期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Remaining Useful Life Prediction of Rail Based on Improved Pulse Separable Convolution Enhanced Transformer Encoder
1
作者 Zhongmei Wang Min Li +2 位作者 Jing He Jianhua Liu Lin Jia 《Journal of Transportation Technologies》 2024年第2期137-160,共24页
In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is di... In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set. 展开更多
关键词 Equipment Health Prognostics Remaining Useful Life Prediction Pulse Separable Convolution Attention Mechanism transformer encoder
在线阅读 下载PDF
Enhancing Arabic Cyberbullying Detection with End-to-End Transformer Model
2
作者 Mohamed A.Mahdi Suliman Mohamed Fati +2 位作者 Mohamed A.G.Hazber Shahanawaj Ahamad Sawsan A.Saad 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1651-1671,共21页
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online spaces.To tackle this challenge,our study introduces a ... Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online spaces.To tackle this challenge,our study introduces a new approach employing Bidirectional Encoder Representations from the Transformers(BERT)base model(cased),originally pretrained in English.This model is uniquely adapted to recognize the intricate nuances of Arabic online communication,a key aspect often overlooked in conventional cyberbullying detection methods.Our model is an end-to-end solution that has been fine-tuned on a diverse dataset of Arabic social media(SM)tweets showing a notable increase in detection accuracy and sensitivity compared to existing methods.Experimental results on a diverse Arabic dataset collected from the‘X platform’demonstrate a notable increase in detection accuracy and sensitivity compared to existing methods.E-BERT shows a substantial improvement in performance,evidenced by an accuracy of 98.45%,precision of 99.17%,recall of 99.10%,and an F1 score of 99.14%.The proposed E-BERT not only addresses a critical gap in cyberbullying detection in Arabic online forums but also sets a precedent for applying cross-lingual pretrained models in regional language applications,offering a scalable and effective framework for enhancing online safety across Arabic-speaking communities. 展开更多
关键词 CYBERBULLYING offensive detection Bidirectional encoder Representations from the transformers(BERT) continuous bag of words Social Media natural language processing
在线阅读 下载PDF
基于VMD-MPE和并行双支路的变压器局部放电模式识别方法
3
作者 陈康裕 王飞 +1 位作者 曾龙兴 陈尔佳 《电工电能新技术》 北大核心 2025年第9期100-110,共11页
针对变压器局部放电信号的非平稳性和非线性特点,本文提出了一种基于变分模态分解(VMD)和多尺度排列熵(MPE)以及并行双支路的变压器局部放电模式识别方法。首先,利用VMD技术对局部放电波形进行层次分解,分离出若干带限本征模态函数(IMF)... 针对变压器局部放电信号的非平稳性和非线性特点,本文提出了一种基于变分模态分解(VMD)和多尺度排列熵(MPE)以及并行双支路的变压器局部放电模式识别方法。首先,利用VMD技术对局部放电波形进行层次分解,分离出若干带限本征模态函数(IMF),并基于MPE提取各阶IMF分量的深层特征信息,构建特征向量样本集。接着,设计了一个并行双支路模型,其中支路一通过Transformer Encoder的多头注意力机制提取全局特征,支路二利用堆叠的一维卷积神经网络(1D-CNN)结合挤压与激励网络(SENet)进一步提取局部特征信息。通过特征融合拼接策略,将双支路提取的全局与局部特征信息有效融合,从而增强模式识别的表现力。实验结果表明,本文所提出的方法在变压器局部放电模式识别中的准确率达到96.37%,且具有较高的识别效率,能够有效提升变压器局部放电故障的诊断性能,为变压器设备的维护工作提供了坚实的技术保障。 展开更多
关键词 变压器局部放电 变分模态分解 多尺度排列熵 transformer encoder 一维卷积神经网络 挤压与激励网络 故障诊断
在线阅读 下载PDF
Leveraging Unlabeled Corpus for Arabic Dialect Identification
