With the rapid development of digital communication and the widespread use of the Internet of Things,multi-view image compression has attracted increasing attention as a fundamental technology for image data communica...With the rapid development of digital communication and the widespread use of the Internet of Things,multi-view image compression has attracted increasing attention as a fundamental technology for image data communication.Multi-view image compression aims to improve compression efficiency by leveraging correlations between images.However,the requirement of synchronization and inter-image communication at the encoder side poses significant challenges,especially for constrained devices.In this study,we introduce a novel distributed image compression model based on the attention mechanism to address the challenges associated with the availability of side information only during decoding.Our model integrates an encoder network,a quantization module,and a decoder network,to ensure both high compression performance and high-quality image reconstruction.The encoder uses a deep Convolutional Neural Network(CNN)to extract high-level features from the input image,which then pass through the quantization module for further compression before undergoing lossless entropy coding.The decoder of our model consists of three main components that allow us to fully exploit the information within and between images on the decoder side.Specifically,we first introduce a channel-spatial attention module to capture and refine information within individual image feature maps.Second,we employ a semi-coupled convolution module to extract both shared and specific information in images.Finally,a cross-attention module is employed to fuse mutual information extracted from side information.The effectiveness of our model is validated on various datasets,including KITTI Stereo and Cityscapes.The results highlight the superior compression capabilities of our method,surpassing state-of-the-art techniques.展开更多
Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by ...Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by enlarging the receptive field,which indicates how the convolution process extracts features in a high dimensional feature space.However,its functionality is restricted to the spatial dimension and network depth,limiting further improvements in network performance due to insufficient information interaction and representation.Crucially,the potential of high dimensional feature space in the channel dimension and the exploration of network width/resolution remain largely untapped.In this paper,we consider nonlinear transforms from the perspective of feature space,defining high-dimensional feature spaces in different dimensions and investigating the specific effects.Firstly,we introduce the dimension increasing and decreasing transforms in both channel and spatial dimensions to obtain high dimensional feature space and achieve better feature extraction.Secondly,we design a channel-spatial fusion residual transform(CSR),which incorporates multi-dimensional transforms for a more effective representation.Furthermore,we simplify the proposed fusion transform to obtain a slim architecture(CSR-sm),balancing network complexity and compression performance.Finally,we build the overall network with stacked CSR transforms to achieve better compression and reconstruction.Experimental results demonstrate that the proposed method can achieve superior ratedistortion performance compared to the existing LIC methods and traditional codecs.Specifically,our proposed method achieves 9.38%BD-rate reduction over VVC on Kodak dataset.展开更多
[Objective] To study the digital image compression technology in rice monitoring system. [Method] A digital image compression technology program based on the discrete Fourier transform was proposed, and simulation exp...[Objective] To study the digital image compression technology in rice monitoring system. [Method] A digital image compression technology program based on the discrete Fourier transform was proposed, and simulation experiments were carried out to compress the image at different compression ratios. [Result] When com- pression ratios were less than 30, the compression ratio, image entropy, average codeword length, coding efficiency and redundancy which reflected the quality of the coding, and the parameter PSNR which estimated the fidelity of the compressed im- age were all achieved good results that human eye could barely percept the differ- ence between the original image and decompressed image; and when the compres- sion ratios were more than 30, there was a certain distortion in the decompressed image. And when the compression ratio was 91.516 3, although the image had some distortion, the PSNR was still achieved to 21.528 2, and human eye could accept the decompressed image intuitively within the acceptable error range. [Conclusion] The results show that the proposed image compression program is a viable, effective, and better image compression technology which can satisfy the requirements of the crop monitoring system on image storage, transforming and transporting.展开更多
