期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Probing high-energy and band-edge exciton dynamics in monolayer WS_(2)using transient absorption spectroscopy under near-resonant and high-energy excitations
1
作者 Hang Ren Shuai Zhu +5 位作者 Mingzhao Ouyang Jiake Wang Yuegang Fu Chuxin Yan Qingbin Wang Yuanzheng Li 《Chinese Physics B》 2025年第9期474-480,共7页
Insight into exciton dynamics of two-dimensional(2D)transition metal dichalcogenides(TMDs)is critical for the optimization of their performance in photonic and optoelectronic devices.Although current researches have p... Insight into exciton dynamics of two-dimensional(2D)transition metal dichalcogenides(TMDs)is critical for the optimization of their performance in photonic and optoelectronic devices.Although current researches have primarily concentrated on the near-resonant excitation scenario in 2D TMDs,the case of excitation energies resonating with highenergy excitons or higher energies has yet to be fully elucidated.Here,a comparative analysis is conducted between highenergy excitation(360 nm)and near-resonant excitation(515 nm)utilizing transient absorption spectroscopy to achieve a comprehensive understanding of the exciton dynamics within monolayer WS_(2).It is observed that the high-energy C-exciton can be generated via an up-conversion process under 515 nm excitation,even the energy of which is less than that of the C-exciton.Furthermore,the capacity to efficiently occupy band-edge A-exciton states leads to longer lifetimes for both the C-excitons and the A-excitons under conditions of near-resonant excitation,accompanied by an augmented rate of radiative recombination.This study provides a paradigm for optimizing the performance of 2D TMDs-based devices by offering valuable insights into their exciton dynamics. 展开更多
关键词 monolayer WS_(2) C-exciton A-exciton exciton dynamics transient absorption spectroscopy
原文传递
Theory and applications of attosecond transient absorption spectroscopy:From atoms to solids
2
作者 Ennan Cui Difa Ye 《Chinese Physics B》 2025年第7期2-17,共16页
This review comprehensively explores the theory and applications of attosecond transient absorption spectroscopy(ATAS)in studying ultrafast electronic dynamics across various systems,from atoms to solids.Driven by sig... This review comprehensively explores the theory and applications of attosecond transient absorption spectroscopy(ATAS)in studying ultrafast electronic dynamics across various systems,from atoms to solids.Driven by significant advancements in ultrafast laser technology,such as generating isolated attosecond pulses,ATAS enables detailed investigations of ultrafast electronic processes with unprecedented time resolution.The article introduces the fundamental principles and historical development of ATAS.Applications of ATAS are discussed in three main domains:in atoms,where it has been used to study build-up dynamics of Autler–Townes splitting,Fano resonance,light-induced states,etc.;in molecules,where it has revealed coherent molecular wavepacket dynamics and non-adiabatic dynamics near conical intersections;and in solids,where it has been extended to investigate ultrafast charge carrier dynamics in metals,semiconductors,and insulators.The review highlights the potential of ATAS in developing ultrafast optical switches and petahertz electronics.The ability of ATAS to probe and manipulate electronic dynamics at the attosecond timescale provides a powerful tool for exploring the fundamental limits of electronic and optical processes in materials. 展开更多
关键词 attosecond transient absorption spectroscopy response time CAUSALITY petahertz electronics
原文传递
Hidden Relaxation Channels in Aqueous Methylene Blue after Functionalization of Graphene Oxide Probed by Transient Absorption Spectroscopy
3
作者 柯达 隋来志 +5 位作者 刘敦利 王禹苏 李苏宇 姜远飞 陈安民 金明星 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第4期389-394,I0001,共7页
