期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Transient heat conduction analysis using the NURBS-enhanced scaled boundary finite element method and modified precise integration method 被引量:3
1
作者 Gao Lin Peng Li +1 位作者 Jun Liu Pengchong Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第5期445-464,共20页
The Non-uniform rational B-spline (NURBS) enhanced scaled boundary finite element method in combination with the modified precise integration method is proposed for the transient heat conduction problems in this pap... The Non-uniform rational B-spline (NURBS) enhanced scaled boundary finite element method in combination with the modified precise integration method is proposed for the transient heat conduction problems in this paper. The scaled boundary finite element method is a semi-analytical technique, which weakens the governing differential equations along the circumferential direction and solves those analytically in the radial direction. In this method, only the boundary is discretized in the finite element sense leading to a re- duction of the spatial dimension by one with no fundamental solution required. Neverthe- less, in case of the complex geometry, a huge number of elements are generally required to properly approximate the exact shape of the domain and distorted meshes are often un- avoidable in the conventional finite element approach, which leads to huge computational efforts and loss of accuracy. NURBS are the most popular mathematical tool in CAD industry due to its flexibility to fit any free-form shape. In the proposed methodology, the arbitrary curved boundary of problem domain is exactly represented with NURBS basis functions, while the straight part of the boundary is discretized by the conventional Lagrange shape functions. Both the concepts of isogeometric analysis and scaled boundary finite element method are combined to form the governing equations of transient heat conduction analy- sis and the solution is obtained using the modified precise integration method. The stiffness matrix is obtained from a standard quadratic eigenvalue problem and the mass matrix is determined from the low-frequency expansion. Finally the governing equations become a system of first-order ordinary differential equations and the time domain response is solved numerically by the modified precise integration method. The accuracy and stability of the proposed method to deal with the transient heat conduction problems are demonstrated by numerical examples. 展开更多
关键词 transient heat conduction analysisScaled boundary finite elementmethodNURBSIsogeometric analysisModified precise integration method
原文传递
Analytical solution for a circular roadway considering the transient effect of excavation unloading
2
作者 Feng Qiang Jiang Binsong +1 位作者 Wang Gang Hu Chuanpeng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期543-549,共7页
The rocks surrounding a roadway exhibit some special and complex phenomena with increasing depth of excavation in underground engineering.Quasi-static analysis cannot adequately explain these engineering problems.The ... The rocks surrounding a roadway exhibit some special and complex phenomena with increasing depth of excavation in underground engineering.Quasi-static analysis cannot adequately explain these engineering problems.The computational model of a circular roadway considering the transient effect of excavation unloading is established for these problems.The time factor makes the solution of the problem difficult.Thus,the computational model is divided into a dynamic model and a static model.The Laplace integral transform and inverse transform are performed to solve the dynamic model and elasticity theory is used to analyze the static model.The results from an example show that circumferential stress increases and radial stress decreases with time.The stress difference becomes large gradually in this progress.The displacement increases with unloading time and decreases with the radial depth of surrounding rocks.It can be seen that the development trend of unloading and displacement is similar by comparing their rates.Finally,the results of ANSYS are used to verify the analytical solution.The contrast indicates that the laws of the two methods are basically in agreement.Thus,the analysis can provide a reference for further study. 展开更多
关键词 Excavation unloading transient effect Circle roadwayAnalytical solution Laplace integral transform Den lseger method
在线阅读 下载PDF
Transient stochastic response of quasi integerable Hamiltonian systems
3
作者 Zhong-Hua Liu Jian-Hua Geng Wei-Qiu Zhu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期602-611,共10页
The approximate transient response of quasi in- tegrable Hamiltonian systems under Gaussian white noise excitations is investigated. First, the averaged It6 equa- tions for independent motion integrals and the associa... The approximate transient response of quasi in- tegrable Hamiltonian systems under Gaussian white noise excitations is investigated. First, the averaged It6 equa- tions for independent motion integrals and the associated Fokker-Planck-Kolmogorov (FPK) equation governing the transient probability density of independent motion integrals of the system are derived by applying the stochastic averag- ing method for quasi integrable Hamiltonian systems. Then, approximate solution of the transient probability density of independent motion integrals is obtained by applying the Galerkin method to solve the FPK equation. The approxi- mate transient solution is expressed as a series in terms of properly selected base functions with time-dependent coeffi- cients. The transient probability densities of displacements and velocities can be derived from that of independent mo- tion integrals. Three examples are given to illustrate the ap- plication of the proposed procedure. It is shown that the re- suits for the three examples obtained by using the proposed procedure agree well with those from Monte Carlo simula- tion of the original systems. 展开更多
关键词 transient response ~ Stochastic averagingmethod ~ Galerkin method ~ Quasi integrable Hamiltoniansystem
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部