[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of gua...[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of guaranteeing image quality in the rape crop monitoring system in Qinling Mountains. [Method] In the proposal, the color image was divided into brightness images with three fundamental colors, followed by sub-image division and DCT treatment. Then, coefficients of transform domain were quantized, and encoded and compressed as per Huffman coding. Finally, decompression was conducted through inverse process and decompressed images were matched. [Result] The simulation results show that when compression ratio of the color image of rape crops was 11.972 3∶1, human can not distinguish the differences between the decompressed images and the source images with naked eyes; when ratio was as high as 53.565 6∶1, PSNR was still above 30 dD,encoding efficiency achieved over 0.78 and redundancy was less than 0.22. [Conclusion] The results indicate that the proposed color image compression technology can achieve higher compression ratio on the premise of good image quality. In addition, image encoding quality and decompressed images achieved better results, which fully met requirement of image storage and transmission in monitoring system of rape crop in the Qinling Mountains.展开更多
Objective:To describe the anatomical characteristics and patterns of neurovascular compression (NVC) in patients suffering trigeminal neuralgia(TN) by 3D high-resolution magnetic resonance imaging(MRI) method and imag...Objective:To describe the anatomical characteristics and patterns of neurovascular compression (NVC) in patients suffering trigeminal neuralgia(TN) by 3D high-resolution magnetic resonance imaging(MRI) method and image fusion technique.Methods:The anatomic structure of trigeminal nerve,brain stem and blood vessel was observed in 100 consecutive TN patients by 3D high resolution MRI(3D SPGR,contrast-enhanced T1 3D MP-RAGE and T2/T1 3D FIESTA). The 3D image sources were fused and visualized using 3D DOCTOR software.Results:One or several NVC sites,which usually appeared 0-9.8 mm away from brain stem,were found on the symptomatic side in 93%of the TN cases.Superior cerebellar artery was involved in 76%(71/93) of these cases.The other vessels including antero-inferior cerebellar artery,vertebral artery, basilar artery and veins also contributed to the occurrence of NVC.The NVC sites were found to be located in the proximal segment in 42%of these cases(39/93) and in the distal segment in 45% (42/93).Nerve dislocation or distortion was observed in 32%(30/93).Conclusions:Various 3D high resolution MRI methods combined with the image fusion technique could provide pathologic anatomic information for the diagnosis and treatment of TN.展开更多
The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in sp...The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in specimens with different aspect ratios was also examined.Peak stress,post-peak portion of stress-strain,brittleness,characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio.Strain patterns of the rocks were obtained by applying three-dimensional(3D) digital image correlation(DIC) technique.Unlike conventional strain measurement using strain gauges attached to specimen,3D DIC allowed not only measuring large strains,but more importantly,mapping the development of field strain throughout the compression test,i.e.in pre-and post-peak regimes.Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime.However,in post-peak regime,strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone.The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation.Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.展开更多
Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability...Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm.展开更多
This paper utilizes a spatial texture correlation and the intelligent classification algorithm (ICA) search strategy to speed up the encoding process and improve the bit rate for fractal image compression. Texture f...This paper utilizes a spatial texture correlation and the intelligent classification algorithm (ICA) search strategy to speed up the encoding process and improve the bit rate for fractal image compression. Texture features is one of the most important properties for the representation of an image. Entropy and maximum entry from co-occurrence matrices are used for representing texture features in an image. For a range block, concerned domain blocks of neighbouring range blocks with similar texture features can be searched. In addition, domain blocks with similar texture features are searched in the ICA search process. Experiments show that in comparison with some typical methods, the proposed algorithm significantly speeds up the encoding process and achieves a higher compression ratio, with a slight diminution in the quality of the reconstructed image; in comparison with a spatial correlation scheme, the proposed scheme spends much less encoding time while the compression ratio and the quality of the reconstructed image are almost the same.展开更多
By investigating the limitation of existing wavelet tree based image compression methods, we propose a novel wavelet fractal image compression method in this paper. Briefly, the initial errors are appointed given the ...By investigating the limitation of existing wavelet tree based image compression methods, we propose a novel wavelet fractal image compression method in this paper. Briefly, the initial errors are appointed given the different levels of importance accorded the frequency sublevel band wavelet coefficients. Higher frequency sublevel bands would lead to larger initial errors. As a result, the sizes of sublevel blocks and super blocks would be changed according to the initial errors. The matching sizes between sublevel blocks and super blocks would be changed according to the permitted errors and compression rates. Systematic analyses are performed and the experimental results demonstrate that the proposed method provides a satisfactory performance with a clearly increasing rate of compression and speed of encoding without reducing SNR and the quality of decoded images. Simulation results show that our method is superior to the traditional wavelet tree based methods of fractal image compression.展开更多