The mixture of graphene oxide (GO) and dye molecules may provide some new applications due to unique electronic, optical, and structural properties. Methylene blue (MB), a typ- ical anionic dye, can attach on GO v... The mixture of graphene oxide (GO) and dye molecules may provide some new applications due to unique electronic, optical, and structural properties. Methylene blue (MB), a typ- ical anionic dye, can attach on GO via π-π stacking and electrostatic interaction, and the molecule removal process on GO has been observed. However, it remains unclear about the ultrafast carrier dynamics and the internal energy transfer pathways of the system which is composed of GO and MB. We have employed ultrafast optical pump-probe spectroscopy to investigate the excited dynamics of the GO-MB system dispersed in water by exciting the samples at 400 nm pump pulse. The pristine MB and GO dynamics are also analyzed in tandem for a direct comparison. Utilizing the global analysis to fit the measured signal via a sequential model, five lifetimes are acquired:(0.61±0.01) ps, (3.52±0.04) ps, (14.1±0.3) ps, (84±2) ps, and (3.66±0.08) ns. The ultrafast dynamics corresponding to these lifetimes was analyzed and the new relaxation processes were found in the GO-MB system, compared with the pristine MB. The results reveal that the functionalization of GO can alter the known decay pathways of MB via the energy transfer from GO to MB in system, the increased intermediate state, and the promoted energy transfer from triplet state MB to ground state oxygen molecules dissolved in aqueous sample. 展开更多
关键词 transient absorption spectroscopy Methylene blue Functionalization of graphene oxide Relaxation channels
在线阅读 下载PDF
Ultrafast Investigation of Excited-State Dynamics in Trans-4-methoxyazobenzene Studied by Femtosecond Transient Absorption Spectroscopy 被引量:1
4
作者 Ya-ping Wang Chun-hua Li +2 位作者 Bing Zhang Chen Qin Song Zhang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第6期749-755,733,共8页
The ultrafast photoisomerization and excited-state dynamics of trans-4-methoxyazobenzene (trans-4-MAB) in solutions were investigated by femtosecond transient absorption spectroscopy and quantum chemistry calculations... The ultrafast photoisomerization and excited-state dynamics of trans-4-methoxyazobenzene (trans-4-MAB) in solutions were investigated by femtosecond transient absorption spectroscopy and quantum chemistry calculations. After being excited to the S2 state, the two-dimensional transient absorptions spectra show that cis-4-MAB is produced and witnessed by the permanent positive absorption in 400-480 nm. Three decay components are determined to be 0.11, 1.4 and 2.9 ps in ethanol, and 0.16, 1.5 and 7.5 ps in ethylene glycol, respectively. The fast component is assigned to the internal conversion from the S2 to S1 state. The other relaxation pathways are correlated with the decay of the S1 state via internal conversion and isomerization, and the vibrational cooling of the hot S0 state of the cis-isomer. Comparing of the dynamics in different solvents, it is demonstrated that the photoisomerization pathway undergoes the inversion mechanism rather than the rotation mechanism. 展开更多
关键词 PHOTOISOMERIZATION Trans-4-methoxyazobenzene Femtosecond transient absorption spectroscopy
在线阅读 下载PDF
Energy Transfer Dynamics between Carbon Quantum Dots and Molybdenum Disulfide Revealed by Transient Absorption Spectroscopy
5
作者 Ruixiang Wu Xin Liu +4 位作者 Xiaoshuai Wang Jingjing Luo Bin Li Shengzhi Wang Xiangyang Miao 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2023年第5期503-508,I0001,共7页
Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-ti... Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-tion spectroscopies to study the energy transfer dynamics between CQDs and molybdenum disulfide(MoS_(2)).Transient absorption plots showed photoinduced absorption and stimulated emission features,which involved the intrinsic and defect states of CQDs.Adding MoS_(2)to CQDs solution,the lowest unoccupied molecular orbital of CQDs transferred energy to MoS_(2),which quenched the intrinsic emission at 390 nm.With addition of MoS_(2),CQD-MoS_(2)composites quenched defect emission at 490 nm and upward absorption,which originated from another energy transfer from the defect state.Two energy transfer paths between CQDs and MoS_(2)were efficiently manipulated by changing the concentration of MoS_(2),which laid a foundation for improving device performance. 展开更多
关键词 Energy transfer transient absorption spectroscopy Carbon quantum dot Molybdenum disulfide
