We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on t...We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on the Laplace trans- form with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained.展开更多
The steady two-dimensional magnetohydrodynamic stagnation flow towards a nonlinear stretching surface is studied. The no-slip condition on the solid boundary is replaced with a partial slip condition. A scaling group ...The steady two-dimensional magnetohydrodynamic stagnation flow towards a nonlinear stretching surface is studied. The no-slip condition on the solid boundary is replaced with a partial slip condition. A scaling group transformation is used to get the invariants. Using the invariants, a third-order ordinary differential equation corresponding to the momentum is obtained. An analytical solution is obtained in a series form using a homotopy analysis method. Reliability and efficiency of series solutions are shown by the good agreement with numerical results presented in the literature. The effects of the slip parameter, the magnetic field parameter, the velocity ratio parameter, the suction velocity parameter, and the power law exponent on the flow are investigated. The results show that the velocity and shear stress profiles are greatly influenced by these parameters.展开更多
This study intends to examine the analytical solutions to the resulting one-dimensional differential equation of acancer tumor model in the frame of time-fractional order with the Caputo-fractional operator employing ...This study intends to examine the analytical solutions to the resulting one-dimensional differential equation of acancer tumor model in the frame of time-fractional order with the Caputo-fractional operator employing a highlyefficient methodology called the q-homotopy analysis transform method.So,the preferred approach effectivelyfound the analytic series solution of the proposed model.The procured outcomes of the present frameworkdemonstrated that this method is authentic for obtaining solutions to a time-fractional-order cancer model.Theresults achieved graphically specify that the concerned paradigm is dependent on arbitrary order and parametersand also disclose the competence of the proposed algorithm.展开更多
In this paper,we analyze the behaviour of solution for the system exemplifying model of tumour invasion and metastasis by the help of q-homotopy analysis transform method(q-HATM)with the fractional operator.The analyz...In this paper,we analyze the behaviour of solution for the system exemplifying model of tumour invasion and metastasis by the help of q-homotopy analysis transform method(q-HATM)with the fractional operator.The analyzed model consists of a system of three nonlinear differential equations elucidating the activation and the migratory response of the degradation of the matrix,tumour cells and production of degradative enzymes by the tumour cells.The considered method is graceful amalgamations of q-homotopy analysis technique with Laplace transform(LT),and Caputo–Fabrizio(CF)fractional operator is hired in the present study.By using the fixed point theory,existence and uniqueness are demonstrated.To validate and present the effectiveness of the considered algorithm,we analyzed the considered system in terms of fractional order with time and space.The error analysis of the considered scheme is illustrated.The variations with small change time with respect to achieved results are effectively captured in plots.The obtained results confirm that the considered method is very efficient and highly methodical to analyze the behaviors of the system of fractional order differential equations.展开更多
The study of internal atmospheric waves,also known as gravity waves,which are detectable inside the fluid rather than at the fluid surface,is presented in this work.We have used the time-fractional and fuzzy-fractiona...The study of internal atmospheric waves,also known as gravity waves,which are detectable inside the fluid rather than at the fluid surface,is presented in this work.We have used the time-fractional and fuzzy-fractional techniques to solve the differential equation system representing the atmospheric inter-nal waves model.The q-Homotopy analysis Shehu transform technique(q-HAShTM)is used to solve the model.The method helps find convergent solutions since it helps solve nonlinearity,and the fractional derivative can be easily computed using the Shehu transform.Finally,the obtained solution is compared for the particular case ofα=1 with the HAM solution to explain the method’s accuracy.展开更多
T'his research paper implements the fractional homotopy analysis transform technique to compute the approximate analytical solution of the nonlinear three-species food chain model with time-fractional derivatives....T'his research paper implements the fractional homotopy analysis transform technique to compute the approximate analytical solution of the nonlinear three-species food chain model with time-fractional derivatives.The offered technique is a fantastic blend of homotopy analysis method(HAM)and Laplace transform(LT)operator and has been used fruitfully in the numerical computation of various fractional differential equations(FDEs).This paper involves the fractional derivatives of Caputo style.The numerical solutions of this selected fractional-order food chain model are evaluated by making use of the associated initial conditions.It is revealed by the adopting procedure that the more desirable estimation of the solution can be easily acquired through the calculation of some number of iteration terms only-a fact which authenticates the easiness and soundness of the suggested hybrid scherne.The variations of fractional order of time derivative on the solutions for different specific cases have been depicted through graphical presentations.The outcomes demonstrated through the graphs expound that the adopted scheme is very fantastic and accurate.展开更多
文摘We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on the Laplace trans- form with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained.