A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, i...A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.展开更多
A new method using plane fitting to decide whether a domain block is similar enough to a given range block is proposed in this paper. First, three coefficients are computed for describing each range and domain block. ...A new method using plane fitting to decide whether a domain block is similar enough to a given range block is proposed in this paper. First, three coefficients are computed for describing each range and domain block. Then, the best-matched one for every range block is obtained by analysing the relation between their coefficients. Experimental results show that the proposed method can shorten encoding time markedly, while the retrieved image quality is still acceptable. In the decoding step, a kind of simple line fitting on block boundaries is used to reduce blocking effects. At the same time, the proposed method can also achieve a high compression ratio.展开更多
The particle image velocimetry (PIV) method was used to investigate the full-field displacements and strains of the limestone specimen under external loads from the video images captured during the laboratory tests.Th...The particle image velocimetry (PIV) method was used to investigate the full-field displacements and strains of the limestone specimen under external loads from the video images captured during the laboratory tests.The original colorful video images and experimental data were obtained from the uniaxial compression test of a limestone.To eliminate perspective errors and lens distortion,the camera was placed normal to the rock specimen exposure.After converted into a readable format of frame images,these videos were transformed into the responding grayscale images,and the frame images were then extracted.The full-field displacement field was obtained by using the PIV technique,and interpolated in the sub-pixel locations.The displacement was measured in the plane of the image and inferred from two consecutive images.The local displacement vectors were calculated for small sub-windows of the images by means of cross-correlation.The video images were interrogated in a multi-pass way,starting off with 64×64 images,ending with 16×16 images after 6 iterations,and using 75% overlap of the sub-windows.In order to remove spurious vectors,the displacements were filtered using four filters:signal-to-noise ratio filter,peak height filter,global filter and local filter.The cubic interpolation was utilized if the displacements without a number were encountered.The full-field strain was then obtained using the local least square method from the discrete displacements.The strain change with time at different locations was also investigated.It is found that the normal strains are dependant on the locations and the crack distributions.Between 1.0 and 5.0 s prior to the specimen failure,normal strains increase rapidly at many locations,while a stable status appears at some locations.When the specimen is in a failure status,a large rotation occurs and it increases in the inverse direction.The strain concentration bands do not completely develop into the large cracks,and meso-cracks are not visible in some bands.The techniques presented here may improve the traditional measurement of the strain field,and may provide a lot of valuable information in investigating the deformation/failure mechanism of rock materials.展开更多
The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear...The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear morphological predictor follows the update adaptive lifting to result in fewer large wavelet coefficients near edges for reducing coding. The nonlinear adaptive wavelet transforms can also allow perfect reconstruction without any overhead cost. Experiment results are given to show lower entropy of the adaptive transformed images than those of the non-adaptive case and great applicable potentiality in lossless image compresslon.展开更多
The paper describes an efficient lossy and lossless three dimensional (3D) image compression of hyperspectral images. The method adopts the 3D spatial-spectral hybrid transform and the proposed transform-based coder. ...The paper describes an efficient lossy and lossless three dimensional (3D) image compression of hyperspectral images. The method adopts the 3D spatial-spectral hybrid transform and the proposed transform-based coder. The hybrid transforms are that Karhunen-Loève Transform (KLT) which decorrelates spectral data of a hyperspectral image, and the integer Discrete Wavelet Transform (DWT) which is applied to the spatial data and produces decorrelated wavelet coefficients. Our simpler transform-based coder is inspired by Shapiro’s EZW algorithm, but encodes residual values and only implements dominant pass incorporating six symbols. The proposed method will be examined on AVIRIS images and evaluated using compression ratio for both lossless and lossy compression, and signal to noise ratio (SNR) for lossy compression. Experimental results show that the proposed image compression not only is more efficient but also has better compression ratio.展开更多
