期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
A Generative Image Steganography Based on Disentangled Attribute Feature Transformation and Invertible Mapping Rule
1
作者 Xiang Zhang Shenyan Han +1 位作者 Wenbin Huang Daoyong Fu 《Computers, Materials & Continua》 2025年第4期1149-1171,共23页
Generative image steganography is a technique that directly generates stego images from secret infor-mation.Unlike traditional methods,it theoretically resists steganalysis because there is no cover image.Currently,th... Generative image steganography is a technique that directly generates stego images from secret infor-mation.Unlike traditional methods,it theoretically resists steganalysis because there is no cover image.Currently,the existing generative image steganography methods generally have good steganography performance,but there is still potential room for enhancing both the quality of stego images and the accuracy of secret information extraction.Therefore,this paper proposes a generative image steganography algorithm based on attribute feature transformation and invertible mapping rule.Firstly,the reference image is disentangled by a content and an attribute encoder to obtain content features and attribute features,respectively.Then,a mean mapping rule is introduced to map the binary secret information into a noise vector,conforming to the distribution of attribute features.This noise vector is input into the generator to produce the attribute transformed stego image with the content feature of the reference image.Additionally,we design an adversarial loss,a reconstruction loss,and an image diversity loss to train the proposed model.Experimental results demonstrate that the stego images generated by the proposed method are of high quality,with an average extraction accuracy of 99.4%for the hidden information.Furthermore,since the stego image has a uniform distribution similar to the attribute-transformed image without secret information,it effectively resists both subjective and objective steganalysis. 展开更多
关键词 Image information hiding generative information hiding disentangled attribute feature transformation invertible mapping rule steganalysis resistance
在线阅读 下载PDF
Study of Human Action Recognition Based on Improved Spatio-temporal Features 被引量:7
2
作者 Xiao-Fei Ji Qian-Qian Wu +1 位作者 Zhao-Jie Ju Yang-Yang Wang 《International Journal of Automation and computing》 EI CSCD 2014年第5期500-509,共10页
Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combin... Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information(PDI) of interest points, a novel motion descriptor is proposed in this paper. The proposed method detects interest points by using an improved interest point detection method. Then, 3-dimensional scale-invariant feature transform(3D SIFT) descriptors are extracted for every interest point. In order to obtain a compact description and efficient computation, the principal component analysis(PCA) method is utilized twice on the 3D SIFT descriptors of single frame and multiple frames. Simultaneously, the PDI of the interest points are computed and combined with the above features. The combined features are quantified and selected and finally tested by using the support vector machine(SVM) recognition algorithm on the public KTH dataset. The testing results have showed that the recognition rate has been significantly improved and the proposed features can more accurately describe human motion with high adaptability to scenarios. 展开更多
关键词 Action recognition spatio-temporal interest points 3-dimensional scale-invariant feature transform (3D SIFT) positional distribution information dimension reduction
原文传递
Face recognition using SIFT features under 3D meshes 被引量:1
3
作者 张诚 谷宇章 +1 位作者 胡珂立 王营冠 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1817-1825,共9页
Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D mes... Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes. 展开更多
关键词 3D face recognition seale-invariant feature transform (SIFT) expression OCCLUSION large pose changes 3D meshes
在线阅读 下载PDF
General and robust voxel feature learning with Transformer for 3D object detection 被引量:1
4
作者 LI Yang GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期51-60,共10页
The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.I... The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.Inspired by the great progress of Transformer,we propose a novel general and robust voxel feature encoder for 3D object detection based on the traditional Transformer.We first investigate the permutation invariance of sequence data of the self-attention and apply it to point cloud processing.Then we construct a voxel feature layer based on the self-attention to adaptively learn local and robust context of a voxel according to the spatial relationship and context information exchanging between all points within the voxel.Lastly,we construct a general voxel feature learning framework with the voxel feature layer as the core for 3D object detection.The voxel feature with Transformer(VFT)can be plugged into any other voxel-based 3D object detection framework easily,and serves as the backbone for voxel feature extractor.Experiments results on the KITTI dataset demonstrate that our method achieves the state-of-the-art performance on 3D object detection. 展开更多
关键词 3D object detection self-attention networks voxel feature with transformer(VFT) point cloud encoder-decoder
在线阅读 下载PDF
Triple-path feature transform network for ring-array photoacoustic tomography image reconstruction
5
作者 Lingyu Ma Zezheng Qin +1 位作者 Yiming Ma Mingjian Sun 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期23-40,共18页
Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high... Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling. 展开更多
关键词 Deep learning feature transformation image reconstruction limited-view measurement photoacoustic tomography.
