期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Transformer-FNN和无人机高光谱遥感技术的棉花黄萎病危害等级分类研究 被引量:1
1
作者 廖娟 梁业雄 +7 位作者 姜锐 邢赫 何欣颖 王辉 曾浩求 何松炜 唐赛欧 罗锡文 《农业机械学报》 北大核心 2025年第2期240-251,共12页
针对目前使用无人机识别棉花黄萎病危害等级时,光谱数据冗余度高和传统机器学习模型识别精度不足等问题,采用无人机搭载Nano-Hyperspec高光谱成像仪采集棉田高光谱图像,通过探究棉花冠层对不同黄萎病危害等级的光谱响应特征,利用最优植... 针对目前使用无人机识别棉花黄萎病危害等级时,光谱数据冗余度高和传统机器学习模型识别精度不足等问题,采用无人机搭载Nano-Hyperspec高光谱成像仪采集棉田高光谱图像,通过探究棉花冠层对不同黄萎病危害等级的光谱响应特征,利用最优植被指数组合建立一种适用于黄萎病危害等级分类的监测模型,实现棉花黄萎病危害等级的精准分类。首先,利用最小冗余最大相关算法(Minimum redundancy maximum relevance,mRMR)对17种潜在的植被指数和270个光谱波段进行特征重要性排序,将mRMR筛选得到的特征,通过逐步递增分组的方式输入至极限梯度提升模型(eXtreme gradient boosting,XGBoost),确定与黄萎病危害等级相关性最高的植被指数和光谱特征波段。然后,基于Transformer架构和前馈神经网络(Feedforward neural network,FNN)构建Transformer-FNN棉花黄萎病危害等级分类模型,将植被指数与光谱特征波段输入Transformer-FNN模型进行分类识别,对比了植被指数与光谱特征波段对棉花黄萎病危害等级分类识别的准确性。最后,利用后向传播神经网络(Back propagation neural network,BPNN)、Transformer和支持向量机(Support vector machine,SVM)构建棉花黄萎病危害等级分类模型,并对这4种分类模型进行精度验证与对比分析。结果表明:棉花黄萎病等级分类的最优植被指数组合为MSR和TVI,最优特征波段组合为430、439、488、566、697、722、742、764、769、782、822、831、858、873、878、893、909、985 nm。基于Transformer-FNN模型,植被指数对黄萎病危害等级的总体分类精度为95.6%,较光谱特征波段的总体分类精度89.4%提高6.2个百分点。基于植被指数,Transformer-FNN模型对黄萎病危害等级的分类识别率比BPNN模型提高11.2个百分点,比Transformer模型提高17.2个百分点,比SVM模型提高30.8个百分点。研究提出了一种通过植被指数进行棉花黄萎病高精度监测方法,可为大面积棉花黄萎病精确监测提供有效措施。 展开更多
关键词 棉花黄萎病 transformer-fnn 特征组合 mRMR-XGBoost 高光谱遥感 植被指数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部