在线阅读 下载PDF
Observation of Refractive Index Line Shape in Ultrafast XUV Transient Absorption Spectroscopy 被引量:3
6
作者 Mingze Sun Zixiang Jiang +11 位作者 Yong Fu Yanrong Jiang Hongtao Hu Chunyuan Bai Zhongyao Yue Jiaming Jiang Hongqiang Xie Cheng Jin Ruxin Li P.B.Corkum D.M.Vileneuvere Ppeng Peng 《Ultrafast Science》 2023年第4期25-34,共10页
Ultrafast extreme ultraviolet (XUV) transient absorption spectroscopy measures the time- and frequencydependent light losses after light–matter interactions. In the linear region, the matter response to an XUV light ... Ultrafast extreme ultraviolet (XUV) transient absorption spectroscopy measures the time- and frequencydependent light losses after light–matter interactions. In the linear region, the matter response to an XUV light field is usually determined by the complex refractive index ̃n. The absorption signal is directly related to the imaginary part of ̃n, namely, the absorption index. The real part of ̃n refers to the real refractive index, which describes the chromatic dispersion of an optical material. However, the real refractive index information is usually not available in conventional absorption experiments. Here, we investigate the refractive index line shape in ultrafast XUV transient absorption spectroscopy by using a scheme that the XUV pulse traverses the target gas jet off-center. The jet has a density gradient in the direction perpendicular to the gas injection direction, which induces deflection on the XUV radiation. Our experimental and theoretical results show that the shape of the frequency-dependent XUV deflection spectra reproduces the refractive index line profile. A typical dispersive refractive index line shape is measured for a single-peak absorption;an additional shoulder structure appears for a doublet absorption.Moreover, the refractive index line shape is controlled by introducing a later-arrived near-infrared pulse to modify the phase of the XUV free induction decay, resulting in different XUV deflection spectra. The results promote our understanding of matter-induced absorption and deflection in ultrafast XUV spectroscopy. 展开更多
关键词 Attosecond transient absorption spectroscopy line shape refractive index High Harmonic Generation
原文传递
Investigation of charge transfer between donor and acceptor for small-molecule organic solar cells by scanning tunneling microscopy and ultrafast transient absorption spectroscopy
7
作者 Yuchuan Xiao Linxiu Cheng +11 位作者 Xinyu Sui Qi Wang Jie Chen Dan Deng Jianqi Zhang Xuan Peng Xiaokang Li Xunwen Xiao Ke Deng Xinfeng Liu Zhixiang Wei Qingdao Zeng 《Nano Research》 SCIE EI CSCD 2022年第9期8019-8027,共9页
Small-molecule organic solar cell is a category of clean energy potential device since charge transfers between donor and acceptor.The morphologies,co-assembly behavior,interaction sites,and charge transfer of BTID-nF... Small-molecule organic solar cell is a category of clean energy potential device since charge transfers between donor and acceptor.The morphologies,co-assembly behavior,interaction sites,and charge transfer of BTID-nF(n=1,2)/PC71BM donor-acceptor system in the active layer of organic solar cell have been studied employing scanning tunneling microscopy(STM),scanning tunneling spectroscopy(STS),density functional theory(DFT)calculations,and transient absorption(TA)spectroscopy.The results show that BTID-1F and BTID-2F form bright strip structures,whereas BTID-nF(n=1,2)/PC71BM form ridge-like structures with each complex composed of one BTID-nF(n=1,2)molecule and four PC71BM molecules which adsorbed around the BTID-nF(n=1,2)molecule by S···πinteraction.With the assistance of S···πinteraction between BTID-nF(n=1,2)and PC71BM,BTID-nF(n=1,2)/PC71BM co-assembled ridge-like structures are more stable than the BTID-nF(n=1,2)ridge structures.To investigate the charge transfer of BTID-nF(n=1,2)/PC71BM system,STS measurements,DFT calculation,and TA spectroscopy are further performed.The results show that charge transfer occurs in BTID-nF(n=1,2)/PC71BM system with the electron transferring from BTID-nF(n=1,2)molecules to PC71BM. 展开更多
关键词 organic solar cells scanning tunneling microscopy transient absorption spectroscopy charge transfer donor-acceptor system
原文传递
