The pressure-actuated metal seal with soft metal coating has been widely used in complex working conditions such as high temperature,low temperature and high pressure.The investigation of the characteristics and bindi...The pressure-actuated metal seal with soft metal coating has been widely used in complex working conditions such as high temperature,low temperature and high pressure.The investigation of the characteristics and binding strength of the transition layer between the soft metal coating and the superalloy substrate is important to improve the sealing performance and to model and simplify the working through-process of metal sealing.The distribution characteristics of elements at soft metal-substrate interface and the binding strength between coating and substrate under different thicknesses and material combinations of coating layer were studied by experimental methods.The results indicate that the thickness of soft metal coating has little influence on the interface morphology of GH4169-Cu,GH4169-Ag and Cu-Ag,but has an influence on the thickness of transition layer between different metals,while this influence is weakened with increasing the coating thickness,and the thickness of transition layer is about 2μm when the coating thickness is more than 30μm.The cross-cut test shows that the Cu,Ag and Cu-Ag coatings are all well combined with nickel-based superalloy GH4169 substrate.The materials of soft metal,i.e.the coating materials,have significant influence on the characteristic of transition layer and the surface characteristics of coating after cross-cut test.展开更多
Natural gas hydrate widely exists in the South China Sea as clean energy.A three-phase transition layer widely exists in low permeability Class I hydrates in the Shenhu offshore area.Therefore,taking into account the ...Natural gas hydrate widely exists in the South China Sea as clean energy.A three-phase transition layer widely exists in low permeability Class I hydrates in the Shenhu offshore area.Therefore,taking into account the low-permeability characteristics with an average permeability of 5.5 mD and moderate heterogeneity,a 3-D geological model of heterogeneous Class I hydrate reservoirs with three-phase transition layers is established by Kriging interpolation and stochastic modeling method,and a numerical simulation model is used to describe the depressurization production performance of the reservoir.With the development of depressurization,a specific range of complete decomposition zones appear both in the hydrate and transition layers.The entire decomposition zone of the whole reservoir tends to outward and upward diffusion.There is apparent methane escape in the three-phase transition layer.Due to the improvement of local permeability caused by the phase transition of hydrate dissociation,some methane accumulation occurs at the bottom of the hydrate layer,forming a local methane enrichment zone.The methane migration trends in reservoirs are mainly characterized by movement toward production wells and hydrate layers under the influence of gravity.However,due to the permeability limitation of hydrate reservoirs,many fluids have not been effectively produced and remain in the reservoir.Therefore,to improve the effective pressure drop of the reservoir,the perforation method and pressure reduction method were optimized by analyzing the influencing factors based on the gas production rate.The comparative study demonstrates that perforating through the free gas layer combined with one-time depressurization can enhance the effective depressurization and improve production performance.The gas production rate from perforating through the free gas layer can be twice as high as that from perforating through the transition layer.This study can provide theoretical support for the utilization of marine energy.展开更多
An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkali...An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkaline electroless Ni-P and novel Ni-Sn-P transition layers were compared by SEM and XRD, and the bonding strengths between the transition layers and AZ31 magnesium alloys were tested. The corrosion resistance of the samples was analyzed by porosity test, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS) in acid electroless solution at p H 4.5 and immersion test in 10% HCl. The results indicate that the transition layer is essential for acid electroless plating Ni-P coatings on magnesium alloys. Under the same thin thickness(-6 μm), the electroless Ni-Sn-P transition layer possesses superior properties to the traditional Ni-P transition layer, including high amorphization, smooth and dense surface without pores, enhanced bonding strength and corrosion resistance. Most importantly, acid electroless Ni-P coatings can be successfully deposited on magnesium alloys by using Ni-Sn-P transition layer.展开更多