4
作者 Mohammed Abdelmajeed Jiangbin Zheng +3 位作者 Ahmed Murtadha Youcef Nafa Mohammed Abaker Muhammad Pervez Akhter 《Computers, Materials & Continua》 2025年第5期3471-3491,共21页
Arabic Dialect Identification(DID)is a task in Natural Language Processing(NLP)that involves determining the dialect of a given piece of text in Arabic.The state-of-the-art solutions for DID are built on various deep ... Arabic Dialect Identification(DID)is a task in Natural Language Processing(NLP)that involves determining the dialect of a given piece of text in Arabic.The state-of-the-art solutions for DID are built on various deep neural networks that commonly learn the representation of sentences in response to a given dialect.Despite the effectiveness of these solutions,the performance heavily relies on the amount of labeled examples,which is labor-intensive to atain and may not be readily available in real-world scenarios.To alleviate the burden of labeling data,this paper introduces a novel solution that leverages unlabeled corpora to boost performance on the DID task.Specifically,we design an architecture that enables learning the shared information between labeled and unlabeled texts through a gradient reversal layer.The key idea is to penalize the model for learning source dataset specific features and thus enable it to capture common knowledge regardless of the label.Finally,we evaluate the proposed solution on benchmark datasets for DID.Our extensive experiments show that it performs signifcantly better,especially,with sparse labeled data.By comparing our approach with existing Pre-trained Language Models(PLMs),we achieve a new state-of-the-art performance in the DID field.The code will be available on GitHub upon the paper's acceptance. 展开更多
关键词 Arabic dialect identification natural language processing bidirectional encoder representations from transformers pre-trained language models gradient reversal layer
在线阅读 下载PDF
Semi-Supervised New Intention Discovery for Syntactic Elimination and Fusion in Elastic Neighborhoods
5
作者 Di Wu Liming Feng Xiaoyu Wang 《Computers, Materials & Continua》 2025年第4期977-999,共23页
Semi-supervised new intent discovery is a significant research focus in natural language understanding.To address the limitations of current semi-supervised training data and the underutilization of implicit informati... Semi-supervised new intent discovery is a significant research focus in natural language understanding.To address the limitations of current semi-supervised training data and the underutilization of implicit information,a Semi-supervised New Intent Discovery for Elastic Neighborhood Syntactic Elimination and Fusion model(SNID-ENSEF)is proposed.Syntactic elimination contrast learning leverages verb-dominant syntactic features,systematically replacing specific words to enhance data diversity.The radius of the positive sample neighborhood is elastically adjusted to eliminate invalid samples and improve training efficiency.A neighborhood sample fusion strategy,based on sample distribution patterns,dynamically adjusts neighborhood size and fuses sample vectors to reduce noise and improve implicit information utilization and discovery accuracy.Experimental results show that SNID-ENSEF achieves average improvements of 0.88%,1.27%,and 1.30%in Normalized Mutual Information(NMI),Accuracy(ACC),and Adjusted Rand Index(ARI),respectively,outperforming PTJN,DPN,MTP-CLNN,and DWG models on the Banking77,StackOverflow,and Clinc150 datasets.The code is available at https://github.com/qsdesz/SNID-ENSEF,accessed on 16 January 2025. 展开更多