Probing molecular orientation at bulk heterojunctions by polarization-selective transient absorption spectroscopy
8
作者 Cankun Zhang Yuzhe Zhang +8 位作者 Zhiye Wang Yuming Su Zhixiang Wei Jianhui Hou Shan He Kaifeng Wu Chang He Jianqi Zhang Cheng Wang 《Science China Chemistry》 SCIE EI CSCD 2021年第9期1569-1576,共8页
A bulk heterojunction in organic solar cells is where charge separation and recombination occur.Molecular orientation at the interface is one of the key factors that dictate solar cell efficiency.Although X-ray scatte... A bulk heterojunction in organic solar cells is where charge separation and recombination occur.Molecular orientation at the interface is one of the key factors that dictate solar cell efficiency.Although X-ray scattering-based methods can determine donor/acceptor domain orientations between an anisotropic phase and an isotropic fullerene-based phase,the rise of nonfullerene solar cells presents a new challenge in delineating local molecular directions at the interface between two anisotropic donor/acceptor domains.Here,we determine interfacial molecular orientations of three high-efficiency small molecule solar cells(ZR1:Y6,B1:BO-4 Cl,and BTR:BO-4 Cl)using polarization-selective transient absorption spectroscopy.The polarization anisotropy of charge separation dynamics indicates an angle of~90°between ZR1 and Y6 molecules at the interface,an angle close to 0°between B1 and BO-4 Cl,and random orientations between BTR and BO-4 Cl.These observations provide complementary information to X-ray scattering measurements and highlight polarization-selective transient absorption spectroscopy as a tool to probe interfacial structure and dynamics of key photophysical steps in energy conversion. 展开更多
关键词 polarization-selective transient absorption spectroscopy bulk heterojunction organic solar cell molecular orientation
原文传递
Probing the ultrafast dynamics in nanomaterial complex systems by femtosecond transient absorption spectroscopy
9
作者 Qun Zhang Yi Luo 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2016年第3期13-22,共10页
Over the past decade the integration of ultrafast spectroscopy with nanoscience has greatly propelled the development of nanoscience, as the key information gleaned from the mechanistic studies with the assistance of ... Over the past decade the integration of ultrafast spectroscopy with nanoscience has greatly propelled the development of nanoscience, as the key information gleaned from the mechanistic studies with the assistance of ultrafast spectroscopy enables a deeper understanding of the structure–function interplay and various interactions involved in the nanosystems.This mini-review presents an overview of the recent advances achieved in our ultrafast spectroscopy laboratory that address the ultrafast dynamics and related mechanisms in several representative nanomaterial complex systems by means of femtosecond time-resolved transient absorption spectroscopy. We attempt to convey instructive, consistent information regarding the important processes, pathways, dynamics, and interactions involved in the nanomaterial complex systems,most of which exhibit excellent performance in photocatalysis. 展开更多
关键词 NANOMATERIALS time-resolved femtosecond pump-probe transient absorption spectroscopy ultrafast dynamics
原文传递
Doping Copper Ions in a Metal-Organic Framework(UiO-66-NH2):Location Effect Examined by Ultrafast Spectroscopy 被引量:1
10
作者 Jia Liu Shen-long Jiang Qun Zhang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第4期394-400,I0001,共8页
We constructed two types of copper-doped metal-organic framework(MOF),i.e.,Cu@UiO-66-NH2 and Cu-UiO-66-NH2.In the former,Cu2+ions are impregnated in the pore space of the amine-functionalized,Zr-based UiO-66-NH2;while... We constructed two types of copper-doped metal-organic framework(MOF),i.e.,Cu@UiO-66-NH2 and Cu-UiO-66-NH2.In the former,Cu2+ions are impregnated in the pore space of the amine-functionalized,Zr-based UiO-66-NH2;while in the latter,Cu^2+ions are incorporated to form a bimetal-center MOF,with Zr^4+being partially replaced by Cu2+in the Zr-O oxo-clusters.Ultrafast spectroscopy revealed that the photoinduced relaxation kinetics associated with the ligand-to-cluster charge-transfer state