The Cu?Al composite casts were prepared by the method of pouring molten aluminum. The solidification process and themicrostructure of the transition layer were investigated during the recombination process of the liqu...The Cu?Al composite casts were prepared by the method of pouring molten aluminum. The solidification process and themicrostructure of the transition layer were investigated during the recombination process of the liquid Al and the solid Cu. The results reveal that the microstructure of the transition layer in the Cu?Al composite cast consists of α(Al)+α(Al)?CuAl2 eutectic,α(Al)?CuAl2 eutectic, CuAl2+α(Al)?CuAl2 eutectic and Cu9Al4. Additionally, the pouring temperature, cooling mode of the Cu platesurface and start time of the forced cooling after pouring have no effect on the microstructure species. But the proportion of thevarious microstructures in the transition layer changes with the process parameters. The pure Al at the top of the transition layer startsto solidify first and then the α(Al) phase grows in a dendritic way, while the CuAl2 phase exhibits plane or cellular crystal growth from the two sides of the transition layer towards its interior. The stronger the cooling intensity of the Cu plate outer surface, the more developed the dendrite, and the easier it is for the CuAl2 phase to grow into a plane crystal.展开更多
The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to invest...The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites.展开更多
CTD data on standard levels collected during July and December in 1998 and the cubic spline interpolating method were used to study the characteristics of the transition layer temperature and salinity. The thermocline...CTD data on standard levels collected during July and December in 1998 and the cubic spline interpolating method were used to study the characteristics of the transition layer temperature and salinity. The thermocline undergoes remarkable seasonal variation in the South China Sea (SCS), and especially in the region of the north shelf where the thermocline disappears in December. The thermocline is stronger and thicker in July than in December. There is no obvious seasonal variation in the halocline. Due to the upper Ekman transport caused by monsoon over the SCS, the thermocline slopes upward in July and downward in December from east to west in the northern SCS. The characteristics of the thermocline and halocline are influenced by local eddies in the SCS. The Zhujiang diluted flow influences significantly the SCS shelf’s halocline.展开更多
The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference b...The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference between pyrolysis carbon black and furnace black N326,which is commonly used in rubber,is obvious compared with chemical property.The pyrolysis carbon black was used to replace furnace black N326 in the transition layer of all steel load Radial tire rubber through experimental study.It was found that the compression heat generation and dynamic loss(Tanδ)of the blend rubber before and after aging were obviously reduced,the elongation at break and resilience increased,while the tensile stress and tear strength decreased by 100%and 300%,but the hardness and tensile strength changed little before and after aging.According to the latest raw material price calculation,15 used tire pyrolysis carbon black instead of furnace carbon black N326 used in all steel Radial tire transition layer rubber application,excluding labor costs,electricity and equipment depreciation,a ton of blended rubber saves about$22.86 in production costs.展开更多
Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroe...Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroelectric interracial coupling between two slabs. The hysteresis loop of a bilayer film is investigated. The results show that the surface transition layer in a ferroelectric bilayer film plays a significant role in realizing the multiple-state memory.展开更多
For the advancement of fast-charging sodium-ion batteries(SIBs),the synthesis of cutting-edge cathode materials with superior structural stability and enhanced Na+diffusion kinetics is imperative.Multiphase layered tr...For the advancement of fast-charging sodium-ion batteries(SIBs),the synthesis of cutting-edge cathode materials with superior structural stability and enhanced Na+diffusion kinetics is imperative.Multiphase layered transition metal oxides(LTMOs),which leverage the synergistic properties of two distinct monophasic LTMOs,have garnered significant attention;however,their efficacy under fast-charging conditions remains underexplored.In this study,we developed a high-throughput computational screening framework to identify optimal dopants that maximize the electrochemical performance of LTMOs.Specifically,we evaluated the efficacy of 32 dopants based on P2/O3-type Mn/Fe-based Na_(x)Mn_(0.5)Fe_(0.5)O_(2)(NMFO)cathode material.Multiphase LTMOs satisfying criteria for thermodynamic and structural stability,minimized phase transitions,and enhanced Na^(+)diffusion were systematically screened for their suitability in fast-charging applications.The analysis identified two dopants,Ti and Zr,which met all predefined screening criteria.Furthermore,we ranked and scored dopants based on their alignment with these criteria,establishing a comprehensive dopant performance database.These findings provide a robust foundation for experimental exploration and offer detailed guidelines for tailoring dopants to optimize fast-charging SIBs.展开更多