关键词 Natural language understanding semi-supervised new intent discovery syntactic elimination contrast learning neighborhood sample fusion strategies bidirectional encoder representations from transformers(BERT)
在线阅读 下载PDF
基于BE-MCNN模型的新闻评论情感分析方法 被引量:2
6
作者 李文书 管平 《软件导刊》 2024年第3期1-7,共7页
实时新闻评论具有文本短、信息丰富、结构复杂等特点,情感分析难以准确捕捉其真实的情感倾向。为增强语义的特征信息,减少模型过拟合问题,提高新闻评论情感分析的准确性,提出一种融合BERT模型、Transformer En⁃coder与多尺度CNN模型的... 实时新闻评论具有文本短、信息丰富、结构复杂等特点,情感分析难以准确捕捉其真实的情感倾向。为增强语义的特征信息,减少模型过拟合问题,提高新闻评论情感分析的准确性,提出一种融合BERT模型、Transformer En⁃coder与多尺度CNN模型的新闻评论情感分析算法。首先,针对新闻评论长度较短、表达情绪观点内容较多的特点,使用BERT模型对新闻评论文本进行预训练,获得具有上下文信息的特征向量;其次,为解决模型过拟合问题,在BERT模型下游添加一层Transformer编码器;最后使用四通道双层CNN模型,通过组合不同大小尺寸的卷积核来提升模型分析新闻评论情感的性能。实验结果表明,该方法在两个新闻评论数据集上的准确率分别达到93.0%与96.4%;与不同模型的比较实验进一步证明了所提方法的有效性。 展开更多
关键词 情感分析 BERT模型 transformer encoder 多尺度CNN 新闻评论
在线阅读 下载PDF
Text Augmentation-Based Model for Emotion Recognition Using Transformers
7
作者 Fida Mohammad Mukhtaj Khan +4 位作者 Safdar Nawaz Khan Marwat Naveed Jan Neelam Gohar Muhammad Bilal Amal Al-Rasheed 《Computers, Materials & Continua》 SCIE EI 2023年第9期3523-3547,共25页
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally intelligentmachines.Graph-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC tasks.However,their... Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally intelligentmachines.Graph-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC tasks.However,their limited ability to collect and acquire contextual information hinders their effectiveness.We propose a Text Augmentation-based computational model for recognizing emotions using transformers(TA-MERT)to address this.The proposed model uses the Multimodal Emotion Lines Dataset(MELD),which ensures a balanced representation for recognizing human emotions.Themodel used text augmentation techniques to producemore training data,improving the proposed model’s accuracy.Transformer encoders train the deep neural network(DNN)model,especially Bidirectional Encoder(BE)representations that capture both forward and backward contextual information.This integration improves the accuracy and robustness of the proposed model.Furthermore,we present a method for balancing the training dataset by creating enhanced samples from the original dataset.By balancing the dataset across all emotion categories,we can lessen the adverse effects of data imbalance on the accuracy of the proposed model.Experimental results on the MELD dataset show that TA-MERT outperforms earlier methods,achieving a weighted F1 score of 62.60%and an accuracy of 64.36%.Overall,the proposed TA-MERT model solves the GBN models’weaknesses in obtaining contextual data for ERC.TA-MERT model recognizes human emotions more accurately by employing text augmentation and transformer-based encoding.The balanced dataset and the additional training samples also enhance its resilience.These findings highlight the significance of transformer-based approaches for special emotion recognition in conversations. 展开更多
