期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
Microstructural evolution during the progressive transformation-induced plasticity effect in a Fe-0.1C-5Mnmedium manganese steel 被引量:1
1
作者 Mei Zhang Wenhao Li +3 位作者 Yangfei Chen Yang Jiang Xiaofei Guo Han Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期369-379,共11页
The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmiss... The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase. 展开更多
关键词 medium-Mn steel retained austenite progressive transformation-induced plasticity effect local strain fracture initiation
在线阅读 下载PDF
Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening 被引量:5
2
作者 Dong Huang Yanxin Zhuang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第13期125-132,共8页
Transformation-induced plasticity(TRIP)endows material with continuous work hardening ability,which is considered as a powerful weapon to break the strength-ductility tradeoff.However,FCC based alloys with TRIP effect... Transformation-induced plasticity(TRIP)endows material with continuous work hardening ability,which is considered as a powerful weapon to break the strength-ductility tradeoff.However,FCC based alloys with TRIP effect can not get rid of the“soft”feature of the structure entirely,resulting in insufficient yield strength.Here,a Co_(x)Cr_(25)(AlFeNi)_(75-x) high-entropy alloy is designed.NiAl phase is used as strengthening component to improve yield strength,while TRIP effect ensures plasticity.Compared with the previous TRIP high-entropy alloy,its yield strength is nearly doubled,and the uniform elongation is more than 55%at room temperature.Furthermore,the corresponding multiphase microstructure evolution and deformation mechanisms are investigated.Significantly,stacking faults andΣ3 twin boundaries are confirmed to be the nucleation sites of HCP phase by HAADF-STEM.Ingenious composition design and proper heat treatment process make it a perfect combination of precipitation strengthening and transformationinduced plasticity,and thus guide design in the high-performance alloy. 展开更多
关键词 High-entropy alloys transformation-induced plasticity Precipitation strengthening Nucleation site HAADF-STEM
原文传递
Surface effect induced phase transformation by Mn removal during annealing and its textures in cold-rolled high manganese transformation-induced plasticity steel 被引量:1
3
作者 Li-ying Liu Ping Yang +1 位作者 Dan-dan Ma Xin-fu Gu 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2022年第3期494-502,共9页
The surface effect induced transformation texture during vacuum annealing of cold-rolled high manganese transformation-induced plasticity(TRIP)steels was studied.Due to Mn removal occurring at the surface layer,γ→δ... The surface effect induced transformation texture during vacuum annealing of cold-rolled high manganese transformation-induced plasticity(TRIP)steels was studied.Due to Mn removal occurring at the surface layer,γ→δdiffusional phase transformation leads to the formation of hard pancake-shaped ferrite grains due to solution strengthening at the surface and the centre layer remains as austenite+martensite after annealing.In the case of slow heating,{112}/{111}<110>textures for the surface ferrite were strengthened with the increase in temperature and holding time,indicating an inheritance of rolling textures.By increasing the heating rate of annealing,the rotated cube texture was developed in surface ferrite.This kind of multiphase sandwich structure with hard ferrite surface layer and tough austenite dominant centre can increase tensile strength and should also improve deep drawing properties,therefore providing new possibility of controlling properties for the application of high manganese TRIP steel. 展开更多
关键词 High manganese transformation-induced plasticity steel Surface effect TEXTURE Microstructure Vacuum annealing
原文传递
Flow stress model considering the transformation-induced plasticity effect and the inelastic strain recovery behavior
4
作者 Hai-yan Yu Li Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第2期185-191,共7页
On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recov... On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recovery behavior of TRIP multiphase steels was presented. The relation between the volume fraction of constituent phases and plastic strain was introduced to characterize the transformation-induced plasticity effect of TRIP steels. Loading-unloading-reloading uniaxial tension tests of TRIP600 steel were carried out and the strain recovery behavior after unloading was analyzed. From the experimental data, an empirical elastic modulus expression is extracted to characterize the inelastic strain recovery. A comparison of the predicted flow stress with the experimental data shows a good agreement. The mechanism of the transformation-induced plasticity effect and the inelastic recovery effect acting on the flow stress is also discussed in detail. 展开更多