Boundary layer transition(BLT)can cause a sharp rise in heat flux and skin friction,which can seriously affect the flight performance and safety of hypersonic flight vehicles.Therefore,the mechanism,prediction and con...Boundary layer transition(BLT)can cause a sharp rise in heat flux and skin friction,which can seriously affect the flight performance and safety of hypersonic flight vehicles.Therefore,the mechanism,prediction and control of transition have become important issues that must be dealt with for the development of advanced flight vehicles,and it is also a research hotspot of particular interest to major aerospace countries.Compared to other transition research approaches,model flight tests can better present the transition problems under real flight conditions,thus have been carried out extensively over the past 30 years.The United States,Germany,France,Australia,and other countries have carried out transition research based on flight tests,such as the Pegasus wing-glove crossflow transition and the Hypersonic Boundary Layer Transition(HyBOLT)transition control flight test of the United States,the joint research project of the Hypersonic International Flight Research and Experimentation-1(HIFiRE-1)circular cone and the HIFiRE-5 elliptic cone transition flight tests between the United States and Australia,the flight test of compression surface transition of the scramjet forebody(LEA)in France and so on.Although these flight tests suffered various setbacks,they still obtained valuable transition data.Recently,the United States is carrying out the concave-surface transition flight tests of Hypersonic Boundary Layer Transition(BOLT)and BOLT-II.Since its first model flight test mission for verification purpose launched successfully in 2015,several hypersonic BLT flight tests have been conducted by China Aerodynamics Research and Development Center(CARDC).The flight tests have measured valid transition data under flight conditions,obtained the transition front and its dynamical variation on blunt cones at various angles of attack and a lifting body Hypersonic Transition Research Vehicle(HyTRV).The crossflow traveling waves in high-altitude flight were measured for the first time,and our understanding of hypersonic BLT has been greatly improved.展开更多
As one of the most promising secondary batteries in large-scale energy storage,sodium ion batteries(SIBs) have attracted wide attention due to the abundant raw materials and low cost.Layered transition metal oxides ar...As one of the most promising secondary batteries in large-scale energy storage,sodium ion batteries(SIBs) have attracted wide attention due to the abundant raw materials and low cost.Layered transition metal oxides are one kind of popular cathode material candidates because of its easy synthesis and large theoretical specific capacity.Yet,the most common P2 and O3 phases show distinct structural characteristics respectively.O3 phase can serve as a sodium reservoir,but it usually suffers from serious phase transition and sluggish kinetics.For the P2 phase,it allows the fast sodium ion migration in the bulk and the structure can maintain stable,but it is lack of sodium,showing a great negative effect on Coulombic efficiency in full cell.Thus,single phase structure almost cannot achieve satisfied comprehensive sodium storage performances.Under these circumstances,exploiting novel multiphase cathodes showing synergetic effect may give solution to these problems.In this review,we summarize the recent development of multiphase layered transition metal oxide cathodes of SIBs,analyze the mechanism and prospect the future potential research directions.展开更多
This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transp...This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transport equations, separately, to compute laminar kinetic energy, turbulent kinetic energy, and dissipation rate in a flow field. It needs neither correlations of intermittency factors nor knowledge of the transition onset. Two transition tests are carried out: flat plate boundary layer under zero ...展开更多
Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface...Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface arc plasma disturbance experiment to promote hypersonic transition was carried out in theΦ0.25 m double-throat Ludwieg tube wind tunnel at Huazhong University of Science and Technology.Contacting printed circuit board sensors and non-contact focused laser differential interferometry testing technology were used in combination.Experimental results showed that the low-frequency surface arc plasma actuation had obvious stimulation effects on the second-mode unstable wave and could promote boundary layer transition by changing the spectral characteristics of the second-mode unstable wave.At the same time,the plasma actuation could promote energy exchange between the second-mode unstable wave and other unstable waves.Finally,the corresponding control mechanism is discussed.展开更多
To promote high-speed boundary layer transition,this paper proposes an active self-sustaining dual jets(SDJ)actuator utilizing the energy of supersonic mainflow.Employing the nanoparticle-based planar laser scattering...To promote high-speed boundary layer transition,this paper proposes an active self-sustaining dual jets(SDJ)actuator utilizing the energy of supersonic mainflow.Employing the nanoparticle-based planar laser scattering(NPLS),supersonic flat-plate boundary layer transition induced by SDJ is experimentally investigated in an Ma-2.95 low-turbulence wind tunnel.Streamwise and spanwise NPLS images are obtained to analyze fine flow structures of the whole transition process.The results reveal the transition control mechanisms that on the one hand,the jet-induced shear layer produces unstable Kelvin–Helmholtz instabilities in the wake flow,on the other hand,the jets also generates an adverse pressure gradient in the boundary layer and induce unstable streak structures,which gradually break down into turbulence downstream.The paper provides a new method for transition control of high-speed boundary layer,and have prospect both in theory and engineering application.展开更多