原文传递
Parallel processing model for low-dose computed tomography image denoising
6
作者 Libing Yao Jiping Wang +4 位作者 Zhongyi Wu Qiang Du Xiaodong Yang Ming Li Jian Zheng 《Visual Computing for Industry,Biomedicine,and Art》 2024年第1期237-256,共20页
Low-dose computed tomography(LDCT)has gained increasing attention owing to its crucial role in reducing radiation exposure in patients.However,LDCT-reconstructed images often suffer from significant noise and artifact... Low-dose computed tomography(LDCT)has gained increasing attention owing to its crucial role in reducing radiation exposure in patients.However,LDCT-reconstructed images often suffer from significant noise and artifacts,negatively impacting the radiologists’ability to accurately diagnose.To address this issue,many studies have focused on denoising LDCT images using deep learning(DL)methods.However,these DL-based denoising methods have been hindered by the highly variable feature distribution of LDCT data from different imaging sources,which adversely affects the performance of current denoising models.In this study,we propose a parallel processing model,the multi-encoder deep feature transformation network(MDFTN),which is designed to enhance the performance of LDCT imaging for multisource data.Unlike traditional network structures,which rely on continual learning to process multitask data,the approach can simultaneously handle LDCT images within a unified framework from various imaging sources.The proposed MDFTN consists of multiple encoders and decoders along with a deep feature transformation module(DFTM).During forward propagation in network training,each encoder extracts diverse features from its respective data source in parallel and the DFTM compresses these features into a shared feature space.Subsequently,each decoder performs an inverse operation for multisource loss estimation.Through collaborative training,the proposed MDFTN leverages the complementary advantages of multisource data distribution to enhance its adaptability and generalization.Numerous experiments were conducted on two public datasets and one local dataset,which demonstrated that the proposed network model can simultaneously process multisource data while effectively suppressing noise and preserving fine structures.The source code is available at https://github.com/123456789ey/MDFTN. 展开更多
关键词 Deep learning Low-dose computed tomography Multi-encoder deep feature transformation Multisource denoising
在线阅读 下载PDF
Target classification using SIFT sequence scale invariants 被引量:5
7
作者 Xufeng Zhu Caiwen Ma +1 位作者 Bo Liu Xiaoqian Cao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期633-639,共7页
On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits o... On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI. 展开更多
关键词 target classification scale invariant feature transform descriptors sequence scale support vector machine
在线阅读 下载PDF
Optical flow based guidance system design for semi-strapdown image homing guided missiles 被引量:5
8
作者 Huang Lan Song Jianmei +1 位作者 Zhang Minqiang Cai Gaohua 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1345-1354,共10页
This paper focuses mainly on semi-strapdown image homing guided (SSIHG) system design based on optical flow for a six-degree-of-freedom (6-DOF) axial-symmetric skid-to-turn missile. Three optical flow algorithms s... This paper focuses mainly on semi-strapdown image homing guided (SSIHG) system design based on optical flow for a six-degree-of-freedom (6-DOF) axial-symmetric skid-to-turn missile. Three optical flow algorithms suitable for large displacements are introduced and compared. The influence of different displacements on computational accuracy of the three algorithms is analyzed statistically. The total optical flow of the SSIHG missile is obtained using the Scale Invariant Feature Transform (SIFT) algorithm, which is the best among the three for large displacements. After removing the rotational optical flow caused by rotation of the gimbal and missile body from the total optical flow, the remaining translational optical flow is smoothed via Kalman filtering. The circular navigation guidance (CNG) law with impact angle constraint is then obtained utilizing the smoothed translational optical flow and position of the target image. Simulations are carried out under both disturbed and undisturbed conditions, and results indicate the proposed guidance strategy for SSIHG missiles can result in a precise target hit with a desired impact angle without the need for the time-to-go parameter. 展开更多
关键词 Guidance strategy Impact angle Optical flow Scale Invariant Feature Transform (SIFT) Semi-strapdown image homing guided (SSIHG) missile
原文传递
Spectral matching algorithm based on nonsubsampled contourlet transform and scale-invariant feature transform 被引量:4
9
作者 Dong Liang Pu Yan +2 位作者 Ming Zhu Yizheng Fan Kui Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期453-459,共7页
A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low freq... A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy. 展开更多
关键词 point pattern matching nonsubsampled contourlet transform scale-invariant feature transform spectral algorithm.