关键词 flow stress transformation-induced plasticity inelastic strain elastic modulus
在线阅读 下载PDF
Enhancement of ballistic performance enabled by transformation-induced plasticity in high-strength bainitic steel
5
作者 Min Cheoljo Selim Kim +4 位作者 Dong Woo Suh Hong Kyu Kim Yongjin Kim Seok Su Sohn Sunghak Lee 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第25期219-229,共11页
High-strength bainitic steels have created a lot of interest in recent times because of their excellent combination of strength,ductility,toughness,and high ballistic mass efficiency.Bainitic steels have great potenti... High-strength bainitic steels have created a lot of interest in recent times because of their excellent combination of strength,ductility,toughness,and high ballistic mass efficiency.Bainitic steels have great potential in the fabrication of steel armor plates.Although various approaches and methods have been conducted to utilize the retained austenite(RA)in the bainitic matrix to control mechanical properties,very few attempts have been conducted to improve ballistic performance utilizing transformationinduced plasticity(TRIP)mechanism.In this study,high-strength bainitic steels were designed by controlling the time of austempering process to have various volume fractions and stability of RA while maintaining high hardness.The dynamic compressive and ballistic impact tests were conducted,and the relation between the effects of TRIP on ballistic performance and the adiabatic shear band(ASB)formation was analyzed.Our results show for the first time that an active TRIP mechanism achieved from a large quantity of metastable RA can significantly enhance the ballistic performance of high-strength bainitic steels because of the improved resistance to ASB formation.Thus,the ballistic performance can be effectively improved by a very short austempering time,which suggests that the utilization of active TRIP behavior via tuning RA acts as a primary mechanism for significantly enhancing the ballistic performance of high-strength bainitic steels. 展开更多
关键词 High-strength bainitic steel Ballistic performance Split Hopkinson pressure bar(SHPB) Adiabatic shear band(ASB) Retained austenite(RA) transformation-induced plasticity(TRIP)
原文传递
Effect of deformation temperature on transformation-induced plasticity effect of lean duplex stainless steel
6
作者 ZHANG Wei ZHUANG Wei HU Jincheng 《Baosteel Technical Research》 CAS 2014年第3期42-46,共5页
Effects of deformation temperature on the mechanical properties and microstructure of lean duplex stainless steels B2102 and S32101 have been investigated. It was found that the strength decreased continuously with in... Effects of deformation temperature on the mechanical properties and microstructure of lean duplex stainless steels B2102 and S32101 have been investigated. It was found that the strength decreased continuously with increases in temperature from -60 ℃ to 100 ℃. The strength of S32101 was higher than that of B2102 owing to its higher nitrogen content. Plasticity of B2102 increased with an increase in deformation temperature from - 60 ℃ and reached the optimal elongation ratio of 49% - 54% after deformation at 20 - 50 ^(2. Martensite transformation was observed during deformation due to the transformation-induced plasticity effect. The optimal elongation was achieved at deformation temperatures close to the Md(3O/50) temperatures of 62 ℃ and 6 ℃ for B2102 and S32101. respectively. 展开更多
关键词 lean duplex stainless steel transformation-induced plasticity martensite transformation deformationtemperature
在线阅读 下载PDF
Intermittent healing for alleviating the functional fatigue and restoration of the elastocaloric effect in superelastic NiTi shape memory alloy
7
作者 Junyu Chen Fei Liu +1 位作者 Gang Fang Upadrasta Ramamurty 《Journal of Materials Science & Technology》 2025年第24期289-303,共15页
Functional fatigue in the superelastic NiTi shape memory alloys occurs due to the accumulation of dislocations and retention of martensite with the cyclic loading.These mechanisms reduce the amount of the material ava... Functional fatigue in the superelastic NiTi shape memory alloys occurs due to the accumulation of dislocations and retention of martensite with the cyclic loading.These mechanisms reduce the amount of the material available for the stress-induced transformation and,thus,lower the elastocaloric effect that originates from the stress-induced latent heat variations.In this study,the individual contributions of the micromechanisms responsible for the functional fatigue in superelastic NiTi