关键词 Emotion recognition in conversation graph-based network text augmentation-basedmodel multimodal emotion lines dataset bidirectional encoder representation for transformer
在线阅读 下载PDF
基于BERT-TENER的服装质量抽检通告命名实体识别
8
作者 陈进东 胡超 +1 位作者 郝凌霄 曹丽娜 《科学技术与工程》 北大核心 2024年第34期14754-14764,共11页
识别服装质量抽检通告中的实体信息,对于评估不同区域的服装质量状况以及制定宏观政策具有重要意义。针对质量抽检通告命名实体识别存在的长文本序列信息丢失、小类样本特征学习不全等问题,以注意力机制为核心,提出了基于BERT(bidirecti... 识别服装质量抽检通告中的实体信息,对于评估不同区域的服装质量状况以及制定宏观政策具有重要意义。针对质量抽检通告命名实体识别存在的长文本序列信息丢失、小类样本特征学习不全等问题,以注意力机制为核心,提出了基于BERT(bidirectional encoder representations from transformers)和TENER(transformer encoder for NER)模型的领域命名实体识别模型。BERT-TENER模型通过预训练模型BERT获得字符的动态字向量;将字向量输入TENER模块中,基于注意力机制使得同样的字符拥有不同的学习过程,基于改进的Transformer模型进一步捕捉字符与字符之间的距离和方向信息,增强模型对不同长度、小类别文本内容的理解,并采用条件随机场模型获得每个字符对应的实体标签。在领域数据集上,BERT-TENER模型针对服装抽检领域的实体识别F_1达到92.45%,相较传统方法有效提升了命名实体识别率,并且在长文本以及非均衡的实体类别中也表现出较好的性能。 展开更多
关键词 命名实体识别 服装质量抽检通告 BERT(Bidirectional encoder representations from transformers) TENER(transformer encoder for NER)
在线阅读 下载PDF
基于BERT与细粒度特征提取的数据法学问答系统 被引量:1
9
作者 宋文豪 汪洋 +2 位作者 朱苏磊 张倩 吴晓燕 《上海师范大学学报(自然科学版中英文)》 2024年第2期211-216,共6页
首先利用bidirectional encoder representations from transformers(BERT)模型的强大的语境理解能力来提取数据法律文本的深层语义特征,然后引入细粒度特征提取层,依照注意力机制,重点关注文本中与数据法律问答相关的关键部分,最后对... 首先利用bidirectional encoder representations from transformers(BERT)模型的强大的语境理解能力来提取数据法律文本的深层语义特征,然后引入细粒度特征提取层,依照注意力机制,重点关注文本中与数据法律问答相关的关键部分,最后对所采集的法律问答数据集进行训练和评估.结果显示:与传统的多个单一模型相比,所提出的模型在准确度、精确度、召回率、F1分数等关键性能指标上均有提升,表明该系统能够更有效地理解和回应复杂的数据法学问题,为研究数据法学的专业人士和公众用户提供更高质量的问答服务. 展开更多
关键词 bidirectional encoder representations from transformers(BERT)模型 细粒度特征提取 注意力机制 自然语言处理(NLP)
在线阅读 下载PDF
BSTFNet:An Encrypted Malicious Traffic Classification Method Integrating Global Semantic and Spatiotemporal Features 被引量:3
10
作者 Hong Huang Xingxing Zhang +2 位作者 Ye Lu Ze Li Shaohua Zhou 《Computers, Materials & Continua》 SCIE EI 2024年第3期3929-3951,共23页
While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning me... While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic. 展开更多
关键词 Encrypted malicious traffic classification bidirectional encoder representations from transformers text convolutional neural network bidirectional gated recurrent unit
在线阅读 下载PDF
Enhanced Topic-Aware Summarization Using Statistical Graph Neural Networks
11
作者 Ayesha Khaliq Salman Afsar Awan +2 位作者 Fahad Ahmad Muhammad Azam Zia Muhammad Zafar Iqbal 《Computers, Materials & Continua》 SCIE EI 2024年第8期3221-3242,共22页