The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy ...The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy measurements. Notable changes of both average structure and the CDW state arising from Te substitution for Se are clearly demonstrated in samples with x〉0.3. The commensurate CDW state characterized by the known star-of-David clustering in the 1T-TaSe2 crystal becomes visibly unstable with Te substitution and vanishes when x=0.3. The 1T-TaSe2-xTex (0.3≤x≤1.3) samples generally adopt a remarkable incommensurate CDW state with monoclinic distortion, which could be fundamentally in correlation with the strong qq-dependent electron-phonon coupling-induced period-lattice-distortion as identified in TaTe22. Systematic analysis demonstrates that the occurrence of superconductivity is related to the suppression of the commensurate CDW phase and the presence of discommensuration is an evident structural feature observed in the superconducting samples.展开更多
A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically st...A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically studied as a solid acid to realize the dehydration of fructose to 5-hydroxymethylfurfural (HMF). The transition metal oxide samples were characterized with ICP-OES, EDS, XRD, XPS, SEM, TGA, FT-IR, N-2 adsorption-desorption and NH3-TPD. The influential factors such as reaction temperature, reaction time, solvent, catalyst amount and substrate concentration were deeply investigated. The optimized fructose conversion rate of 99% with HMF yield of 67% were achieved after 30 min at 140 degrees C in dimethylsulfoxide. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-d...As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior.展开更多
In recent years,valleytronics researches based on 2D semiconducting transition metal dichalcogenides have attracted considerable attention.On the one hand,strong spin–orbit interaction allows the presence of spin–va...In recent years,valleytronics researches based on 2D semiconducting transition metal dichalcogenides have attracted considerable attention.On the one hand,strong spin–orbit interaction allows the presence of spin–valley coupling in this system,which provides spin addressable valley degrees of freedom for information storage and processing.On the other hand,large exciton binding energy up to hundreds of me V enables excitons to be stable carriers of valley information.Valley polarization,marked by an imbalanced exciton population in two inequivalent valleys(+K and-K),is the core of valleytronics as it can be utilized to store binary information.Motivated by the potential applications,we present a thorough overview of the recent advancements in the generation,relaxation,manipulation,and transport of the valley polarization in nonmagnetic transition metal dichalcogenide layered semiconductors.We also discuss the development of valleytronic devices and future challenges in this field.展开更多
The behavior of chloride adsorbed on Ag(100) electrode has been studied using chronoamperometric technique, and the structural transition of chloride layer has been confirmed.
Infrared spectra of (n-C_9H_(19)NH_3)_2CuCl_4 in three solid phases were investigated. It was found that the phase transition at T_(cl)(25℃) arises from the change of the interaction and packing structure of the chai...Infrared spectra of (n-C_9H_(19)NH_3)_2CuCl_4 in three solid phases were investigated. It was found that the phase transition at T_(cl)(25℃) arises from the change of the interaction and packing structure of the chain. The phase transition at T_(c2)(34℃)is related to the change of a partial conformational order-disorder. The GTC or GTG' and small concentration of TG structure near CH_3 group exist in phase Ⅲ (above 38℃).展开更多
基金National Natural Science Foundation of China(52375378)National Key Laboratory of Metal Forming Technology and Heavy Equipment(S2308100.W12)Huxiang High-Level Talent Gathering Project of Hunan Province(2021RC5001)。
文摘The pressure-actuated metal seal with soft metal coating has been widely used in complex working conditions such as high temperature,low temperature and high pressure.The investigation of the characteristics and binding strength of the transition layer between the soft metal coating and the superalloy substrate is important to improve the sealing performance and to model and simplify the working through-process of metal sealing.The distribution characteristics of elements at soft metal-substrate interface and the binding strength between coating and substrate under different thicknesses and material combinations of coating layer were studied by experimental methods.The results indicate that the thickness of soft metal coating has little influence on the interface morphology of GH4169-Cu,GH4169-Ag and Cu-Ag,but has an influence on the thickness of transition layer between different metals,while this influence is weakened with increasing the coating thickness,and the thickness of transition layer is about 2μm when the coating thickness is more than 30μm.The cross-cut test shows that the Cu,Ag and Cu-Ag coatings are all well combined with nickel-based superalloy GH4169 substrate.The materials of soft metal,i.e.the coating materials,have significant influence on the characteristic of transition layer and the surface characteristics of coating after cross-cut test.
