Hardware transient faults are proven to have a significant impact on deep neural networks (DNNs), whose safety-critical misclassification (SCM) in autonomous vehicles, healthcare, and space applications is increased u...Hardware transient faults are proven to have a significant impact on deep neural networks (DNNs), whose safety-critical misclassification (SCM) in autonomous vehicles, healthcare, and space applications is increased up to four times. However, the inaccuracy evaluation using accurate fault injection is time-consuming and requires several hours and even a couple of days on a complete simulation platform. To accelerate the evaluation of hardware transient faults on DNNs, we design a unified and end-to-end automatic methodology, A-Mean, using the silent data corruption (SDC) rate of basic operations (such as convolution, addition, multiply, ReLU, and max-pooling) and a static two-level mean calculation mechanism to rapidly compute the overall SDC rate, for estimating the general classification metric accuracy and application-specific metric SCM. More importantly, a max-policy is used to determine the SDC boundary of non-sequential structures in DNNs. Then, the worst-case scheme is used to further calculate the enlarged SCM and halved accuracy under transient faults, via merging the static results of SDC with the original data from one-time dynamic fault-free execution. Furthermore, all of the steps mentioned above have been implemented automatically, so that this easy-to-use automatic tool can be employed for prompt evaluation of transient faults on diverse DNNs. Meanwhile, a novel metric “fault sensitivity” is defined to characterize the variation of transient fault-induced higher SCM and lower accuracy. The comparative results with a state-of-the-art fault injection method TensorFI+ on five DNN models and four datasets show that our proposed estimation method A-Mean achieves up to 922.80 times speedup, with just 4.20% SCM loss and 0.77% accuracy loss on average. The artifact of A-Mean is publicly available at https://github.com/breatrice321/A-Mean.展开更多
The amount of electrical energy produced by wind mills is constantly increasing.Nowadays detailed analyzes considering the impact of wind energy integration on the transmission system are required.The goal of this stu...The amount of electrical energy produced by wind mills is constantly increasing.Nowadays detailed analyzes considering the impact of wind energy integration on the transmission system are required.The goal of this study is to investigate the dynamic response of a wind turbine with doubly fed induction generator connected to the power system during grid disturbance.The current and future wind power situation is modeled as two cases and a transient fault is simulated.In order to analyze the impact of wind energy integration in electrical power grid,a power system model has been developed,integrated with wind turbine using doubly fed induction generator and transient analysis are performed.Here,an attempt has been made to compare the impact,in terms of voltages,currents,total harmonic distortion,etc.,of adding wind turbines into electrical power grid.展开更多
To enhance the fault transient performance of aerospace multiphase permanent magnet synchronous motor(PMSM)system,an adaptive robust speed control is proposed regardless of the phase open-circuit(OC)and short-circuit(...To enhance the fault transient performance of aerospace multiphase permanent magnet synchronous motor(PMSM)system,an adaptive robust speed control is proposed regardless of the phase open-circuit(OC)and short-circuit(SC)fault in this paper,which can be applied for both the redundant motor system and fault tolerant motor system.For aerospace multiphase PMSM system,besides external load disturbance and system parameter perturbation,there inevitably exists the electromagnetic torque ripple in fault transient process,which can degrade the system performance and even cause the system instability.To cope with this issue,the electromagnet torque ripple of the multiphase PMSM system in fault transient process is first analyzed.Then,by considering the electromagnet torque fluctuation caused by fault transient as a system uncertainty,a novel adaptive robust speed control scheme is proposed,while the adaptive law is constructed to emulate the total system uncertainty bound,which include the load disturbance,the parameter variation,and the electromagnetic torque fluctuation due to fault transient.The resulting control can ensure the speed control performance even in fault transient process regardless of the uncertainty,in which no prior estimation of the uncertainty bound is required.In addition,the proposed adaptive robust speed control is demonstrated by a six-phase PMSM experimental platform.The novelty of this research is to explore a novel adaptive robust speed control to strengthen the fault tolerance performance of multiphase PMSM system even in fault transient process,which requires no prior estimation of the uncertainty bound.展开更多