The rapid expansion of online content and big data has precipitated an urgent need for efficient summarization techniques to swiftly comprehend vast textual documents without compromising their original integrity.Curr... The rapid expansion of online content and big data has precipitated an urgent need for efficient summarization techniques to swiftly comprehend vast textual documents without compromising their original integrity.Current approaches in Extractive Text Summarization(ETS)leverage the modeling of inter-sentence relationships,a task of paramount importance in producing coherent summaries.This study introduces an innovative model that integrates Graph Attention Networks(GATs)with Transformer-based Bidirectional Encoder Representa-tions from Transformers(BERT)and Latent Dirichlet Allocation(LDA),further enhanced by Term Frequency-Inverse Document Frequency(TF-IDF)values,to improve sentence selection by capturing comprehensive topical information.Our approach constructs a graph with nodes representing sentences,words,and topics,thereby elevating the interconnectivity and enabling a more refined understanding of text structures.This model is stretched to Multi-Document Summarization(MDS)from Single-Document Summarization,offering significant improvements over existing models such as THGS-GMM and Topic-GraphSum,as demonstrated by empirical evaluations on benchmark news datasets like Cable News Network(CNN)/Daily Mail(DM)and Multi-News.The results consistently demonstrate superior performance,showcasing the model’s robustness in handling complex summarization tasks across single and multi-document contexts.This research not only advances the integration of BERT and LDA within a GATs but also emphasizes our model’s capacity to effectively manage global information and adapt to diverse summarization challenges. 展开更多
关键词 SUMMARIZATION graph attention network bidirectional encoder representations from transformers Latent Dirichlet Allocation term frequency-inverse document frequency
在线阅读 下载PDF
Classification of Conversational Sentences Using an Ensemble Pre-Trained Language Model with the Fine-Tuned Parameter
12
作者 R.Sujatha K.Nimala 《Computers, Materials & Continua》 SCIE EI 2024年第2期1669-1686,共18页
Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requir... Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88. 展开更多
关键词 Bidirectional encoder for representation of transformer conversation ensemble model fine-tuning generalized autoregressive pretraining for language understanding generative pre-trained transformer hyperparameter tuning natural language processing robustly optimized BERT pretraining approach sentence classification transformer models
在线阅读 下载PDF
基于自适应位置编码的心电图重构算法
13
作者 纪洁维 常胜 +1 位作者 王豪 黄启俊 《中国医学物理学杂志》 CSCD 2023年第10期1285-1290,共6页
可穿戴心电检测的主要挑战是较多导联影响被测者的身体活动,如果减少导联会使心电数据信息减少使检测效果变差。为了平衡被测者日常穿戴舒适性和检测准确性,笔者设计了一个基于Transformer Encoder的自适应相对位置编码重构算法,通过前... 可穿戴心电检测的主要挑战是较多导联影响被测者的身体活动,如果减少导联会使心电数据信息减少使检测效果变差。为了平衡被测者日常穿戴舒适性和检测准确性,笔者设计了一个基于Transformer Encoder的自适应相对位置编码重构算法,通过前后重叠的切片方式使相邻片段的信息具备关联性,相对位置编码时加入可训练参数对任意片段进行重构,从而有效地提取位置信息。用3个导联的EGG信号重构标准12导联EGG信号,实验结果表明,重构的ECG数据均方根误差低至0.02758,平均相关系数高达98.43%,显示出本文算法在应用于可穿戴心电检测设备的应用前景。 展开更多
关键词 心电图 重构 位置编码 transformer encoder
暂未订购
基于融合策略的突发公共卫生事件网络舆情多模态负面情感识别 被引量:20
14
作者 曾子明 孙守强 李青青 《情报学报》 CSSCI CSCD 北大核心 2023年第5期611-622,共12页