is promoted for both Cudoped MOFs relative to undoped one,but in a sequence of Cu-UiO-66-NH2>Cu@UiO-66-NH2>UiO-66-NH2.Such a sequence turned to be in line with the trend observed in the visible-light photocatalytic hydrogen evolution activity tests on the three MOFs.These findings highlighted the subtle effect of copper-doping location in this Zr-based MOF system,further suggesting that rational engineering of the specific metal-doping location in alike MOF systems to promote the photoinduced charge separation and hence suppress the detrimental charge recombination therein is beneficial for achieving improved performances in MOF-based photocatalysis. 展开更多
关键词 Metal-organic framework Copper doping Location effect Ultrafast dynamics transient absorption spectroscopy PHOTOCATALYSIS
在线阅读 下载PDF
Carbazole-Benzothiadiazole Functionalized Metallacycle for Enhanced Charge Separation and Efficient Photocatalytic Cross-Dehydrogenative Coupling
11
作者 Wei-Liang Hu Gui-Yuan Wu +2 位作者 Rong Liu Ling Hu Zhou Lu 《Chinese Journal of Chemical Physics》 2025年第5期721-728,I0131-I0146,I0150,共25页
A novel square-shaped metallacycle M,functionalized with carbazole and benzothiadiazole,was synthesized through coordination-driven self-assembly.The discrete metallacyclic architecture endows M with superior optical ... A novel square-shaped metallacycle M,functionalized with carbazole and benzothiadiazole,was synthesized through coordination-driven self-assembly.The discrete metallacyclic architecture endows M with superior optical properties owing to its rigid metallacyclic skeleton and donor-acceptor electronic structure.The femtosecond transient absorption(fs-TA)spectroscopic measurements demonstrated that the macrocyclic skeleton significantly promotes the intramolecular charge transfer efficiency and the rapid formation of triplet states.Furthermore,leveraging M as a photocatalyst enabled to drive the cross-dehydrogenative coupling(CDC)reactions with>90%efficiency,which was facilitated by its persistent charge separation states and long-lived triplet states.This work highlights the critical role of metallacycle engineering in optimizing photophysical dynamics and advancing applications in smart optoelectronics and sustainable photocatalysis. 展开更多
关键词 Femtosecond transient absorption spectroscopy Charge separation METALLACYCLE Coordination-driven self-assembly
在线阅读 下载PDF
Theoretical and Experimental Study of Photophysical Characteristics between Poly(9,9-dioctylfluorene) and Poly(9,9-dioctylfluorene-co-benzothiadiazole)
12
作者 张里荃 王英惠 +4 位作者 隋宁 康智慧 黄田浩 马於光 张汉壮 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第4期387-392,J0001,共7页
The photo-physical characteristics of semiconductor polymer are systematically stud- ied through comparing poly (9,9-dioctylfluorene) (PFO) and poly (9,9-dioctylfluorene-co- benzothiadiazole) (F8BT). The quant... The photo-physical characteristics of semiconductor polymer are systematically stud- ied through comparing poly (9,9-dioctylfluorene) (PFO) and poly (9,9-dioctylfluorene-co- benzothiadiazole) (F8BT). The quantum chemical calculation shows that the introduction of benzothiadiazole unit facilitates the intrachain charge transfer (ICT) and modulates the electronic transition mechanism of polymer. The transient absorption measurement exhibits that intrachain exciton relaxation is dominant in the decay of excited PFO in a monodis- perse system and intrachain exciton interaction could appear at high excitation intensity. In F8BT solution, the ICT state exists and participates in the relaxation of excited state. The relaxation processes of PFO and F8BT in the condensed phase both accelerate and show obvious exciton-exciton annihilation behavior at high excitation intensity. At the same excitation intensity, the mean lifetime of F8BT is longer than that of PFO, which may be assigned to the excellent delocalization of charge. 展开更多
关键词 Conjugated polymer transient absorption spectroscopy Intrachain chargetransfer
在线阅读 下载PDF
Electron transfer dynamics in Schottky junction photocatalyst during electron donor-assisted hydrogen production 被引量:1
13
作者 Jianjun Zhang Jingjing Liu +3 位作者 Zheng Meng Sanjib Jana Linxi Wang Bicheng Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第28期1-9,共9页