在线阅读 下载PDF
Vision based terrain reconstruction for planet rover using a special binocular bundle adjustment 被引量:3
10
作者 Min-yi SHEN Zhi-yu XIANG Ji-lin LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第10期1341-1350,共10页
This paper presents a pure vision based technique for 3D reconstruction of planet terrain. The reconstruction accuracy depends ultimately on an optimization technique known as 'bundle adjustment'. In vision te... This paper presents a pure vision based technique for 3D reconstruction of planet terrain. The reconstruction accuracy depends ultimately on an optimization technique known as 'bundle adjustment'. In vision techniques, the translation is only known up to a scale factor, and a single scale factor is assumed for the whole sequence of images if only one camera is used. If an extra camera is available, stereo vision based reconstruction can be obtained by binocular views. If the baseline of the stereo setup is known, the scale factor problem is solved. We found that direct application of classical bundle adjustment on the constraints inherent between the binocular views has not been tested. Our method incorporated this constraint into the conventional bundle adjustment method. This special binocular bundle adjustment has been performed on image sequences similar to planet terrain circumstances. Experimental results show that our special method enhances not only the localization accuracy, but also the terrain mapping quality. 展开更多
关键词 3D reconstruction Binocular bundle adjustment (BBA) Scale-invariant feature transform (SIFT) Re-projectionerror RANSAC
在线阅读 下载PDF
Automated Facial Expression Recognition and Age Estimation Using Deep Learning 被引量:3
11
作者 Syeda Amna Rizwan Yazeed Yasin Ghadi +1 位作者 Ahmad Jalal Kibum Kim 《Computers, Materials & Continua》 SCIE EI 2022年第6期5235-5252,共18页
With the advancement of computer vision techniques in surveillance systems,the need for more proficient,intelligent,and sustainable facial expressions and age recognition is necessary.The main purpose of this study is... With the advancement of computer vision techniques in surveillance systems,the need for more proficient,intelligent,and sustainable facial expressions and age recognition is necessary.The main purpose of this study is to develop accurate facial expressions and an age recognition system that is capable of error-free recognition of human expression and age in both indoor and outdoor environments.The proposed system first takes an input image pre-process it and then detects faces in the entire image.After that landmarks localization helps in the formation of synthetic face mask prediction.A novel set of features are extracted and passed to a classifier for the accurate classification of expressions and age group.The proposed system is tested over two benchmark datasets,namely,the Gallagher collection person dataset and the Images of Groups dataset.The system achieved remarkable results over these benchmark datasets about recognition accuracy and computational time.The proposed system would also be applicable in different consumer application domains such as online business negotiations,consumer behavior analysis,E-learning environments,and emotion robotics. 展开更多
关键词 Feature extraction face expression model local transform features and recurrent neural network(RNN)
在线阅读 下载PDF
Color Correction for Multi-view Video Using Energy Minimization of View Networks 被引量:4
12
作者 Kenji Yamamoto Ryutaro Oi 《International Journal of Automation and computing》 EI 2008年第3期234-245,共12页
Systems using numerous cameras are emerging in many fields due to their ease of production and reduced cost, and one of the fields where they are expected to be used more actively in the near future is in image-based ... Systems using numerous cameras are emerging in many fields due to their ease of production and reduced cost, and one of the fields where they are expected to be used more actively in the near future is in image-based rendering (IBR). Color correction between views is necessary to use multi-view systems in IBR to make audiences feel comfortable when views are switched or when a free viewpoint video is displayed. Color correction usually involves two steps: the first is to adjust camera parameters such as gain, brightness, and aperture before capture, and the second is to modify captured videos through image processing. This paper deals with the latter, which does not need a color pattern board. The proposed method uses scale invariant feature transform (SIFT) to detect correspondences, treats RGB channels independently, calculates lookup tables with an energy-minimization approach, and corrects captured video with these tables. The experimental results reveal that this approach works well. 展开更多
关键词 MULTI-VIEW color correction image-based rendering (IBR) view networks (VNs) scale invariant feature transform (SIFT) energy minimization.