at different maximum tensile stress(σ_(max))are critically examined.Results show that the elastocaloric effect degrades significantly with cycling,and the saturated degraded value increases with σ_(max);the steady-state adiabatic temperature change is unexpectedly non-proportional to σ_(max).An overheating treatment(‘healing’)after mechanical fatigue reverts the retained martensite into austenite,making it available for subsequent transformation and restoring the elastocaloric effect significantly.Such a restoration increases exponentially with σ_(max).Consequently,the steady-state elastocaloric effect of the healed NiTi is proportional to σ_(max) and can reach more than twice that of NiTi without healing.The work sheds light on the physical origins of elastocaloric degradation of superelastic NiTi and also provides a feasible method for ameliorating functional fatigue. 展开更多
关键词 Shape memory alloys FATIGUE transformation-induced plasticity Martensitic transformation Elastocaloric effect
原文传递
Effect of Ni addition on microstructure and mechanical properties of high nitrogen martensitic stainless bearing steel
8
作者 Ya-bo Wang Hao Feng +2 位作者 Hua-bing Li Zhou-hua Jiang Xiao-dong Wang 《Journal of Iron and Steel Research International》 2025年第12期4350-4358,共9页
High-nitrogen martensitic stainless steel(HNMSS)is increasingly recognized for its excellent strength-ductility balance and superior pitting resistance,largely attributed to the solid solution strengthening effect of ... High-nitrogen martensitic stainless steel(HNMSS)is increasingly recognized for its excellent strength-ductility balance and superior pitting resistance,largely attributed to the solid solution strengthening effect of nitrogen.Despite significant advancements in enhancing its mechanical properties,the precise relationship between alloying elements,particularly nickel(Ni),and microstructural evolution remains insufficiently understood.The role of Ni in HNMSS was investigated by examining the effects of two different Ni contents on microstructure and deformation mechanisms.A combination of mechanical testing and microstructural characterization was employed to assess the materials’mechanical properties and phase transformations.The key findings reveal that the steel with higher Ni content exhibits improved mechanical performance,primarily due to an increased volume fraction of retained austenite,which activates both transformation-induced plasticity and twinning-induced plasticity effects.The microstructure after deformation forms a similar multilayer core-shell structure,with twinning martensite enveloping the softer austenite,which effectively avoids the risk of cracking caused by direct collision of martensitic variants. 展开更多
关键词 Nickel transformation-induced plasticity Twinning-induced plasticity Martensite twin Deformation mechanism High nitrogen martensitic stainless steel
原文传递
Correlation between pre-strain and hydrogen embrittlement behavior in medium-Mn steel
9
作者 Hyun Wook Lee Tak Min Park +1 位作者 Hye-Jin Kim Jeongho Han 《Journal of Materials Science & Technology》 2025年第3期62-73,共12页
In this study,we investigated the correlation between the pre-strain and hydrogen embrittlement(HE)mechanisms in medium-Mn steel.Intercritically annealed Fe-7Mn-0.2C-3Al(wt.%)steel,which showed a two-phase microstruct... In this study,we investigated the correlation between the pre-strain and hydrogen embrittlement(HE)mechanisms in medium-Mn steel.Intercritically annealed Fe-7Mn-0.2C-3Al(wt.%)steel,which showed a two-phase microstructure comprising α ferrite and γR retained austenite,was used as a model alloy.As the pre-strain level increased from 0%to 45%,the volume fraction of γR gradually decreased owing to the strain-inducedα′martensite transformation accompanied by an increase in dislocation density.The HE resistance decreased with increasing the pre-strain level because the sample with a higher pre-strain level revealed a higher amount of dissolved hydrogen,combined with a more extensive brittle fracture region owing to the enhanced diffusion and permeation of hydrogen from the reduced γR fraction.Ad-ditionally,the H-assisted crack in the sample without pre-strain was initiated and propagated from the γR grains when the strain-induced α′phase was formed,because most of the dissolved hydrogen was concentrated in the γR grains,and these grains were predominantly deformed compared to the other phases.However,the pre-strained sample showed more pronounced multiple H-assisted cracking at the constituent phases,such as α and α′,because it exhibited relatively well-dispersed hydrogen atoms and reduced microstrain localization at the γR grains,due to the reduced γR fraction. 展开更多