Electron donors(EDs)are widely used to improve the H 2 production performance of Schottky junction photocatalysts,but the functions of EDs are still unknown from the perspective of electron transfer dy-namics.Herein,P... Electron donors(EDs)are widely used to improve the H 2 production performance of Schottky junction photocatalysts,but the functions of EDs are still unknown from the perspective of electron transfer dy-namics.Herein,Pt nanocluster-decorated CdS nanorod is successfully prepared to construct a typical CdS/Pt Schottky junction.Pt nanoclusters with a diameter of∼2 nm are deposited on the surface of CdS nanorods by in situ photoreduction at sub-zero temperature.The CdS/Pt photocatalyst using lactic acid shows a higher H_(2)production rate of 4762μmol g^(-1)h^(-1)compared to that using methanol,tri-ethanolamine,and glycerol.To understand the cause,the dynamics of photogenerated carriers in CdS/Pt photocatalysts during ED-assisted H_(2)production are revealed by femtosecond transient absorption spec-troscopy.Among the four organic EDs,lactic acid enables the fastest electron transfer rate of 1.8×10^(9)s^(-1)and the highest electron transfer efficiency of 76%at the CdS/Pt interface due to the most efficient hole consumption.This work sheds light on the importance of efficient interfacial electron transfer for im-proving the photocatalytic performance of Schottky junction photocatalysts. 展开更多
关键词 transient absorption spectroscopy Interfacial electron transfer Electron transfer rate Electron transfer efficiency Hole consumption
原文传递
Excited State Intramolecular Proton Transfer of 1-Hydroxyanthraquinone 被引量:1
14
作者 Si-mei Sun Song Zhang +3 位作者 Kai Liu Ya-ping Wang Miao-miao Zhou Bing Zhang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第5期-,共7页
关键词 Proton transfer Conical intersection transient absorption spectroscopy 1-Hydroxyanthraquinone
在线阅读 下载PDF
Charge carrier dynamics in different crystal phases of CH_(3)NH_(3)PbI_(3)perovskite 被引量:2
15
作者 Efthymis Serpetzoglou Ioannis Konidakis +6 位作者 George Kourmoulakis Ioanna Demeridou Konstantinos Chatzimanolis Christos Zervos George Kioseoglou Emmanuel Kymakis Emmanuel Stratakis 《Opto-Electronic Science》 2022年第4期1-10,22-27,共16页
Despite that organic-inorganic lead halide perovskites have attracted enormous scientific attention for energy conversion applications over the recent years,the influence of temperature and the type of the employed ho... Despite that organic-inorganic lead halide perovskites have attracted enormous scientific attention for energy conversion applications over the recent years,the influence of temperature and the type of the employed hole transport layer(HTL)on the charge carrier dynamics and recombination processes in perovskite photovoltaic devices is still largely unexplored.In particular,significant knowledge is missing on how these crucial parameters for radiative and non-radiative recombinations,as well as for efficient charge extraction vary among different perovskite crystalline phases that are induced by temperature variation.Herein,we perform micro photoluminescence(pPL)and ultrafast time resolved transient absorption spectroscopy(TAS)in Glass/Perovskite and two dierent Glass/ITO/HTL/Perovskite configurations at temperatures below room temperature,in order to probe the charge carrier dynamics of different perovskite crystalline phases,while considering also the effect of the employed HTL polymer.Namely,CH_(3)NH_(3)Pbb films were deposited on Glass,PEDOT:PSS and PTAA polymers,and the developed Glass/CH_(3)NH_(3)PbI_(3)and Glass/ITO/HTL/CH_(3)NH_(3)PbI_(3)architectures were studied from 85 K up to 215 K in order to explore the charge extraction dynamics of the CH_(3)NH_(3)PbI_(3)orthorhombic and tetragonal crystalline phases.It is observed an unusual blueshift of the bandgap with temperature and the dual emission at temperature below of 100 K and also,that the charge carrier dynamics,as expressed by hole injection times and free carrier recombination rates,are strongly depended on the actual pervoskite crystal phase,as well as,from the selected hole transport material. 展开更多
关键词 transient absorption spectroscopy p-photoluminescence variable temperature perovskite crystalline phases hole transport layer charge carrier dynamics