在线阅读 下载PDF
Cyclostationary Feature Detection Based Spectrum Sensing Algorithm under Complicated Electromagnetic Environment in Cognitive Radio Networks 被引量:19
13
作者 Yang Mingchuan Li Yuan +1 位作者 Liu Xiaofeng Tang Wenyan 《China Communications》 SCIE CSCD 2015年第9期35-44,共10页
This paper focuses on improving the detection performance of spectrum sensing in cognitive radio(CR) networks under complicated electromagnetic environment. Some existing fast spectrum sensing algorithms cannot get sp... This paper focuses on improving the detection performance of spectrum sensing in cognitive radio(CR) networks under complicated electromagnetic environment. Some existing fast spectrum sensing algorithms cannot get specific features of the licensed users'(LUs') signal, thus they cannot be applied in this situation without knowing the power of noise. On the other hand some algorithms that yield specific features are too complicated. In this paper, an algorithm based on the cyclostationary feature detection and theory of Hilbert transformation is proposed. Comparing with the conventional cyclostationary feature detection algorithm, this approach is more flexible i.e. it can flexibly change the computational complexity according to current electromagnetic environment by changing its sampling times and the step size of cyclic frequency. Results of simulation indicate that this approach can flexibly detect the feature of received signal and provide satisfactory detection performance compared to existing approaches in low Signal-to-noise Ratio(SNR) situations. 展开更多
关键词 cognitive radio cyclostationary feature detection Hilbert transformation
在线阅读 下载PDF
Improved Global Context Descriptor for Describing Interest Regions 被引量:3
14
作者 刘景能 曾贵华 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第2期147-152,共6页
The global context(GC) descriptor is improved for describing interest regions,uses gradient orientation for binning,and thus provides more robust invariance for geometric and photometric transformations.The performanc... The global context(GC) descriptor is improved for describing interest regions,uses gradient orientation for binning,and thus provides more robust invariance for geometric and photometric transformations.The performance of the improved GC(IGC) to image matching is studied through extensive experiments on the Oxford A?ne dataset.Empirical results indicate that the proposed IGC yields quite stable and robust results,signi?cantly outperforms the original GC,and also can outperform the classical scale-invariant feature transform(SIFT) in most of the test cases.By integrating the IGC to the SIFT,the resulting of hybrid SIFT+IGC performs best over all other single descriptors in these experimental evaluations with various geometric transformations. 展开更多
关键词 global context(GC) scale-invariant feature transform(SIFT) region description image matching
原文传递
Modified SIFT descriptor and key-point matching for fast and robust image mosaic 被引量:2
15
作者 何玉青 王雪 +3 位作者 王思远 刘明奇 诸加丹 金伟其 《Journal of Beijing Institute of Technology》 EI CAS 2016年第4期562-570,共9页
To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, ... To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, 3 rotation-invariant concentric-ring grids around the key-point location are used instead of 16 square grids used in the original SIFT. Then, 10 orientations are accumulated for each grid, which results in a 30-dimension descriptor. In descriptor matching, rough rejection mismatches is proposed based on the difference of grey information between matching points. The per- formance of the proposed method is tested for image mosaic on simulated and real-worid images. Experimental results show that the M-SIFT descriptor inherits the SIFT' s ability of being invariant to image scale and rotation, illumination change and affine distortion. Besides the time cost of feature extraction is reduced by 50% compared with the original SIFT. And the rough rejection mismatches can reject at least 70% of mismatches. The results also demonstrate that the performance of the pro- posed M-SIFT method is superior to other improved SIFT methods in speed and robustness. 展开更多