关键词 Medium-Mn steel transformation-induced plasticity Hydrogen embrittlement Advanced high-strength steels H-assisted crack
原文传递
Unveiling the roles of initial phase constituents and phase metastability in hydrogen embrittlement of TRIP-assisted VCrCoFeNi medium-entropy alloys
10
作者 Sang Yoon Song Dae Cheol Yang +5 位作者 Han-Jin Kim Sang-In Lee Hyeon-Seok Do Byeong-Joo Lee Alireza Zargaran Seok Su Sohn 《Journal of Materials Science & Technology》 2025年第4期160-176,共17页
Medium-entropy alloys(MEAs)that exhibit transformation-induced plasticity(TRIP)from face-centered cubic(FCC)to body-centered cubic(BCC)are considered promising for liquid hydrogen environments due to their remarkable ... Medium-entropy alloys(MEAs)that exhibit transformation-induced plasticity(TRIP)from face-centered cubic(FCC)to body-centered cubic(BCC)are considered promising for liquid hydrogen environments due to their remarkable cryogenic strength.Nonetheless,studies on hydrogen embrittlement(HE)in BCC-TRIP MEAs have not been conducted,although the TRIP effect and consequent BCC martensite usually deteriorate HE susceptibility.In these alloys,initial as-quenched martensite alters hydrogen diffusion and trap behavior,and deformation-induced martensitic transformation(DIMT)provides preferred crack propagation sites,which critically affects HE susceptibility.Therefore,this study aims to investigate the HE behav-ior of BCC-TRIP MEAs by designing four V10 Cr_(10)Co_(30)Fe_(50-x)Ni_(x)(x=0,1,2,and 3 at%)MEAs,adjusting both the initial phase constituent and phase metastability.A decreased Ni content leads to a reduced fraction and mechanical stability of FCC,which in turn increases HE susceptibility,as determined through electro-chemical hydrogen pre-charging and slow-strain rate tests The permeation test and thermal desorption analysis reveal that the hydrogen diffusivity and content are affected by initial BCC fraction,interconnectivity of BCC,and refined FCC.As these initial phase constituents differ between the alloys with FCC-and BCC-dominant initial phase,microstructural factors affecting HE are unveiled discretely among these alloy groups by correlation of hydrogen-induced crack behavior with hydrogen diffusion and trap behavior.In alloys with an FCC-dominant initial phase,the initial BCC fraction and DIMT initiation rate emerge as critical factors,rather than the extent of DIMT.For BCC-dominant alloys,the primary contributor is an increase in the initial BCC fraction,rather than the extent or rate of DIMT.The unraveled roles of microstructural factors provide insights into designing HE-resistant BCC-TRIP MEAs. 展开更多
关键词 Medium-entropy alloys(MEAs) transformation-induced plasticity(TRIP) Hydrogen embrittlement Hydrogen-induced crack Hydrogen diffusion and trapping
原文传递
Mechanical properties and deformation mechanism of lightweight Al_(0.5)NbTi_(3)VZr_(0.5) high-entropy alloy via laser surface melting process
11
作者 Rui Liu Hong-Wei Yan +3 位作者 Xi-Wu Li Yong-An Zhang Zhi-Hui Li Bai-Qing Xiong 《Rare Metals》 2025年第4期2735-2747,共13页
The lightweight refractory high-entropy alloys(LRHEAs)are considered as next-generation high-performance weaponry matrix material.In this work,we employ the laser surface melting(LSM)method to ulteriorly optimize surf... The lightweight refractory high-entropy alloys(LRHEAs)are considered as next-generation high-performance weaponry matrix material.In this work,we employ the laser surface melting(LSM)method to ulteriorly optimize surface mechanical properties of Al_(0.5)NbTi_(3)VZr_(0.5) matrix HEA,where the phase structures,mechanical properties and deformation mechanism of as-cast and LSM-treated HEAs have been investigated.The LSM process eliminates tanglesome intermetallic Zr_(5)Al_(3) structures and effectively improves the mechanical properties of as-cast HEA.The sample after 2000 W LSM treatment exhibits the superior comprehensive mechanical properties,its tensile elongation,microhardness of remelt zone and volume wear loss are 31.6%,HV 809.6 and 296.4×10^(−3) mm^(3),representing the advancement of 85.9%,180.1%and 64.6%compared to that of as-cast HEA sample,respectively.Additionally,the deformation behavior of the as-cast sample involves solid phase transformation,stacking faults and deformation twinnings.The deformation mechanism of as-cast Al_(0.5)NbTi_(3)VZr_(0.5) HEA is transformation-induced plasticity(TRIP)and twinning-induced plasticity(TWIP),the classical Burgers mechanism of BCC→HCP solid phase transformation is revealed,which obeys[111]_(BCC)∥[1120]_(HCP).As for the 2000 W treated sample,the deformation mechanism is mainly TWIP as the stacking fault energy enhancement evidenced by the presence of cross-slip dislocations after LSM process. 展开更多