在线阅读 下载PDF
Energy Transfer and Electron Transfer in Composite System of Carbon Quantum Dots/Rhodamine B Molecules
16
作者 Kang Wei Lei Zhang +1 位作者 Shen-long Jiang Qun Zhang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第6期643-648,I0002,共7页
In this work, we investigated the energy transfer (EnT) and electron transfer (ET) processes as well as their relationship in the carbon quantum dots/rhodamine B (CQDs/RhB) including o-CQDs/Rh B and m-CQDs/RhB systems... In this work, we investigated the energy transfer (EnT) and electron transfer (ET) processes as well as their relationship in the carbon quantum dots/rhodamine B (CQDs/RhB) including o-CQDs/Rh B and m-CQDs/RhB systems by using photoluminescence spectroscopy in combination with steady-state and transient absorption spectroscopy. We found that the ET process is negligible in the o-CQDs/RhB system with an EnT efficiency as high as 73.2%,while it becomes pronounced in the m-CQDs/RhB system whose EnT efficiency is lower than 33.5%. Such an interplay of En T and ET processes revealed in the prototypical composite system consisting of carbon quantum dots and dye molecules would provide helpful insights for applications of relevance to exciton quenching. 展开更多
关键词 Carbon quantum dots Rhodamine B molecules Energy transfer Electron transfer Photoluminescence spectroscopy Ultrafast transient absorption spectroscopy
在线阅读 下载PDF
Kinetics Study on Reaction between Dihydroartemisinic Acid and Singlet Oxygen: An Essential Step to Photochemical Synthesis of Artemisinin
17
作者 Xian-wang Zhang Xuan Zhao +1 位作者 Kun-hui Liu Hong-mei Su 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第2期145-150,I0002,共7页
Artemisinin is an excellent antimalarial drug widely used in clinical medicine.However,due to the limitation of natural source of artemisinin,the chemical synthesis of artemisinin has achieved substantial attention.Di... Artemisinin is an excellent antimalarial drug widely used in clinical medicine.However,due to the limitation of natural source of artemisinin,the chemical synthesis of artemisinin has achieved substantial attention.Dihydroartemisinic acid is a key precursor for the synthesis of artemisinin.The reaction of dihydroartemisinic acid with singlet oxygen to form peroxide is a pivotal step in the photochemical preparation of artemisinin.Nevertheless,the reaction kinetics of dihydroartemisinic acid with singlet oxygen has not been investigated previously.Herein,we report the rate constants of the reaction between dihydroartemisinic acid and singlet oxygen.By directly detecting the luminescence decay kinetics of singlet oxygen at 1270 nm at room temperature,the reaction rate constants of singlet oxygen and dihydroartemisinic acid in different solvents are obtained to be 1.81×10^5(mol/L)^-1·s^-1 in CCl4,5.69×10^5(mol/L)^-1·s^-1 in CH3CN,and 3.27×10^6(mol/L)^-1·s^-1 in DMSO,respec-tively.It is found that the reaction rate constants of dihydroartemisinic acid with singlet oxygen increase as polarity of the solvent increases among the three solvents.These results provide fundamental knowledge to optimize experiment conditions of photochemical synthesis of artemisinin for improving the yields of artemisinin. 展开更多
关键词 Dihydroartemisinic acid ARTEMISININ Singlet oxygen Rate constant transient absorption spectroscopy
在线阅读 下载PDF
In-plane oriented CH_(3)NH_(3)PbI_(3) nanowire suppression of the interface electron transfer to PCBM
18
作者 Tao Wang Zhao-Hui Yu +3 位作者 Hao Huang Wei-Guang Kong Wei Dang Xiao-Hui Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期469-475,共7页