突发公共卫生事件以社交媒体为阵地进行线下舆情的线上映射,而图文并茂的多模态信息成为公众情感表达的主要方式。为充分利用不同模态间的关联性和互补性,提升突发公共卫生事件网络舆情多模态负面情感识别精准度,本文构建了两阶段混合... 突发公共卫生事件以社交媒体为阵地进行线下舆情的线上映射,而图文并茂的多模态信息成为公众情感表达的主要方式。为充分利用不同模态间的关联性和互补性,提升突发公共卫生事件网络舆情多模态负面情感识别精准度,本文构建了两阶段混合融合策略驱动的多模态细粒度负面情感识别模型(two-stage,hybrid fusion strategy-driven multimodal fine-grained negative sentiment recognition model,THFMFNSR)。该模型包括多模态特征表示、特征融合、分类器和决策融合4个部分。本文通过收集新浪微博新冠肺炎的相关图文数据,验证了该模型的有效性,并抽取了最佳情感决策融合规则和分类器配置。研究结果表明,相比于文本、图像、图文特征融合的最优识别模型,本文模型在情感识别方面精确率分别提高了14.48%、12.92%、2.24%;在细粒度负面情感识别方面,精确率分别提高了22.73%、10.85%、3.34%。通过该多模态细粒度负面情感识别模型可感知舆情态势,从而辅助公共卫生部门和舆情管控部门决策。 展开更多
关键词 突发公共卫生事件 网络舆情 多模态 负面情感识别 bidirectional encoder representations from transformers(BERT) vision transformer(ViT)
在线阅读 下载PDF
基于图卷积神经网络的古汉语分词研究 被引量:11
15
作者 唐雪梅 苏祺 +1 位作者 王军 杨浩 《情报学报》 CSSCI CSCD 北大核心 2023年第6期740-750,共11页
古汉语的语法有省略、语序倒置的特点,词法有词类活用、代词名词丰富的特点,这些特点增加了古汉语分词的难度,并带来严重的out-of-vocabulary(OOV)问题。目前,深度学习方法已被广泛地应用在古汉语分词任务中并取得了成功,但是这些研究... 古汉语的语法有省略、语序倒置的特点,词法有词类活用、代词名词丰富的特点,这些特点增加了古汉语分词的难度,并带来严重的out-of-vocabulary(OOV)问题。目前,深度学习方法已被广泛地应用在古汉语分词任务中并取得了成功,但是这些研究更关注的是如何提高分词效果,忽视了分词任务中的一大挑战,即OOV问题。因此,本文提出了一种基于图卷积神经网络的古汉语分词框架,通过结合预训练语言模型和图卷积神经网络,将外部知识融合到神经网络模型中来提高分词性能并缓解OOV问题。在《左传》《战国策》和《儒林外史》3个古汉语分词数据集上的研究结果显示,本文模型提高了3个数据集的分词表现。进一步的研究分析证明,本文模型能够有效地融合词典和N-gram信息;特别是N-gram有助于缓解OOV问题。 展开更多
关键词 古汉语 汉语分词 图卷积神经网络 预训练语言模型 BERT(bidirectional encoder representations from transformers)
在线阅读 下载PDF
基于BERT的阅读理解式标书文本信息抽取方法 被引量:7
16
作者 涂飞明 刘茂福 +1 位作者 夏旭 张耀峰 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2022年第3期311-316,共6页
针对标书文本重要信息的抽取需求,提出一种基于BERT(bidirectional encoder representations from transformers)的阅读理解式标书文本信息抽取方法。该方法将信息抽取任务转换为阅读理解任务,根据标书文本内容,生成对应问题,再抽取标... 针对标书文本重要信息的抽取需求,提出一种基于BERT(bidirectional encoder representations from transformers)的阅读理解式标书文本信息抽取方法。该方法将信息抽取任务转换为阅读理解任务,根据标书文本内容,生成对应问题,再抽取标书文本片段作为问题答案。利用BERT预训练模型,得到强健的语言模型,获取更深层次的上下文关联。相比传统的命名实体识别方法,基于阅读理解的信息抽取方法能够很好地同时处理非嵌套实体和嵌套实体的抽取,也能充分利用问题所包含的先验语义信息,区分出具有相似属性的信息。从中国政府采购网下载标书文本数据进行了实验,本文方法总体EM(exact match)值达到92.41%,F1值达到95.03%。实验结果表明本文提出的方法对标书文本的信息抽取是有效的。 展开更多
关键词 标书文本 阅读理解 信息抽取 BERT(bidirectional encoder representations from transformers)
原文传递
面向密集场景结合TC-YOLOX的小目标检测方法 被引量:2
17
作者 李翔宇 王伟 +1 位作者 王峰萍 韩岩江 《电子测量技术》 北大核心 2023年第15期133-142,共10页
密集场景下小目标的高效精确检测是目标检测领域的关键问题。为了解决环境的多样性和小目标自身复杂性存在着特征难以提取、检测精度低等问题,提出一种面向密集场景结合TC-YOLOX的小目标检测方法。首先,通过在CSPNet中引入Transformer E... 密集场景下小目标的高效精确检测是目标检测领域的关键问题。为了解决环境的多样性和小目标自身复杂性存在着特征难以提取、检测精度低等问题,提出一种面向密集场景结合TC-YOLOX的小目标检测方法。首先,通过在CSPNet中引入Transformer Encode模块,不断更新目标权重实现增强目标特征信息,提高网络的特征提取能力;其次,在特征金字塔网络中增加卷积注意力机制模块,关注重要特征并抑制不必要特征,提高不同尺度目标的检测准确度;然后,采用CIoU代替IoU作为回归损失函数,使得模型训练过程中网络收敛更快,性能更好;最后在PASCAL VOC 2007数据集上验证。实验结果表明,所设计的TC-YOLOX模型能够有效的检测出多样化场景中正常、密集、稀疏、黑暗条件下的小目标物体,mAP和检测速度可以达到94.6%和38 fps,与原始模型相比提升了10.9%和1 fps,对多种密集场景下的小目标检测任务均具有较好的适用性。 展开更多
关键词 小目标检测 YOLOX 卷积注意力机制模块 transformer Encode CIoU回归损失函数
原文传递
基于压缩与推理的长文本多项选择答题方法
18
作者 夏旭 刘茂福 +1 位作者 张耀峰 胡慧君 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2023年第2期233-242,共10页
多项选择作为机器阅读理解中的一项重要任务,在自然语言处理(natural language processing,NLP)领域受到了广泛关注。由于数据中需要处理的文本长度不断增长,长文本多项选择成为了一项新的挑战。然而,现有的长文本处理方法容易丢失文本... 多项选择作为机器阅读理解中的一项重要任务,在自然语言处理(natural language processing,NLP)领域受到了广泛关注。由于数据中需要处理的文本长度不断增长,长文本多项选择成为了一项新的挑战。然而,现有的长文本处理方法容易丢失文本中的有效信息,导致结果不准确。针对上述问题,提出了一种基于压缩与推理的长文本多项选择答题方法(Long Text Multiple Choice Answer Method Based on Compression and Reasoning,LTMCA),通过训练评判模型识别相关句子,将相关句拼接成短文本输入到推理模型进行推理。为了提高评判模型的精度,在评判模型中增加了文章与选项之间的交互以补充文章对选项的注意力,有针对性地进行相关语句识别,更加准确地完成多项选择答题任务。在本文构建的CLTMCA中文长文本多项选择数据集上进行了实验验证,结果表明本文方法能够有效地解决BERT在处理长文本多项选择任务时的限制问题,相比于其他方法,在各项评价指标上均取得了较高的提升。 展开更多