Transient S wave velocity rupture (TSVR) means the velocity of fault rupture propagation is between S wave velocity α and P wave velocity β . Its existing in the rupture of in plane ( i.e . strike slip...Transient S wave velocity rupture (TSVR) means the velocity of fault rupture propagation is between S wave velocity α and P wave velocity β . Its existing in the rupture of in plane ( i.e . strike slip) fault has been proved, but in 2 dimensional classical model, there are two difficulties in transient S wave velocity rupture, i.e ., initialization difficulty and divergence difficulty in interpreting the realization of TSVR. The initialization difficulty means, when v ↑ v R (Rayleigh wave velocity), the dynamic stress strength factor K 2(t) →+0, and changes from positive into negative in the interval ( v R, β ). How v transit the forbidden of ( v R, β )? The divergence difficulty means K 2(t) →+∞ when v ↓ β . Here we introduce the concept of fractal and tunnel effect that exist everywhere in fault. The structure of all the faults is fractal with multiple cracks. The velocity of fault rupture is differentiate of the length of the fault respect to time, so the rupture velocity is also fractal. The tunnel effect means the dynamic rupture crosses over the interval of the cracks, and the coalescence of the intervals is slower than the propagation of disturbance. Suppose the area of earthquake nucleation is critical or sub critical propagation everywhere, the arriving of disturbance triggers or accelerates the propagation of cracks tip at once, and the observation system cannot distinguish the front of disturbance and the tip of fracture. Then the speed of disturbance may be identified as fracture velocity, and the phenomenon of TSVR appears, which is an apparent velocity. The real reason of apparent velocity is that the mathematics model of shear rupture is simplified of complex process originally. The dual character of rupture velocity means that the apparent velocity of fault and the real velocity of micro crack extending, which are different in physics, but are unified in rupture criterion. Introducing the above mentioned concept to the calculation of K 2 (t) , the difficulty of initialization can be overcome, and the integral equation of triggering the initialization of TSVR is given quantitatively. By solving this integral equation, the lower limit of TSVR is 1.105 3 β , not β , and the divergence difficulty is overcome. TSVR is unstable solution, and may degenerate to sub Rayleigh wave velocity rupture immediately where the non critical condition can be measured. The results of this paper show that the initialization and continuum depends on the condition of earthquake nucleation in seismogenic area.展开更多
The ability to evaluate the testability of digital circuits before they are actually implemented is critical for designing highly reliable systems. This feature enables designers to verify the fault detection capabili...The ability to evaluate the testability of digital circuits before they are actually implemented is critical for designing highly reliable systems. This feature enables designers to verify the fault detection capability of online as well as offline testable digital circuits for both permanent and transient faults, during the design stage of the circuits. This paper presents a technique for transient and permanent fault injection at the VHDL level description of both combinational and sequential digital circuits. Access to all VHDL blocks a system is straight forward using a specially designed single fault injection block. This capability of inserting transient and permanent faults should help in evaluating the testability of a digital system before it is actually implemented.展开更多
The dynamic responses of generators when subjected to disturbances in an interconnected power system have become a major challenge to power utility companies due to increasing stress on the power network. Since the oc...The dynamic responses of generators when subjected to disturbances in an interconnected power system have become a major challenge to power utility companies due to increasing stress on the power network. Since the occurrence of a disturbance or fault cannot be completely avoided, hence, when it occurs, control measures need to be put in place to limit the fault current, which invariably limit the level of the disturbances. This paper explores the use of Superconductor Fault Current Limiter (SFCL) to improve the transient stability of the Nigeria 330 kV Transmission Network. During a large disturbance, the rotor angle of the generator is enhanced by connecting a Fault Current Limiter (FCL) which reduces the fault current and hence, increases transient stability of the power network. In this study, the most affected generator was taken into consideration in locating the SFCL. The result obtained reveals that the Swing Curve of the generator without FCL increases monotonically which indicates instability, while the Swing Curve of the System with FCL reaches steady state.展开更多
Periodical impulse component is one of typical fault characteristics in vibration signals from rotating machinery. However, this component is very small in the early stage of the fault and masked by various noises suc...Periodical impulse component is one of typical fault characteristics in vibration signals from rotating machinery. However, this component is very small in the early stage of the fault and masked by various noises such as gear meshing components modulated by shaft frequency, which make it difficult to extract accurately for fault detection. The adaptive line enhancer (ALE) is an effective technique for separating sinusoidals from broad-band components of an input signal for detecting the presence of sinusoids in white noise. In this paper, ALE is explored to suppress the periodical gear meshing frequencies and enhance the fault feature impulses for more accurate fault diagnosis. The results obtained from simulated and experimental vibration signals of a two stage helical gearbox prove that the ALE method is very effective in reducing the periodical gear meshing noise and making the impulses in vibration very clear in the time-frequency analysis. The results show a clear difference between the baseline and 30% tooth damage of a helical gear which has not been detected successfully in author’s previous studies.展开更多