Detecting the forgery parts from a double compressed image is very important and urgent work for blind authentication. A very simple and efficient method for accomplishing the task is proposed. Firstly, the probabilis...Detecting the forgery parts from a double compressed image is very important and urgent work for blind authentication. A very simple and efficient method for accomplishing the task is proposed. Firstly, the probabilistic model with periodic effects in double quantization is analyzed, and the probability of quantized DCT coefficients in each block is calculated over the entire iraage. Secondly, the posteriori probability of each block is computed according to Bayesian theory and the results mentioned in first part. Then the mean and variance of the posteriori probability are to be used for judging whether the target block is tampered. Finally, the mathematical morphology operations are performed to reduce the false alarm probability. Experimental results show that the method can exactly locate the doctored part, and through the experiment it is also found that for detecting the tampered regions, the higher the second compression quality is, the more exact the detection efficiency is.展开更多
In this paper, image compression and decompression are realized on a personal computer based on fractal theory. The algorithm is effectiveas as the reconstructed image is similar to the original. In the algorithm, the...In this paper, image compression and decompression are realized on a personal computer based on fractal theory. The algorithm is effectiveas as the reconstructed image is similar to the original. In the algorithm, the formulas for contrast scaling and luminance shift are simplified,and the Hausdorff distance is replaced by the Euclidean distance. Thus, the calculation load is reduced. The formula for compression ratio is presented for an ideal situation, from which one can analyze how the different factors influence image compression ratio.展开更多
An edge oriented image sequence coding scheme is presented. On the basis of edge detecting, an image could be divided into the sensitized region and the smooth region. In this scheme, the architecture of sensitized r...An edge oriented image sequence coding scheme is presented. On the basis of edge detecting, an image could be divided into the sensitized region and the smooth region. In this scheme, the architecture of sensitized region is approximated with linear type of segments. Then a rectangle belt is constructed for each segment. Finally, the gray value distribution in the region is fitted by normal forms polynomials. The model matching and motion analysis are also based on the architecture of sensitized region. For the smooth region we use the run length scanning and linear approximating. By means of normal forms polynomial fitting and motion prediction by matching, the images are compressed. It is shown through the simulations that the subjective quality of reconstructed picture is excellent at 0.0075 bit per pel.展开更多
With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image...With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.展开更多
This paper presents a novel method utilizing wavelets with particle swarm optimization(PSO)for medical image compression.Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing ima...This paper presents a novel method utilizing wavelets with particle swarm optimization(PSO)for medical image compression.Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing images using thresholding.It transfers images into subband details and approximations using a modified Haar wavelet(MHW),and then applies a threshold.PSO is applied for selecting a particle assigned to the threshold values for the subbands.Nine positions assigned to particles values are used to represent population.Every particle updates its position depending on the global best position(gbest)(for all details subband)and local best position(pbest)(for a subband).The fitness value is developed to terminate PSO when the difference between two local best(pbest)successors is smaller than a prescribe value.The experiments are applied on five different medical image types,i.e.,MRI,CT,and X-ray.Results show that the proposed algorithm can be more preferably to compress medical images than other existing wavelets techniques from peak signal to noise ratio(PSNR)and compression ratio(CR)points of views.展开更多
One of the main disadvantages of fractal image data compression is a loss time in the process of image compression (encoding) and conversion into a system of iterated functions (IFS). In this paper, the idea of the in...One of the main disadvantages of fractal image data compression is a loss time in the process of image compression (encoding) and conversion into a system of iterated functions (IFS). In this paper, the idea of the inverse problem of fixed point is introduced. This inverse problem is based on collage theorem which is the cornerstone of the mathematical idea of fractal image compression. Then this idea is applied by iterated function system, iterative system functions and grayscale iterated function system down to general transformation. Mathematical formulation form is also provided on the digital image space, which deals with the computer. Next, this process has been revised to reduce the time required for image compression by excluding some parts of the image that have a specific milestone. The neural network algorithms have been applied on the process of compression (encryption). The experimental results are presented and the performance of the proposed algorithm is discussed. Finally, the comparison between filtered ranges method and self-organizing method is introduced.展开更多