One-dimensional nanowire is an important candidate for lead-halide perovskite-based photonic detectors and solar cells. Its surface population, diameter, and growth direction, etc., are critical for device performance... One-dimensional nanowire is an important candidate for lead-halide perovskite-based photonic detectors and solar cells. Its surface population, diameter, and growth direction, etc., are critical for device performance. In this research,we carried out a detailed study on electron transfer process at the interface of nanowire CH_(3) NH_(3) PbI_(3)(N-MAPbI_(3))/Phenyl C61 butyric acid methyl-ester synonym(PCBM), as well as the interface of compact CH_(3) NH_(3) PbI_(3)(C-MAPbI_(3))/PCBM by transient absorption spectroscopy. By comparing the carrier recombination dynamics of N-MAPbI_(3), N-MAPbI_(3)/PCBM,C-MAPbI_(3), and C-MAPbI_(3)/PCBM from picosecond(ps) to hundred nanosecond(ns) time scale, it is demonstrated that electron transfer at N-MAPbI_(3)/PCBM interface is less efficient than that at C-MAPbI_(3)/PCBM interface. In addition, electron transfer efficiency at C-MAPbI_(3)/PCBM interface was found to be excitation density-dependent, and it reduces with photo-generation carrier concentration increasing in a range from 1.0 × 1018 cm^(-3)–4.0 × 1018 cm^(-3). Hot electron transfer,which leads to acceleration of electron transfer between the interfaces, was also visualized as carrier concentration increases from 1.0 × 10^(18) cm^(-3)–2.2 × 10^(18) cm^(-3). 展开更多
关键词 lead-halide perovskite NANOWIRE interface electron transfer transient absorption spectroscopy
原文传递
Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
19
作者 Simei Sun Song Zhang +4 位作者 Jiao Song Xiaoshan Guo Chao Jiang Jingyu Sun Saiyu Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第2期606-612,共7页
The excited-state intramolecular proton transfer of 2-(2-hydroxyphenyl)benzoxazole dye in different solvents is investigated using ultrafast femtosecond transient absorption spectroscopy combined with quantum chemical... The excited-state intramolecular proton transfer of 2-(2-hydroxyphenyl)benzoxazole dye in different solvents is investigated using ultrafast femtosecond transient absorption spectroscopy combined with quantum chemical calculations.Conformational conversion from the syn-enol configuration to the keto configuration is proposed as the mechanism of excited-state intramolecular proton transfer.The duration of excited-state intramolecular proton transfer is measured to range from 50 fs to 200 fs in different solvents.This time is strongly dependent on the calculated energy gap between the N-S;and T-S;structures in the S;state.Along the proton transfer reaction coordinate,the vibrational relaxation process on the S;state potential surface is observed.The duration of the vibrational relaxation process is determined to be from8.7 ps to 35 ps dependent on the excess vibrational energy. 展开更多
关键词 proton transfer vibrational relaxation femtosecond transient absorption spectroscopy quantum chemical calculations
原文传递
Reaction Kinetics between Thiobases and Singlet Oxygen Studied by Direct Detection of the 1O2 Luminescence Decay
20
作者 Ye Xia Fei Wang +2 位作者 Ren-nian Wang Kun-hui Liu Hong-mei Su 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第1期93-98,I0002,共7页
Thiobase derivatives have received important investigations due to their wide usage as phototherapeutic agents and their potential carcinogenic side effects as immunosuppressants. The substitution of oxygen atom by th... Thiobase derivatives have received important investigations due to their wide usage as phototherapeutic agents and their potential carcinogenic side effects as immunosuppressants. The substitution of oxygen atom by the sulfur atom makes the ultraviolet absorption of thiobases redshifted and absorbs UVA light (>300 nm), resulting in unusual high quantum yield of triplet state to generate the singlet oxygen (1O2) through photosensitization. As a type of reactive oxygen species, 1O2 is highly reactive toward thiobases. Herein, we report the measurements of reaction rate constants between di erent thiobases and 1O2 in different solvents through the direct detection of 1O2 luminescence decay kinetics at 1270 nm. The rate constants of thiouracils with 1O2 are five times smaller than that of thioguanine with 1O2, which suggests that thiopurines are more reactive than thiopyrimidines and thus less suitable to be a photosensitive drug on the application of photodynamic therapy. Additionally, the rate constants of thiobases and 1O2 were found to be obviously influenced by the solvent polarity. With the increase of solvent polarity, the rate constants of thiobases and 1O2 decrease. 展开更多
关键词 Singlet oxygen Thiobase Rate constant transient absorption spectroscopy
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部