中压配电网中的部分瞬时故障在发展为永久故障之前可能会多次发生,而准确辨识这类重复发生的瞬时故障有助于实现故障预警、减少永久性故障的发生并且提高供电可靠性。通过建立瞬时故障的暂态等值电路并对其故障电流进行分析,表明重复性...中压配电网中的部分瞬时故障在发展为永久故障之前可能会多次发生,而准确辨识这类重复发生的瞬时故障有助于实现故障预警、减少永久性故障的发生并且提高供电可靠性。通过建立瞬时故障的暂态等值电路并对其故障电流进行分析,表明重复性瞬时故障在发展为永久性故障的过程中,故障电流具有强相似性。文中提出了一种基于零序电流波形相似度的重复性瞬时故障辨识方法。采用改进动态时间规划(dynamic time warping,DTW)算法计算零序电流的近似波形和暂态波形序列间的距离。而后通过DTW距离获得波形相似度,实现重复性瞬时故障的辨识。通过大量PSCAD/EMTDC仿真数据以及现场实测数据,验证了所提辨识算法在多种影响因素下的准确性和有效性。展开更多
基金Project supported by the Shanghai Pujiang Talent Program,China(No.21PJD026)。
文摘Hardware transient faults are proven to have a significant impact on deep neural networks (DNNs), whose safety-critical misclassification (SCM) in autonomous vehicles, healthcare, and space applications is increased up to four times. However, the inaccuracy evaluation using accurate fault injection is time-consuming and requires several hours and even a couple of days on a complete simulation platform. To accelerate the evaluation of hardware transient faults on DNNs, we design a unified and end-to-end automatic methodology, A-Mean, using the silent data corruption (SDC) rate of basic operations (such as convolution, addition, multiply, ReLU, and max-pooling) and a static two-level mean calculation mechanism to rapidly compute the overall SDC rate, for estimating the general classification metric accuracy and application-specific metric SCM. More importantly, a max-policy is used to determine the SDC boundary of non-sequential structures in DNNs. Then, the worst-case scheme is used to further calculate the enlarged SCM and halved accuracy under transient faults, via merging the static results of SDC with the original data from one-time dynamic fault-free execution. Furthermore, all of the steps mentioned above have been implemented automatically, so that this easy-to-use automatic tool can be employed for prompt evaluation of transient faults on diverse DNNs. Meanwhile, a novel metric “fault sensitivity” is defined to characterize the variation of transient fault-induced higher SCM and lower accuracy. The comparative results with a state-of-the-art fault injection method TensorFI+ on five DNN models and four datasets show that our proposed estimation method A-Mean achieves up to 922.80 times speedup, with just 4.20% SCM loss and 0.77% accuracy loss on average. The artifact of A-Mean is publicly available at https://github.com/breatrice321/A-Mean.
文摘The amount of electrical energy produced by wind mills is constantly increasing.Nowadays detailed analyzes considering the impact of wind energy integration on the transmission system are required.The goal of this study is to investigate the dynamic response of a wind turbine with doubly fed induction generator connected to the power system during grid disturbance.The current and future wind power situation is modeled as two cases and a transient fault is simulated.In order to analyze the impact of wind energy integration in electrical power grid,a power system model has been developed,integrated with wind turbine using doubly fed induction generator and transient analysis are performed.Here,an attempt has been made to compare the impact,in terms of voltages,currents,total harmonic distortion,etc.,of adding wind turbines into electrical power grid.
基金This work was supported by National Natural Science Foundation of China(Grant No.51707004)the Fundamental Research Funds for the Central Universities(Grant No.YWF20BJJ522)National Defense Science and Technology Foundation Enhancement Program,and Major Program of the National Natural Science Foundation of China(Grant No.51890882).
文摘To enhance the fault transient performance of aerospace multiphase permanent magnet synchronous motor(PMSM)system,an adaptive robust speed control is proposed regardless of the phase open-circuit(OC)and short-circuit(SC)fault in this paper,which can be applied for both the redundant motor system and fault tolerant motor system.For aerospace multiphase PMSM system,besides external load disturbance and system parameter perturbation,there inevitably exists the electromagnetic torque ripple in fault transient process,which can degrade the system performance and even cause the system instability.To cope with this issue,the electromagnet torque ripple of the multiphase PMSM system in fault transient process is first analyzed.Then,by considering the electromagnet torque fluctuation caused by fault transient as a system uncertainty,a novel adaptive robust speed control scheme is proposed,while the adaptive law is constructed to emulate the total system uncertainty bound,which include the load disturbance,the parameter variation,and the electromagnetic torque fluctuation due to fault transient.The resulting control can ensure the speed control performance even in fault transient process regardless of the uncertainty,in which no prior estimation of the uncertainty bound is required.In addition,the proposed adaptive robust speed control is demonstrated by a six-phase PMSM experimental platform.The novelty of this research is to explore a novel adaptive robust speed control to strengthen the fault tolerance performance of multiphase PMSM system even in fault transient process,which requires no prior estimation of the uncertainty bound.