关键词 High-entropy alloys(HEAs) Laser surfaces melting Mechanical properties transformation-induced plasticity(TRIP) Twinning-induced plasticity(TWIP)
原文传递
Superb strength−ductility synergy in Si added metastable high-entropy alloys at cryogenic temperature via reinforced TRIP effect
12
作者 Zhan-jiang LI Yi-xi HOU +5 位作者 Li CHEN Qing-xin CHEN Jun-feng CHEN Fa CHANG Pin-qiang DAI Qun-hua TANG 《Transactions of Nonferrous Metals Society of China》 2025年第3期872-887,共16页
The tensile behavior of(Fe_(50)Mn_(30)Co_(10)Cr_(10))_(100-x)Si_(x)(x=0(Si0),2(Si2))metastable HEAs prepared by selective laser melting was studied at cryogenic temperatures.The results demonstrate that the addition o... The tensile behavior of(Fe_(50)Mn_(30)Co_(10)Cr_(10))_(100-x)Si_(x)(x=0(Si0),2(Si2))metastable HEAs prepared by selective laser melting was studied at cryogenic temperatures.The results demonstrate that the addition of Si leads to lattice distortion and a decrease in stacking fault energy,especially at 77 K,which significantly promotes transformation-induced plasticity(TRIP)in Si2 HEAs.The yield strength,tensile strength,and ductility of Si2 HEAs are 505.2 MPa,1364.1 MPa,and 19%,which are 43%,53% and 58% higher than those of Si0 alloy,respectively.TRIP is the main deformation mode,in addition to dislocation slip,and plays a key role in strengthening.The reinforced and continuously sustained TRIP maintains a dynamic strain distribution during deformation.Ultrahigh strain hardening greatly enhances the strength and ductility. 展开更多
关键词 Fe_(50)Mn_(30)Co_(10)Cr_(10)HEAs selective laser melting cryogenic temperature Si addition transformation-induced plasticity(TRIP)effect
在线阅读 下载PDF
Medium-Mn steels for hot forming application in the automotive industry 被引量:14
13
作者 Shuo-shuo Li Hai-wen Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期741-753,共13页
Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles.Different from the popular cold stamping,hot forming of boron-alloyed manganese steels,such as 22MnB5,coul... Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles.Different from the popular cold stamping,hot forming of boron-alloyed manganese steels,such as 22MnB5,could produce ultra-high-strength steel parts without springback and with accurate control of dimensions.Moreover,hot-formed medium-Mn steels could have many advantages,including better mechanical properties and lower production cost,over hot-formed 22MnB5.This paper reviews the hot forming process in the automotive industry,hot-formed steel grades,and medium-Mn steel grades and their application in hot forming in depth.In particular,the adaptabilities of medium-Mn steels and the presently popular 22MnB5 into hot forming were compared thoroughly.Future research should focus on the technological issues encountered in hot forming of medium-Mn steels to promote their commercialization. 展开更多
关键词 medium-Mn transformation-induced plasticity steel hot forming mechanical properties retained austenite BAKING
在线阅读 下载PDF
A strong and ductile medium Mn steel manufactured via ultrafast heating process 被引量:8
14
作者 Pengyu Wen Bin Hu +1 位作者 Jiansheng Han Haiwen Luo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第2期54-68,共15页
Ultrafast heating(UFH)at the rates of 10-300℃/s was employed as a new strategy to anneal a coldrolled 7 wt%Mn steel,followed by the immediate cooling.Severely deformed strain-induced martensite and lightly-deformed t... Ultrafast heating(UFH)at the rates of 10-300℃/s was employed as a new strategy to anneal a coldrolled 7 wt%Mn steel,followed by the immediate cooling.Severely deformed strain-induced martensite and lightly-deformed thermal martensite,both had been already enriched with C and Mn before,transformed to fine and coarse austenite grains during the UFH,leading to the bimodal size distribution.Compared with the long intercritical annealing(IA)process,the UFH processes produced larger fraction of RA grains(up to 37%)with a high density of dislocation,leading to the significant increase in yield strength by 270 MPa and the product of strength and elongation up to 55 GPa%due to the enormous work hardening capacity.Such a significant strengthening is first attributed to high density dislocations preserved after UFH and then to the microstructural refinement and the precipitation strengthening;whilst the sustainable work hardening is attributed to the successive TRIP effect during deformation,resulting from the large fraction of RA instantly formed with the bimodal size distribution during UFH.Moreover,the results on the microstructural characterization,thermodynamics calculation on the reverse transformation temperature and the kinetic simulations on the reverse transformation all suggest that the austenitization during UFH is displacive and involves the diffusion and partition of C.Therefore,we propose that it is a bainite-like transformation. 展开更多