基金supported by the National Natural Science Foundation of China(Key Program)(No.11932013)the Tianjin Science and Technology Plan Project(No.22PTZWHZ00040)。
文摘With the rapid development of digital communication and the widespread use of the Internet of Things,multi-view image compression has attracted increasing attention as a fundamental technology for image data communication.Multi-view image compression aims to improve compression efficiency by leveraging correlations between images.However,the requirement of synchronization and inter-image communication at the encoder side poses significant challenges,especially for constrained devices.In this study,we introduce a novel distributed image compression model based on the attention mechanism to address the challenges associated with the availability of side information only during decoding.Our model integrates an encoder network,a quantization module,and a decoder network,to ensure both high compression performance and high-quality image reconstruction.The encoder uses a deep Convolutional Neural Network(CNN)to extract high-level features from the input image,which then pass through the quantization module for further compression before undergoing lossless entropy coding.The decoder of our model consists of three main components that allow us to fully exploit the information within and between images on the decoder side.Specifically,we first introduce a channel-spatial attention module to capture and refine information within individual image feature maps.Second,we employ a semi-coupled convolution module to extract both shared and specific information in images.Finally,a cross-attention module is employed to fuse mutual information extracted from side information.The effectiveness of our model is validated on various datasets,including KITTI Stereo and Cityscapes.The results highlight the superior compression capabilities of our method,surpassing state-of-the-art techniques.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.62031013)Guangdong Province Key Construction Discipline Scientific Research Capacity Improvement Project(Grant No.2022ZDJS117).
文摘Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by enlarging the receptive field,which indicates how the convolution process extracts features in a high dimensional feature space.However,its functionality is restricted to the spatial dimension and network depth,limiting further improvements in network performance due to insufficient information interaction and representation.Crucially,the potential of high dimensional feature space in the channel dimension and the exploration of network width/resolution remain largely untapped.In this paper,we consider nonlinear transforms from the perspective of feature space,defining high-dimensional feature spaces in different dimensions and investigating the specific effects.Firstly,we introduce the dimension increasing and decreasing transforms in both channel and spatial dimensions to obtain high dimensional feature space and achieve better feature extraction.Secondly,we design a channel-spatial fusion residual transform(CSR),which incorporates multi-dimensional transforms for a more effective representation.Furthermore,we simplify the proposed fusion transform to obtain a slim architecture(CSR-sm),balancing network complexity and compression performance.Finally,we build the overall network with stacked CSR transforms to achieve better compression and reconstruction.Experimental results demonstrate that the proposed method can achieve superior ratedistortion performance compared to the existing LIC methods and traditional codecs.Specifically,our proposed method achieves 9.38%BD-rate reduction over VVC on Kodak dataset.
基金Supported by the Natural Science Foundation of Shaanxi Province,China (2011JE012)the Special Research Fund of the Education Bureau of Shaanxi Province,China(2010JK464)~~
文摘[Objective] To study the digital image compression technology in rice monitoring system. [Method] A digital image compression technology program based on the discrete Fourier transform was proposed, and simulation experiments were carried out to compress the image at different compression ratios. [Result] When com- pression ratios were less than 30, the compression ratio, image entropy, average codeword length, coding efficiency and redundancy which reflected the quality of the coding, and the parameter PSNR which estimated the fidelity of the compressed im- age were all achieved good results that human eye could barely percept the differ- ence between the original image and decompressed image; and when the compres- sion ratios were more than 30, there was a certain distortion in the decompressed image. And when the compression ratio was 91.516 3, although the image had some distortion, the PSNR was still achieved to 21.528 2, and human eye could accept the decompressed image intuitively within the acceptable error range. [Conclusion] The results show that the proposed image compression program is a viable, effective, and better image compression technology which can satisfy the requirements of the crop monitoring system on image storage, transforming and transporting.