基金supported by the Sinopec Technology Research and Development Project(No.30000000-22-ZC0607-0235,No.33550000-22-ZC0607-0009)the National Natural Science Foundation of China(No.52334002).
文摘Natural gas hydrate widely exists in the South China Sea as clean energy.A three-phase transition layer widely exists in low permeability Class I hydrates in the Shenhu offshore area.Therefore,taking into account the low-permeability characteristics with an average permeability of 5.5 mD and moderate heterogeneity,a 3-D geological model of heterogeneous Class I hydrate reservoirs with three-phase transition layers is established by Kriging interpolation and stochastic modeling method,and a numerical simulation model is used to describe the depressurization production performance of the reservoir.With the development of depressurization,a specific range of complete decomposition zones appear both in the hydrate and transition layers.The entire decomposition zone of the whole reservoir tends to outward and upward diffusion.There is apparent methane escape in the three-phase transition layer.Due to the improvement of local permeability caused by the phase transition of hydrate dissociation,some methane accumulation occurs at the bottom of the hydrate layer,forming a local methane enrichment zone.The methane migration trends in reservoirs are mainly characterized by movement toward production wells and hydrate layers under the influence of gravity.However,due to the permeability limitation of hydrate reservoirs,many fluids have not been effectively produced and remain in the reservoir.Therefore,to improve the effective pressure drop of the reservoir,the perforation method and pressure reduction method were optimized by analyzing the influencing factors based on the gas production rate.The comparative study demonstrates that perforating through the free gas layer combined with one-time depressurization can enhance the effective depressurization and improve production performance.The gas production rate from perforating through the free gas layer can be twice as high as that from perforating through the transition layer.This study can provide theoretical support for the utilization of marine energy.
基金Project(20120407)supported by the Science and Technology Key Development Plan of Jilin Province,China
文摘An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkaline electroless Ni-P and novel Ni-Sn-P transition layers were compared by SEM and XRD, and the bonding strengths between the transition layers and AZ31 magnesium alloys were tested. The corrosion resistance of the samples was analyzed by porosity test, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS) in acid electroless solution at p H 4.5 and immersion test in 10% HCl. The results indicate that the transition layer is essential for acid electroless plating Ni-P coatings on magnesium alloys. Under the same thin thickness(-6 μm), the electroless Ni-Sn-P transition layer possesses superior properties to the traditional Ni-P transition layer, including high amorphization, smooth and dense surface without pores, enhanced bonding strength and corrosion resistance. Most importantly, acid electroless Ni-P coatings can be successfully deposited on magnesium alloys by using Ni-Sn-P transition layer.
基金Project(LJQ2014062)supported by the Outstanding Young Scholars in Colleges and Universities of Liaoning Province,China
文摘The Cu?Al composite casts were prepared by the method of pouring molten aluminum. The solidification process and themicrostructure of the transition layer were investigated during the recombination process of the liquid Al and the solid Cu. The results reveal that the microstructure of the transition layer in the Cu?Al composite cast consists of α(Al)+α(Al)?CuAl2 eutectic,α(Al)?CuAl2 eutectic, CuAl2+α(Al)?CuAl2 eutectic and Cu9Al4. Additionally, the pouring temperature, cooling mode of the Cu platesurface and start time of the forced cooling after pouring have no effect on the microstructure species. But the proportion of thevarious microstructures in the transition layer changes with the process parameters. The pure Al at the top of the transition layer startsto solidify first and then the α(Al) phase grows in a dendritic way, while the CuAl2 phase exhibits plane or cellular crystal growth from the two sides of the transition layer towards its interior. The stronger the cooling intensity of the Cu plate outer surface, the more developed the dendrite, and the easier it is for the CuAl2 phase to grow into a plane crystal.