文摘Transient S wave velocity rupture (TSVR) means the velocity of fault rupture propagation is between S wave velocity α and P wave velocity β . Its existing in the rupture of in plane ( i.e . strike slip) fault has been proved, but in 2 dimensional classical model, there are two difficulties in transient S wave velocity rupture, i.e ., initialization difficulty and divergence difficulty in interpreting the realization of TSVR. The initialization difficulty means, when v ↑ v R (Rayleigh wave velocity), the dynamic stress strength factor K 2(t) →+0, and changes from positive into negative in the interval ( v R, β ). How v transit the forbidden of ( v R, β )? The divergence difficulty means K 2(t) →+∞ when v ↓ β . Here we introduce the concept of fractal and tunnel effect that exist everywhere in fault. The structure of all the faults is fractal with multiple cracks. The velocity of fault rupture is differentiate of the length of the fault respect to time, so the rupture velocity is also fractal. The tunnel effect means the dynamic rupture crosses over the interval of the cracks, and the coalescence of the intervals is slower than the propagation of disturbance. Suppose the area of earthquake nucleation is critical or sub critical propagation everywhere, the arriving of disturbance triggers or accelerates the propagation of cracks tip at once, and the observation system cannot distinguish the front of disturbance and the tip of fracture. Then the speed of disturbance may be identified as fracture velocity, and the phenomenon of TSVR appears, which is an apparent velocity. The real reason of apparent velocity is that the mathematics model of shear rupture is simplified of complex process originally. The dual character of rupture velocity means that the apparent velocity of fault and the real velocity of micro crack extending, which are different in physics, but are unified in rupture criterion. Introducing the above mentioned concept to the calculation of K 2 (t) , the difficulty of initialization can be overcome, and the integral equation of triggering the initialization of TSVR is given quantitatively. By solving this integral equation, the lower limit of TSVR is 1.105 3 β , not β , and the divergence difficulty is overcome. TSVR is unstable solution, and may degenerate to sub Rayleigh wave velocity rupture immediately where the non critical condition can be measured. The results of this paper show that the initialization and continuum depends on the condition of earthquake nucleation in seismogenic area.
文摘The ability to evaluate the testability of digital circuits before they are actually implemented is critical for designing highly reliable systems. This feature enables designers to verify the fault detection capability of online as well as offline testable digital circuits for both permanent and transient faults, during the design stage of the circuits. This paper presents a technique for transient and permanent fault injection at the VHDL level description of both combinational and sequential digital circuits. Access to all VHDL blocks a system is straight forward using a specially designed single fault injection block. This capability of inserting transient and permanent faults should help in evaluating the testability of a digital system before it is actually implemented.
文摘The dynamic responses of generators when subjected to disturbances in an interconnected power system have become a major challenge to power utility companies due to increasing stress on the power network. Since the occurrence of a disturbance or fault cannot be completely avoided, hence, when it occurs, control measures need to be put in place to limit the fault current, which invariably limit the level of the disturbances. This paper explores the use of Superconductor Fault Current Limiter (SFCL) to improve the transient stability of the Nigeria 330 kV Transmission Network. During a large disturbance, the rotor angle of the generator is enhanced by connecting a Fault Current Limiter (FCL) which reduces the fault current and hence, increases transient stability of the power network. In this study, the most affected generator was taken into consideration in locating the SFCL. The result obtained reveals that the Swing Curve of the generator without FCL increases monotonically which indicates instability, while the Swing Curve of the System with FCL reaches steady state.
文摘Periodical impulse component is one of typical fault characteristics in vibration signals from rotating machinery. However, this component is very small in the early stage of the fault and masked by various noises such as gear meshing components modulated by shaft frequency, which make it difficult to extract accurately for fault detection. The adaptive line enhancer (ALE) is an effective technique for separating sinusoidals from broad-band components of an input signal for detecting the presence of sinusoids in white noise. In this paper, ALE is explored to suppress the periodical gear meshing frequencies and enhance the fault feature impulses for more accurate fault diagnosis. The results obtained from simulated and experimental vibration signals of a two stage helical gearbox prove that the ALE method is very effective in reducing the periodical gear meshing noise and making the impulses in vibration very clear in the time-frequency analysis. The results show a clear difference between the baseline and 30% tooth damage of a helical gear which has not been detected successfully in author’s previous studies.
文摘中压配电网中的部分瞬时故障在发展为永久故障之前可能会多次发生,而准确辨识这类重复发生的瞬时故障有助于实现故障预警、减少永久性故障的发生并且提高供电可靠性。通过建立瞬时故障的暂态等值电路并对其故障电流进行分析,表明重复性瞬时故障在发展为永久性故障的过程中,故障电流具有强相似性。文中提出了一种基于零序电流波形相似度的重复性瞬时故障辨识方法。采用改进动态时间规划(dynamic time warping,DTW)算法计算零序电流的近似波形和暂态波形序列间的距离。而后通过DTW距离获得波形相似度,实现重复性瞬时故障的辨识。通过大量PSCAD/EMTDC仿真数据以及现场实测数据,验证了所提辨识算法在多种影响因素下的准确性和有效性。