基金Supported by Special Fund for Scientific Research of Shannxi Education Department(No:2010JK463)Shaanxi Natural Science Foundation(2011JE012)~~
文摘[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of guaranteeing image quality in the rape crop monitoring system in Qinling Mountains. [Method] In the proposal, the color image was divided into brightness images with three fundamental colors, followed by sub-image division and DCT treatment. Then, coefficients of transform domain were quantized, and encoded and compressed as per Huffman coding. Finally, decompression was conducted through inverse process and decompressed images were matched. [Result] The simulation results show that when compression ratio of the color image of rape crops was 11.972 3∶1, human can not distinguish the differences between the decompressed images and the source images with naked eyes; when ratio was as high as 53.565 6∶1, PSNR was still above 30 dD,encoding efficiency achieved over 0.78 and redundancy was less than 0.22. [Conclusion] The results indicate that the proposed color image compression technology can achieve higher compression ratio on the premise of good image quality. In addition, image encoding quality and decompressed images achieved better results, which fully met requirement of image storage and transmission in monitoring system of rape crop in the Qinling Mountains.
基金Supported by the Science Foundation of Haikou Health Bureau (grant No.2010-SWY-13-058)Haikou Science Technology Information Bureau (grant No.2009-049-1)
文摘Objective:To describe the anatomical characteristics and patterns of neurovascular compression (NVC) in patients suffering trigeminal neuralgia(TN) by 3D high-resolution magnetic resonance imaging(MRI) method and image fusion technique.Methods:The anatomic structure of trigeminal nerve,brain stem and blood vessel was observed in 100 consecutive TN patients by 3D high resolution MRI(3D SPGR,contrast-enhanced T1 3D MP-RAGE and T2/T1 3D FIESTA). The 3D image sources were fused and visualized using 3D DOCTOR software.Results:One or several NVC sites,which usually appeared 0-9.8 mm away from brain stem,were found on the symptomatic side in 93%of the TN cases.Superior cerebellar artery was involved in 76%(71/93) of these cases.The other vessels including antero-inferior cerebellar artery,vertebral artery, basilar artery and veins also contributed to the occurrence of NVC.The NVC sites were found to be located in the proximal segment in 42%of these cases(39/93) and in the distal segment in 45% (42/93).Nerve dislocation or distortion was observed in 32%(30/93).Conclusions:Various 3D high resolution MRI methods combined with the image fusion technique could provide pathologic anatomic information for the diagnosis and treatment of TN.
基金supported by the Deep Exploration Technologies Cooperative Research Centre whose activities are funded by the Australian Government's Cooperative Research Centre Programme.This is DET CRC Document 2017/954
文摘The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in specimens with different aspect ratios was also examined.Peak stress,post-peak portion of stress-strain,brittleness,characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio.Strain patterns of the rocks were obtained by applying three-dimensional(3D) digital image correlation(DIC) technique.Unlike conventional strain measurement using strain gauges attached to specimen,3D DIC allowed not only measuring large strains,but more importantly,mapping the development of field strain throughout the compression test,i.e.in pre-and post-peak regimes.Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime.However,in post-peak regime,strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone.The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation.Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.
文摘Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152)the Superior University Doctor Subject Special Scientific Research Foundation of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province of China (Grant No. 20082165)
文摘This paper utilizes a spatial texture correlation and the intelligent classification algorithm (ICA) search strategy to speed up the encoding process and improve the bit rate for fractal image compression. Texture features is one of the most important properties for the representation of an image. Entropy and maximum entry from co-occurrence matrices are used for representing texture features in an image. For a range block, concerned domain blocks of neighbouring range blocks with similar texture features can be searched. In addition, domain blocks with similar texture features are searched in the ICA search process. Experiments show that in comparison with some typical methods, the proposed algorithm significantly speeds up the encoding process and achieves a higher compression ratio, with a slight diminution in the quality of the reconstructed image; in comparison with a spatial correlation scheme, the proposed scheme spends much less encoding time while the compression ratio and the quality of the reconstructed image are almost the same.