基金Projects(51701061,51705129) supported by the National Natural Science Foundation of ChinaProject(17391001D) supported by the Department of Science and Technology of Hebei Province,ChinaProject(2017-Z02) supported by the State Key Lab of Advanced Metals and Materials,China
文摘The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites.
文摘CTD data on standard levels collected during July and December in 1998 and the cubic spline interpolating method were used to study the characteristics of the transition layer temperature and salinity. The thermocline undergoes remarkable seasonal variation in the South China Sea (SCS), and especially in the region of the north shelf where the thermocline disappears in December. The thermocline is stronger and thicker in July than in December. There is no obvious seasonal variation in the halocline. Due to the upper Ekman transport caused by monsoon over the SCS, the thermocline slopes upward in July and downward in December from east to west in the northern SCS. The characteristics of the thermocline and halocline are influenced by local eddies in the SCS. The Zhujiang diluted flow influences significantly the SCS shelf’s halocline.
文摘The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference between pyrolysis carbon black and furnace black N326,which is commonly used in rubber,is obvious compared with chemical property.The pyrolysis carbon black was used to replace furnace black N326 in the transition layer of all steel load Radial tire rubber through experimental study.It was found that the compression heat generation and dynamic loss(Tanδ)of the blend rubber before and after aging were obviously reduced,the elongation at break and resilience increased,while the tensile stress and tear strength decreased by 100%and 300%,but the hardness and tensile strength changed little before and after aging.According to the latest raw material price calculation,15 used tire pyrolysis carbon black instead of furnace carbon black N326 used in all steel Radial tire transition layer rubber application,excluding labor costs,electricity and equipment depreciation,a ton of blended rubber saves about$22.86 in production costs.
文摘Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroelectric interracial coupling between two slabs. The hysteresis loop of a bilayer film is investigated. The results show that the surface transition layer in a ferroelectric bilayer film plays a significant role in realizing the multiple-state memory.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2022R1F1A1074339)。
文摘For the advancement of fast-charging sodium-ion batteries(SIBs),the synthesis of cutting-edge cathode materials with superior structural stability and enhanced Na+diffusion kinetics is imperative.Multiphase layered transition metal oxides(LTMOs),which leverage the synergistic properties of two distinct monophasic LTMOs,have garnered significant attention;however,their efficacy under fast-charging conditions remains underexplored.In this study,we developed a high-throughput computational screening framework to identify optimal dopants that maximize the electrochemical performance of LTMOs.Specifically,we evaluated the efficacy of 32 dopants based on P2/O3-type Mn/Fe-based Na_(x)Mn_(0.5)Fe_(0.5)O_(2)(NMFO)cathode material.Multiphase LTMOs satisfying criteria for thermodynamic and structural stability,minimized phase transitions,and enhanced Na^(+)diffusion were systematically screened for their suitability in fast-charging applications.The analysis identified two dopants,Ti and Zr,which met all predefined screening criteria.Furthermore,we ranked and scored dopants based on their alignment with these criteria,establishing a comprehensive dopant performance database.These findings provide a robust foundation for experimental exploration and offer detailed guidelines for tailoring dopants to optimize fast-charging SIBs.
基金This work was supported by the National Natural Science Foundation of China(Grants 11772350,92052301).