关键词 BERT(bidirectional encoder representation from transformer) 中文长文本 多项选择 注意力
原文传递
基于BERT-BiGRU模型的文本分类研究 被引量:12
19
作者 王紫音 于青 《天津理工大学学报》 2021年第4期40-46,共7页
文本分类是自然语言处理的典型应用,目前文本分类最常用的是深度学习的分类方法。针对中文文本数据具有多种特性,例如隐喻表达、语义多义性、语法特异性等,在文本分类中进行研究。提出基于编码器-解码器的双向编码表示法-双向门控制循... 文本分类是自然语言处理的典型应用,目前文本分类最常用的是深度学习的分类方法。针对中文文本数据具有多种特性,例如隐喻表达、语义多义性、语法特异性等,在文本分类中进行研究。提出基于编码器-解码器的双向编码表示法-双向门控制循环单元(bidirectional encoder representations from transformers-bidirectional gate recurrent unit,BERT-BiGRU)模型结构,使用BERT模型代替传统的Word2vec模型表示词向量,根据上下文信息计算字的表示,在融合上下文信息的同时还能根据字的多义性进行调整,增强了字的语义表示。在BERT模型后面增加了BiGRU,将训练后的词向量作为Bi GRU的输入进行训练,该模型可以同时从两个方向对文本信息进行特征提取,使模型具有更好的文本表示信息能力,达到更精确的文本分类效果。使用提出的BERT-BiGRU模型进行文本分类,最终准确率达到0.93,召回率达到0.94,综合评价数值F1达到0.93。通过与其他模型的试验结果对比,发现BERT-BiGRU模型在中文文本分类任务中有良好的性能。 展开更多
关键词 文本分类 深度学习 基于编码器-解码器的双向编码表示法(bidirectional encoder representations from transformers BERT)模型 双向门控制循环单元(bidirectional gate recurrent unit BiGRU)
在线阅读 下载PDF
A Novel Named Entity Recognition Scheme for Steel E-Commerce Platforms Using a Lite BERT 被引量:2
20
作者 Maojian Chen Xiong Luo +2 位作者 Hailun Shen Ziyang Huang Qiaojuan Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第10期47-63,共17页
In the era of big data,E-commerce plays an increasingly important role,and steel E-commerce certainly occupies a positive position.However,it is very difficult to choose satisfactory steel raw materials from diverse s... In the era of big data,E-commerce plays an increasingly important role,and steel E-commerce certainly occupies a positive position.However,it is very difficult to choose satisfactory steel raw materials from diverse steel commodities online on steel E-commerce platforms in the purchase of staffs.In order to improve the efficiency of purchasers searching for commodities on the steel E-commerce platforms,we propose a novel deep learning-based loss function for named entity recognition(NER).Considering the impacts of small sample and imbalanced data,in our NER scheme,the focal loss,the label smoothing,and the cross entropy are incorporated into a lite bidirectional encoder representations from transformers(BERT)model to avoid the over-fitting.Moreover,through the analysis of different classic annotation techniques used to tag data,an ideal one is chosen for the training model in our proposed scheme.Experiments are conducted on Chinese steel E-commerce datasets.The experimental results show that the training time of a lite BERT(ALBERT)-based method is much shorter than that of BERT-based models,while achieving the similar computational performance in terms of metrics precision,recall,and F1 with BERT-based models.Meanwhile,our proposed approach performs much better than that of combining Word2Vec,bidirectional long short-term memory(Bi-LSTM),and conditional random field(CRF)models,in consideration of training time and F1. 展开更多
关键词 Named entity recognition bidirectional encoder representations from transformers steel E-commerce platform annotation technique
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部