on the CuS/ZnCdS.The energy band relationship of CuS/ZnCdS was determined,and the wellmatched oxidation potential of dopamine was verified.To achieve accurate recovery of low-abundance CEA,systematic PEC evaluation from human serum samples was performed by combining with classical immunoreaction and liposome-induced dopamine amplification strategy with high stability and selectivity.Under optimum conditions,PEC immunoassay displayed good photocurrent responses toward target CEA with a dynamic linear range of 0.1-50 ng/mL with a detection limit of 31.6 pg/mL.Importantly,this system by combining with a discussion of energy level matching between semiconductor energy bands and small-molecules opens a new horizon for development of high-efficient PEC immunoassays.
基金supported by the National Natural Science Foundation of China(No.21825302)the Strate-gic Priority Research Program of the Chinese Academy of Sciences(XDB0450101)USTC-SCC,SCCAS,Tianjin,and Shanghai Supercomputer Centers.
文摘Ammonia(NH_(3))plays an important role in the world economy and its demand is steadily rising alongside the progress of modern society.The electrocatalytic nitrogen reduction reaction(NRR)is presently regarded as a high-po-tential method for the synthesis of NH_(3).Nev-ertheless,the development of efficient NRR electrocatalysts remains a challenging task.In this study,various transition metal(TM)sin-gle atoms(TM=Sc-Zn,Y-Cd except Tc,and Ta-Pt)anchored onγ-graphyne(γ-GY)are sys-tematically investigated as NRR electrocatalysts using density functional theory(DFT)cal-culations.According to several criteria regarding the adsorption stability of isolated TM sin-gle atoms onγ-graphyne,the adsorption properties of N_(2) on these TM single atoms,the ad-sorption competition between N_(2) and H,and the free energy change in the initial protonation process for N_(2),we find that Os@γ-GY and Re@γ-GY may be suitable electrocatalysts for NRR,and analyze the reasons why the two types of single atoms can well adsorb and activate N_(2) molecules.From the reaction pathways of NRR catalyzed by the two single-atom systems,we further find that NRR is hindered by the step of*NH_(2) hydrogenation to*NH_(3) on Re@γ-GY but can proceed well on Os@γ-GY.Thus,Os@γ-GY behaves best in catalyzing NRR among theγ-GY anchored single atom systems studied.This work has the potential to offer valuable recommendations for the development of novel and highly effective NRR electrocat-alysts.
基金the research committee at Malek Ashtar University of Technology (MUT) for their invaluable support of this project
文摘Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.
基金supported by the Research Project of the Hubei Provincial Department of Education(Grant No.Q20232503)the Hubei Provincial Natural Science Foundation and Huangshi of China(No.2022CFD039)+8 种基金the National Natural Science Foundation of China(Nos.22075072 and 52301272)the Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province(No.T2021010)the Natural Science Foundation of Hubei Province(No.2023AFB1010)the Natural Science Foundation of Zhejiang Province(No.LQ23E020002)the Wenzhou Key Scientific and Technological Innovation Research Project(No.ZG2023053)the Wenzhou Natural Science Foundation(No.G20220019)the Cooperation between industry and education project of Ministry of Education(No.220601318235513)the Wenzhou Science and Technology Association Serves Scientific and Technological Innovation Projects(KJFW0201)The State Key Laboratory funding of Disaster Prevention&Mitigation of Explosion&Impact(No.LGD-SKL-202203).
文摘Developing nonprecious electrocatalysts with bifunctional performances for oxygen reduction(ORR)and evolution reactions(OER)remains a crucial challenge in rechargeable Zn-air batteries(RZABs).In this study,we report the synthesis of a three-dimensional(3D)porous N,P-doped carbon-wrapped cobalt phosphide composite(Co2P@3DNPC)via direct calcination of a novel organic/inorganic porous coordi-nation polymer by an in-situ phosphating strategy.DFT calculations demonstrate the intricate interac-tions occurring during the PEI-directed grinding self-assembly process among Co^(2+),phytic acid(PA),and polyethylenimine(PEI).Specifically,Co^(2+)ions initially adsorb onto PEI molecules before integrating with PA to form a 3D coordination polymer matrix.As-fabricated Co2P@3DNPC composite exhibits impressive ORR/OER bifunctional performances,with a half-wave potential of 0.78 V and an overpotential of 1.71 V,respectively.Its bifunctional activities enable a power density of 148.5 mW cm^(-2)in rechargeable ZABs,with remarkable stability(>480 h)during a discharge-charge cycle.The interconnected porous structure and embedded Co2P nanoparticles optimize the electrode-electrolyte interfacial contact,boosting energy density and cycle life of as-assembled ZABs.This innovative approach paves the way for efficient,cost-effective production of bifunctional electrocatalysts for RZABs.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2022R1A2C1011559,No.RS-2024-00405818 and NRF-2021M3H4A6A01045764)by the National Supercomputing Center with supercomputing resources including technical support(KSC-2024-CRE-0196)by Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Science and ICT(No.RS-2024-00404712).
文摘Hydrogen evolution reaction(HER)in acidic media has been spotlighted for hydrogen production since it is a favourable kinetics with the supplied protons from a counterpart compared to that within alkaline environment.However,there is no choice but to use a platinum-based catalyst yet.As for a noble metal-free electrocatalyst,incorporation of earth-abundant transition metal(TM)atoms into nanocarbon platforms has been extensively adopted.Although a data-driven methodology facilitates the rational design of TM-anchored carbon catalysts,its practical application suffers from either a simplified theoretical model or the prohibitive cost and complexity of experimental data generation.Herein,an effective and facile catalyst design strategy is proposed based on machine learning(ML)and its model verification using electrochemical methods accompanied by density functional theory simulations.Based on a Bayesian genetic algorithm ML model,the Ni-incorporated carbon quantum dots(Ni@CQD)loaded on a three-dimensional reduced graphene oxide conductor are proposed as the best HER catalyst amongst the various TM-incorporated CQDs under the optimal conditions of catalyst loading,electrode type,and temperature and pH of electrolyte.The ML results are validated with electrochemical experiments,where the Ni@CQD catalyst exhibited superior HER activity,requiring an overpotential of 151 mV to achieve 10 mAcm^(−2) with a Tafel slope of 52 mV dec^(−1) and impressive durability in acidic media up to 100 h.This methodology can provide an effective route for the rational design of highly active electrocatalysts for commercial applications.