文摘Boundary layer transition(BLT)can cause a sharp rise in heat flux and skin friction,which can seriously affect the flight performance and safety of hypersonic flight vehicles.Therefore,the mechanism,prediction and control of transition have become important issues that must be dealt with for the development of advanced flight vehicles,and it is also a research hotspot of particular interest to major aerospace countries.Compared to other transition research approaches,model flight tests can better present the transition problems under real flight conditions,thus have been carried out extensively over the past 30 years.The United States,Germany,France,Australia,and other countries have carried out transition research based on flight tests,such as the Pegasus wing-glove crossflow transition and the Hypersonic Boundary Layer Transition(HyBOLT)transition control flight test of the United States,the joint research project of the Hypersonic International Flight Research and Experimentation-1(HIFiRE-1)circular cone and the HIFiRE-5 elliptic cone transition flight tests between the United States and Australia,the flight test of compression surface transition of the scramjet forebody(LEA)in France and so on.Although these flight tests suffered various setbacks,they still obtained valuable transition data.Recently,the United States is carrying out the concave-surface transition flight tests of Hypersonic Boundary Layer Transition(BOLT)and BOLT-II.Since its first model flight test mission for verification purpose launched successfully in 2015,several hypersonic BLT flight tests have been conducted by China Aerodynamics Research and Development Center(CARDC).The flight tests have measured valid transition data under flight conditions,obtained the transition front and its dynamical variation on blunt cones at various angles of attack and a lifting body Hypersonic Transition Research Vehicle(HyTRV).The crossflow traveling waves in high-altitude flight were measured for the first time,and our understanding of hypersonic BLT has been greatly improved.
基金financial support from the National Key R&D Program of China(No.2018YFB0104300)National Natural Science Foundation of China(Nos.21633003,51802149 and U1801251)+1 种基金NSF of Jiangsu Province,China(No.BK20170630)the Fundamental Research Funds for the Central Universities(Nos.021314380141 and 021314380157)。
文摘As one of the most promising secondary batteries in large-scale energy storage,sodium ion batteries(SIBs) have attracted wide attention due to the abundant raw materials and low cost.Layered transition metal oxides are one kind of popular cathode material candidates because of its easy synthesis and large theoretical specific capacity.Yet,the most common P2 and O3 phases show distinct structural characteristics respectively.O3 phase can serve as a sodium reservoir,but it usually suffers from serious phase transition and sluggish kinetics.For the P2 phase,it allows the fast sodium ion migration in the bulk and the structure can maintain stable,but it is lack of sodium,showing a great negative effect on Coulombic efficiency in full cell.Thus,single phase structure almost cannot achieve satisfied comprehensive sodium storage performances.Under these circumstances,exploiting novel multiphase cathodes showing synergetic effect may give solution to these problems.In this review,we summarize the recent development of multiphase layered transition metal oxide cathodes of SIBs,analyze the mechanism and prospect the future potential research directions.
文摘This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transport equations, separately, to compute laminar kinetic energy, turbulent kinetic energy, and dissipation rate in a flow field. It needs neither correlations of intermittency factors nor knowledge of the transition onset. Two transition tests are carried out: flat plate boundary layer under zero ...
基金supported by National Science and Technology Major Project(No.J2019-II-0014-0035)。
文摘Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface arc plasma disturbance experiment to promote hypersonic transition was carried out in theΦ0.25 m double-throat Ludwieg tube wind tunnel at Huazhong University of Science and Technology.Contacting printed circuit board sensors and non-contact focused laser differential interferometry testing technology were used in combination.Experimental results showed that the low-frequency surface arc plasma actuation had obvious stimulation effects on the second-mode unstable wave and could promote boundary layer transition by changing the spectral characteristics of the second-mode unstable wave.At the same time,the plasma actuation could promote energy exchange between the second-mode unstable wave and other unstable waves.Finally,the corresponding control mechanism is discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11602299,11872374,and 51809271)
文摘To promote high-speed boundary layer transition,this paper proposes an active self-sustaining dual jets(SDJ)actuator utilizing the energy of supersonic mainflow.Employing the nanoparticle-based planar laser scattering(NPLS),supersonic flat-plate boundary layer transition induced by SDJ is experimentally investigated in an Ma-2.95 low-turbulence wind tunnel.Streamwise and spanwise NPLS images are obtained to analyze fine flow structures of the whole transition process.The results reveal the transition control mechanisms that on the one hand,the jet-induced shear layer produces unstable Kelvin–Helmholtz instabilities in the wake flow,on the other hand,the jets also generates an adverse pressure gradient in the boundary layer and induce unstable streak structures,which gradually break down into turbulence downstream.The paper provides a new method for transition control of high-speed boundary layer,and have prospect both in theory and engineering application.