关键词 modified scale invariant feature transform (SIFT) image mosaic feature extraction key-point matching
在线阅读 下载PDF
Image matching algorithm based on SIFT using color and exposure information 被引量:9
16
作者 Yan Zhao Yuwei Zhai +1 位作者 Eric Dubois Shigang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期691-699,共9页
Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are genera... Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT. 展开更多
关键词 scale invariant feature transform(SIFT) image matching color exposure
在线阅读 下载PDF
Image Forgery Detection Using Segmentation and Swarm Intelligent Algorithm 被引量:2
17
作者 ZHAO Fei SHI Wenchang +1 位作者 QIN Bo LIANG Bin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第2期141-148,共8页
Small or smooth cloned regions are difficult to be detected in image copy-move forgery (CMF) detection. Aiming at this problem, an effective method based on image segmentation and swarm intelligent (SI) algorithm ... Small or smooth cloned regions are difficult to be detected in image copy-move forgery (CMF) detection. Aiming at this problem, an effective method based on image segmentation and swarm intelligent (SI) algorithm is proposed. This method segments image into small nonoverlapping blocks. A calculation of smooth degree is given for each block. Test image is segmented into independent layers according to the smooth degree. SI algorithm is applied in finding the optimal detection parameters for each layer. These parameters are used to detect each layer by scale invariant features transform (SIFT)-based scheme, which can locate a mass of keypoints. The experimental results prove the good performance of the proposed method, which is effective to identify the CMF image with small or smooth cloned region. 展开更多
关键词 copy-move forgery detection scale invariant features transform (SIFT) swarm intelligent algorithm particle swarm optimization
原文传递
Super-resolution enhancement of UAV images based on fractional calculus and POCS 被引量:2
18
作者 Junfeng Lei Shangyue Zhang +2 位作者 Li Luo Jinsheng Xiao He Wang 《Geo-Spatial Information Science》 SCIE CSCD 2018年第1期56-66,共11页
A super-resolution enhancement algorithm was proposed based on the combination of fractional calculus and Projection onto Convex Sets(POCS)for unmanned aerial vehicles(UAVs)images.The representative problems of UAV im... A super-resolution enhancement algorithm was proposed based on the combination of fractional calculus and Projection onto Convex Sets(POCS)for unmanned aerial vehicles(UAVs)images.The representative problems of UAV images including motion blur,fisheye effect distortion,overexposed,and so on can be improved by the proposed algorithm.The fractional calculus operator is used to enhance the high-resolution and low-resolution reference frames for POCS.The affine transformation parameters between low-resolution images and reference frame are calculated by Scale Invariant Feature Transform(SIFT)for matching.The point spread function of POCS is simulated by a fractional integral filter instead of Gaussian filter for more clarity of texture and detail.The objective indices and subjective effect are compared between the proposed and other methods.The experimental results indicate that the proposed method outperforms other algorithms in most cases,especially in the structure and detail clarity of the reconstructed images. 展开更多
关键词 Unmanned aerial vehicle(UAV)image SUPERRESOLUTION fractional calculus Projection onto Convex Sets(POCS) Scale Invariant Feature Transform(SIFT)
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部