基金Project supported by the National Natural Science Foundation of China (No. 50936003)the Open Project of State Key Laboratory for Advanced Metals and Materials and the Research Foundation of Engineering Research Institute of University of Science and Technology Beijing (No. 2009Z-02)
文摘The steady two-dimensional magnetohydrodynamic stagnation flow towards a nonlinear stretching surface is studied. The no-slip condition on the solid boundary is replaced with a partial slip condition. A scaling group transformation is used to get the invariants. Using the invariants, a third-order ordinary differential equation corresponding to the momentum is obtained. An analytical solution is obtained in a series form using a homotopy analysis method. Reliability and efficiency of series solutions are shown by the good agreement with numerical results presented in the literature. The effects of the slip parameter, the magnetic field parameter, the velocity ratio parameter, the suction velocity parameter, and the power law exponent on the flow are investigated. The results show that the velocity and shear stress profiles are greatly influenced by these parameters.
基金Prince Sattam bin Abdulaziz University in Saudi Arabia supported this research under Project Number PSAU/2024/01/99519.
文摘This study intends to examine the analytical solutions to the resulting one-dimensional differential equation of acancer tumor model in the frame of time-fractional order with the Caputo-fractional operator employing a highlyefficient methodology called the q-homotopy analysis transform method.So,the preferred approach effectivelyfound the analytic series solution of the proposed model.The procured outcomes of the present frameworkdemonstrated that this method is authentic for obtaining solutions to a time-fractional-order cancer model.Theresults achieved graphically specify that the concerned paradigm is dependent on arbitrary order and parametersand also disclose the competence of the proposed algorithm.
文摘In this paper,we analyze the behaviour of solution for the system exemplifying model of tumour invasion and metastasis by the help of q-homotopy analysis transform method(q-HATM)with the fractional operator.The analyzed model consists of a system of three nonlinear differential equations elucidating the activation and the migratory response of the degradation of the matrix,tumour cells and production of degradative enzymes by the tumour cells.The considered method is graceful amalgamations of q-homotopy analysis technique with Laplace transform(LT),and Caputo–Fabrizio(CF)fractional operator is hired in the present study.By using the fixed point theory,existence and uniqueness are demonstrated.To validate and present the effectiveness of the considered algorithm,we analyzed the considered system in terms of fractional order with time and space.The error analysis of the considered scheme is illustrated.The variations with small change time with respect to achieved results are effectively captured in plots.The obtained results confirm that the considered method is very efficient and highly methodical to analyze the behaviors of the system of fractional order differential equations.
文摘The study of internal atmospheric waves,also known as gravity waves,which are detectable inside the fluid rather than at the fluid surface,is presented in this work.We have used the time-fractional and fuzzy-fractional techniques to solve the differential equation system representing the atmospheric inter-nal waves model.The q-Homotopy analysis Shehu transform technique(q-HAShTM)is used to solve the model.The method helps find convergent solutions since it helps solve nonlinearity,and the fractional derivative can be easily computed using the Shehu transform.Finally,the obtained solution is compared for the particular case ofα=1 with the HAM solution to explain the method’s accuracy.
文摘T'his research paper implements the fractional homotopy analysis transform technique to compute the approximate analytical solution of the nonlinear three-species food chain model with time-fractional derivatives.The offered technique is a fantastic blend of homotopy analysis method(HAM)and Laplace transform(LT)operator and has been used fruitfully in the numerical computation of various fractional differential equations(FDEs).This paper involves the fractional derivatives of Caputo style.The numerical solutions of this selected fractional-order food chain model are evaluated by making use of the associated initial conditions.It is revealed by the adopting procedure that the more desirable estimation of the solution can be easily acquired through the calculation of some number of iteration terms only-a fact which authenticates the easiness and soundness of the suggested hybrid scherne.The variations of fractional order of time derivative on the solutions for different specific cases have been depicted through graphical presentations.The outcomes demonstrated through the graphs expound that the adopted scheme is very fantastic and accurate.