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB921300 and 2012CB821404the National Key Research and Development Program of China under Grant Nos 2016YFA0300300 and 2016YFA0300404+1 种基金the National Natural Science Foundation of China under Grant Nos 11474323,11604372,11274368,91221102,11190022,11674326 and 91422303the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB07020000
文摘The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy measurements. Notable changes of both average structure and the CDW state arising from Te substitution for Se are clearly demonstrated in samples with x〉0.3. The commensurate CDW state characterized by the known star-of-David clustering in the 1T-TaSe2 crystal becomes visibly unstable with Te substitution and vanishes when x=0.3. The 1T-TaSe2-xTex (0.3≤x≤1.3) samples generally adopt a remarkable incommensurate CDW state with monoclinic distortion, which could be fundamentally in correlation with the strong qq-dependent electron-phonon coupling-induced period-lattice-distortion as identified in TaTe22. Systematic analysis demonstrates that the occurrence of superconductivity is related to the suppression of the commensurate CDW phase and the presence of discommensuration is an evident structural feature observed in the superconducting samples.
基金supported by the National Natural Science Foundation of China (21472189)National Basic Research Program of China (973 Program, 2012CB215304)+2 种基金the Natural Science Foundation of Guangdong Province, China (2015A030312007)Guangdong Key Laboratory of New and Renewable Energy Research and Development (Y607jl1001)Science and Technology Planning Project of Guangdong Province, China (2015A010106010)
文摘A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically studied as a solid acid to realize the dehydration of fructose to 5-hydroxymethylfurfural (HMF). The transition metal oxide samples were characterized with ICP-OES, EDS, XRD, XPS, SEM, TGA, FT-IR, N-2 adsorption-desorption and NH3-TPD. The influential factors such as reaction temperature, reaction time, solvent, catalyst amount and substrate concentration were deeply investigated. The optimized fructose conversion rate of 99% with HMF yield of 67% were achieved after 30 min at 140 degrees C in dimethylsulfoxide. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金Foundation item: Supported by the National Natural Science Foundation of China (Nos. 51309040, 51379025), and the Fundamental Research Funds for the Central Universities (Nos. 3132014224, 3132014318).
文摘As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB2803900)the National Natural Science Foundation of China(Grant Nos.61704121 and 61974075)+2 种基金Natural Science Foundation of Tianjin City(Grant Nos.19JCQNJC00700 and 22JCZDJC00460)Tianjin Municipal Education Commission(Grant No.2019KJ028)Fundamental Research Funds for the Central Universities(Grant No.22JCZDJC00460)。
文摘In recent years,valleytronics researches based on 2D semiconducting transition metal dichalcogenides have attracted considerable attention.On the one hand,strong spin–orbit interaction allows the presence of spin–valley coupling in this system,which provides spin addressable valley degrees of freedom for information storage and processing.On the other hand,large exciton binding energy up to hundreds of me V enables excitons to be stable carriers of valley information.Valley polarization,marked by an imbalanced exciton population in two inequivalent valleys(+K and-K),is the core of valleytronics as it can be utilized to store binary information.Motivated by the potential applications,we present a thorough overview of the recent advancements in the generation,relaxation,manipulation,and transport of the valley polarization in nonmagnetic transition metal dichalcogenide layered semiconductors.We also discuss the development of valleytronic devices and future challenges in this field.
文摘The behavior of chloride adsorbed on Ag(100) electrode has been studied using chronoamperometric technique, and the structural transition of chloride layer has been confirmed.
文摘Infrared spectra of (n-C_9H_(19)NH_3)_2CuCl_4 in three solid phases were investigated. It was found that the phase transition at T_(cl)(25℃) arises from the change of the interaction and packing structure of the chain. The phase transition at T_(c2)(34℃)is related to the change of a partial conformational order-disorder. The GTC or GTG' and small concentration of TG structure near CH_3 group exist in phase Ⅲ (above 38℃).