基金Project 60571049 supported by the National Natural Science Foundation of China
文摘By investigating the limitation of existing wavelet tree based image compression methods, we propose a novel wavelet fractal image compression method in this paper. Briefly, the initial errors are appointed given the different levels of importance accorded the frequency sublevel band wavelet coefficients. Higher frequency sublevel bands would lead to larger initial errors. As a result, the sizes of sublevel blocks and super blocks would be changed according to the initial errors. The matching sizes between sublevel blocks and super blocks would be changed according to the permitted errors and compression rates. Systematic analyses are performed and the experimental results demonstrate that the proposed method provides a satisfactory performance with a clearly increasing rate of compression and speed of encoding without reducing SNR and the quality of decoded images. Simulation results show that our method is superior to the traditional wavelet tree based methods of fractal image compression.
基金This project was supported by the National Natural Science Foundation of China (60532060)Hainan Education Bureau Research Project (Hjkj200602)Hainan Natural Science Foundation (80551).
文摘A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60973152, and 60573172)the Special Scientific Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165)
文摘A new method using plane fitting to decide whether a domain block is similar enough to a given range block is proposed in this paper. First, three coefficients are computed for describing each range and domain block. Then, the best-matched one for every range block is obtained by analysing the relation between their coefficients. Experimental results show that the proposed method can shorten encoding time markedly, while the retrieved image quality is still acceptable. In the decoding step, a kind of simple line fitting on block boundaries is used to reduce blocking effects. At the same time, the proposed method can also achieve a high compression ratio.
基金Project(40972191) supported by the National Natural Science Foundation of ChinaProject(09YZ39) supported by the Creative Issue of Shanghai Education Committee,China
文摘The particle image velocimetry (PIV) method was used to investigate the full-field displacements and strains of the limestone specimen under external loads from the video images captured during the laboratory tests.The original colorful video images and experimental data were obtained from the uniaxial compression test of a limestone.To eliminate perspective errors and lens distortion,the camera was placed normal to the rock specimen exposure.After converted into a readable format of frame images,these videos were transformed into the responding grayscale images,and the frame images were then extracted.The full-field displacement field was obtained by using the PIV technique,and interpolated in the sub-pixel locations.The displacement was measured in the plane of the image and inferred from two consecutive images.The local displacement vectors were calculated for small sub-windows of the images by means of cross-correlation.The video images were interrogated in a multi-pass way,starting off with 64×64 images,ending with 16×16 images after 6 iterations,and using 75% overlap of the sub-windows.In order to remove spurious vectors,the displacements were filtered using four filters:signal-to-noise ratio filter,peak height filter,global filter and local filter.The cubic interpolation was utilized if the displacements without a number were encountered.The full-field strain was then obtained using the local least square method from the discrete displacements.The strain change with time at different locations was also investigated.It is found that the normal strains are dependant on the locations and the crack distributions.Between 1.0 and 5.0 s prior to the specimen failure,normal strains increase rapidly at many locations,while a stable status appears at some locations.When the specimen is in a failure status,a large rotation occurs and it increases in the inverse direction.The strain concentration bands do not completely develop into the large cracks,and meso-cracks are not visible in some bands.The techniques presented here may improve the traditional measurement of the strain field,and may provide a lot of valuable information in investigating the deformation/failure mechanism of rock materials.
基金Supported by the National Natural Science Foundation of China (69983005)
文摘The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear morphological predictor follows the update adaptive lifting to result in fewer large wavelet coefficients near edges for reducing coding. The nonlinear adaptive wavelet transforms can also allow perfect reconstruction without any overhead cost. Experiment results are given to show lower entropy of the adaptive transformed images than those of the non-adaptive case and great applicable potentiality in lossless image compresslon.
文摘The paper describes an efficient lossy and lossless three dimensional (3D) image compression of hyperspectral images. The method adopts the 3D spatial-spectral hybrid transform and the proposed transform-based coder. The hybrid transforms are that Karhunen-Loève Transform (KLT) which decorrelates spectral data of a hyperspectral image, and the integer Discrete Wavelet Transform (DWT) which is applied to the spatial data and produces decorrelated wavelet coefficients. Our simpler transform-based coder is inspired by Shapiro’s EZW algorithm, but encodes residual values and only implements dominant pass incorporating six symbols. The proposed method will be examined on AVIRIS images and evaluated using compression ratio for both lossless and lossy compression, and signal to noise ratio (SNR) for lossy compression. Experimental results show that the proposed image compression not only is more efficient but also has better compression ratio.