关键词 Ultrafast heating process Austenite reversion Medium Mn steel Mechanical properties transformation-induced plasticity
原文传递
A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy 被引量:6
15
作者 Chao Yu Guozheng Kang Qianhua Kan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第3期619-634,共16页
A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic defor... A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite and detwinned martensite , as well as the phase transitions occurring between each pair of phases (, , , , and are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases (A, , and and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model. 展开更多
关键词 NiTi SMAs Constitutive model Cyclic degeneration of shape memory effect transformation-induced plasticity Reorientation-induced plasticity
在线阅读 下载PDF
Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures 被引量:7
16
作者 Ran Wei Kaisheng Zhang +6 位作者 Liangbin Chen Zhenhua Han Tan Wang Chen Chen Jianzhong Jiang Tingwei Hu Fushan Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第22期153-158,共6页
Recently,high-and medium-entropy alloys(HEAs and MEAs) have been found to exhibit excellent cryogenic mechanical properties,but most of them contain high-priced Co element.Therefore,developing HEAs or MEAs with high s... Recently,high-and medium-entropy alloys(HEAs and MEAs) have been found to exhibit excellent cryogenic mechanical properties,but most of them contain high-priced Co element.Therefore,developing HEAs or MEAs with high strength and ductility and relatively low cost is urgent.In this work,novel Cofree Fex Mn(75-x) Ni(10)Cr(15)(x=50 and 55 at.%) MEAs were developed,which exhibit a good combination of low cost,high strength and ductility at cryogenic temperature.It was found that the Fe(50)Mn(25)Ni(10)Cr(15)MEA exhibits a combination of cryogenic tensile strength of^0.98 GPa and ductility of^83 %.The excellent cryogenic mechanical properties were attributed to joint of twinning-induced plasticity(TWIP) and transformation-induced plasticity(TRIP) effects.The present study sheds light on developing low cost MEAs with high perfo rmance for cryogenic-tempe rature applications. 展开更多
关键词 Medium-entropy alloys(MEAs) transformation-induced plasticity(TRIP) Twinning induced plasticity(TWIP) Mechanical properties Cryogenic temperature
原文传递
Multistage serrated flow behavior of a medium-manganese high-carbon steel 被引量:5
17
作者 J.Chen Y.Zhang +2 位作者 J.J.Wang C.M.Liu S.X.Zhao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2020年第9期1064-1072,共9页
The deformation mechanisms and the flow stress behavior of a medium-manganese high-carbon steel during cold deformation at a strain rate of 10×5 s^-1 were explored using a universal testing machine,an X-ray diffr... The deformation mechanisms and the flow stress behavior of a medium-manganese high-carbon steel during cold deformation at a strain rate of 10×5 s^-1 were explored using a universal testing machine,an X-ray diffractometer,a field emission scanning electron microscope and a high-resolution transmission electron microscope.The results show that continuous step-up serrated flow behavior appears after the yielding point,and the true stress-strain curve is roughly divided into five stages based on distinctive densities and amplitudes of serration.The strengthening mechanisms of the experimental steel involve Cottrell atmosphere,twinning-induced plasticity(TWIP)efect and transformation-induced plasticity(TRIP)effect.TWIP effect is the dominant deformation mechanism,and deformation twins formed by TWIP effect comprise primary,secondary and nanotwins.Furthermore,TRIP effect arises in the local high-strain region.Carbon element plays a key role in the transformation of the deformation mechanism.A small amount of carbide precipitates around twin boundaries lead to the formation of local carbon-poor regions,and Md temperature and stacking fault energy of medium-manganese high-carbon steel are propitious to the occurrence of TRIP effect.In addition,the contributions of various deformation mechanisms to plasticity are calculated,and that of TWIP effect is the greatest. 展开更多
关键词 Serrated flow Deformation mechanism Deformation twin Twinning-induced plasticity transformation-induced plasticity
原文传递
Enhancing strength and ductility in the nugget zone of friction stir welded 7Mn steel via tailoring austenitic stability 被引量:4
18
作者 Y.Q.Wang F.Y.Li +3 位作者 J.X.Su R.H.Duan Z.A.Luo G.M.Xie 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第18期174-185,共12页