基金supported by the National Natural Science Foundation of China(60574082)the Postdoctoral Science Foundation of China(20070421017)+2 种基金the Natural Science Foundation of Jiangsu Province(BK 2008403)the Graduate Research and Innovation Project of Jiangsu Province(CX09B-100Z)the Excellent Doctoral Dissertation Innovation Foundation of Nanjing University of Science and Technology.
文摘Detecting the forgery parts from a double compressed image is very important and urgent work for blind authentication. A very simple and efficient method for accomplishing the task is proposed. Firstly, the probabilistic model with periodic effects in double quantization is analyzed, and the probability of quantized DCT coefficients in each block is calculated over the entire iraage. Secondly, the posteriori probability of each block is computed according to Bayesian theory and the results mentioned in first part. Then the mean and variance of the posteriori probability are to be used for judging whether the target block is tampered. Finally, the mathematical morphology operations are performed to reduce the false alarm probability. Experimental results show that the method can exactly locate the doctored part, and through the experiment it is also found that for detecting the tampered regions, the higher the second compression quality is, the more exact the detection efficiency is.
文摘In this paper, image compression and decompression are realized on a personal computer based on fractal theory. The algorithm is effectiveas as the reconstructed image is similar to the original. In the algorithm, the formulas for contrast scaling and luminance shift are simplified,and the Hausdorff distance is replaced by the Euclidean distance. Thus, the calculation load is reduced. The formula for compression ratio is presented for an ideal situation, from which one can analyze how the different factors influence image compression ratio.
文摘An edge oriented image sequence coding scheme is presented. On the basis of edge detecting, an image could be divided into the sensitized region and the smooth region. In this scheme, the architecture of sensitized region is approximated with linear type of segments. Then a rectangle belt is constructed for each segment. Finally, the gray value distribution in the region is fitted by normal forms polynomials. The model matching and motion analysis are also based on the architecture of sensitized region. For the smooth region we use the run length scanning and linear approximating. By means of normal forms polynomial fitting and motion prediction by matching, the images are compressed. It is shown through the simulations that the subjective quality of reconstructed picture is excellent at 0.0075 bit per pel.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 71571091,71771112the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds under Grant PAL-N201801the Excellent Talent Training Project of University of Science and Technology Liaoning under Grant 2019RC05.
文摘With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.
基金funded by the University of Jeddah,Saudi Arabia,under Grant No.UJ-20-043-DR。
文摘This paper presents a novel method utilizing wavelets with particle swarm optimization(PSO)for medical image compression.Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing images using thresholding.It transfers images into subband details and approximations using a modified Haar wavelet(MHW),and then applies a threshold.PSO is applied for selecting a particle assigned to the threshold values for the subbands.Nine positions assigned to particles values are used to represent population.Every particle updates its position depending on the global best position(gbest)(for all details subband)and local best position(pbest)(for a subband).The fitness value is developed to terminate PSO when the difference between two local best(pbest)successors is smaller than a prescribe value.The experiments are applied on five different medical image types,i.e.,MRI,CT,and X-ray.Results show that the proposed algorithm can be more preferably to compress medical images than other existing wavelets techniques from peak signal to noise ratio(PSNR)and compression ratio(CR)points of views.
文摘One of the main disadvantages of fractal image data compression is a loss time in the process of image compression (encoding) and conversion into a system of iterated functions (IFS). In this paper, the idea of the inverse problem of fixed point is introduced. This inverse problem is based on collage theorem which is the cornerstone of the mathematical idea of fractal image compression. Then this idea is applied by iterated function system, iterative system functions and grayscale iterated function system down to general transformation. Mathematical formulation form is also provided on the digital image space, which deals with the computer. Next, this process has been revised to reduce the time required for image compression by excluding some parts of the image that have a specific milestone. The neural network algorithms have been applied on the process of compression (encryption). The experimental results are presented and the performance of the proposed algorithm is discussed. Finally, the comparison between filtered ranges method and self-organizing method is introduced.