The martensite often appears in the nugget zone(NZ)of friction stir welding(FSW)7 wt.%Mn steel due to low austenite stability,deteriorating ductility and toughness.In this work,a 7 wt.%Mn steel was sub-jected to FSW,a... The martensite often appears in the nugget zone(NZ)of friction stir welding(FSW)7 wt.%Mn steel due to low austenite stability,deteriorating ductility and toughness.In this work,a 7 wt.%Mn steel was sub-jected to FSW,and preheating was used to tailor the austenitic stability to greatly improve the strength-ductility combination of the NZ.The austenitic deformation behavior and strain hardening mechanism in the NZ were systematically investigated.The microstructure of the as-welded NZ was composed of ultrafine blocky ferrite,austenite,and small amounts of martensite,whereas the as-preheated NZ con-tained ultrafine blocky ferrite and austenite,and the concentration of Mn in austenite was increased from 8.4 wt.%to 10.7 wt.%.This enhanced the austenitic stability,resulting in a significant increase in the volume fraction of austenite in the as-preheated NZ from 37.3%to 66.4%.The product of strength and elongation(PSE)in the as-preheated NZ increased dramatically from 42.6 GPa%to 67.1 GPa%,depending on a persistent high strain hardening rate(SHR).Multiple strain-hardening mechanisms were revealed.The austenite with enhanced stability can provoke sustained transformation-induced plasticity(TRIP)and twinning-induced plasticity(TWIP)effects,and massive dislocation multiplication occurs during tension,resulting in strong strain hardening. 展开更多
关键词 Friction stir welding Medium Mn steel PREHEATING transformation-induced plasticity Twinning-induced plasticity
原文传递
Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys 被引量:4
19
作者 Zhibiao Yang Song Lu +4 位作者 Yanzhong Tian Zijian Gu Huahai Mao Jian Sun Levente Vitos 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第21期66-74,共9页
In order to efficiently explore the nearly infinite composition space in multicomponent solid solution alloys for reaching higher mechanical performance,it is important to establish predictive design strategies using ... In order to efficiently explore the nearly infinite composition space in multicomponent solid solution alloys for reaching higher mechanical performance,it is important to establish predictive design strategies using computation-aided methods.Here,using ab initio calculations we systematically study the effects of magnetism and chemical composition on the generalized stacking fault energy surface(γ-surface) of Cr-Co-Ni medium entropy alloys and show that both chemistry and the coupled magnetic state strongly affect the γ-surface,consequently,the primary deformation modes.The relations among various stable and unstable stacking fault energies are revealed and discussed.The present findings are useful for studying the deformation behaviors of Cr-Co-Ni alloys and facilitate a density functional theory based design of transformation-induced plasticity and twinning-induced plasticity mechanisms in Cr-Co-Ni alloys. 展开更多
关键词 Cr-Co-Ni alloys Stacking fault energy transformation-induced plasticity Twinning-induced plasticity Ab initio
原文传递
Enhanced mechanical performance of grain boundary precipitation-hardened high-entropy alloys via a phase transformation at grain boundaries 被引量:3
20
作者 Y.L.Qi L.Zhao +10 位作者 X.Sun H.X.Zong X.D.Ding F.Jiang H.L.Zhang Y.K.Wu L.He F.Liu S.B.Jin G.Sha J.Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第27期271-284,共14页
Grain-boundary(GB)precipitation has a significant adverse effect on plasticity of alloys,which easily leads to catastrophic intergranular failure in safety-critical applications under high external loading.Herein,we r... Grain-boundary(GB)precipitation has a significant adverse effect on plasticity of alloys,which easily leads to catastrophic intergranular failure in safety-critical applications under high external loading.Herein,we report a novel strategy that uses the local stress concentration induced by GB precipitates as a driving force to trigger phase transformation of preset non-equiatomic high-entropy solid-solution phase at GBs.This in situ deformation-induced phase transformation at GBs introduces a well-known effect:transformation-induced plasticity(TRIP),which enables an exceptional elongation to fracture(above 38%)at a high strength(above 1.5 GPa)in a GB precipitation-hardened high-entropy alloy(HEA).The present strategy in terms of"local stress concentration-induced phase transformations at GBs"may provide a fundamental approach by taking advantage of(rather than avoiding)the GB precipitation to gain a superior combination of high strength and high ductility in HEAs. 展开更多
关键词 Non-equiatomic Grain-boundary precipitation High-entropy alloys DUCTILITY transformation-induced plasticity
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部