In the Kigongo area of Mwanza Region,northwest Tanzania,fishmonger Neema Aisha remembers how the morning’s fresh catch would sour while she queued for the ferry,putting her business at risk.
Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postn...Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo.展开更多
It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla we...It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation.展开更多
The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them w...The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them was not a typical exhibition hall,but a building shaped like a gleaming stainless-steel cooking pot.展开更多
Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the b...Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information,existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors.In order to address these challenges and maximize the performance of brain tumor segmentation,this research introduces a novel SwinUNETR-based model by integrating a new decoder block,the Hierarchical Channel-wise Attention Decoder(HCAD),into a powerful SwinUNETR encoder.The HCAD decoder block utilizes hierarchical features and channelspecific attention mechanisms to further fuse information at different scales transmitted from the encoder and preserve spatial details throughout the reconstruction phase.Rigorous evaluations on the recent BraTS GLI datasets demonstrate that the proposed SwinHCAD model achieved superior and improved segmentation accuracy on both the Dice score and HD95 metrics across all tumor subregions(WT,TC,and ET)compared to baseline models.In particular,the rationale and contribution of the model design were clarified through ablation studies to verify the effectiveness of the proposed HCAD decoder block.The results of this study are expected to greatly contribute to enhancing the efficiency of clinical diagnosis and treatment planning by increasing the precision of automated brain tumor segmentation.展开更多
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach...Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.展开更多
Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instabili...Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.展开更多
With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contex...With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contextual understanding,sequential dependencies,and/or data imbalance.This makes distinction between genuine and fabricated news a challenging task.To address this problem,we propose a novel hybrid architecture,T5-SA-LSTM,which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attentionenhanced(SA)Long Short-Term Memory(LSTM).The LSTM is trained using the Adam optimizer,which provides faster and more stable convergence compared to the Stochastic Gradient Descend(SGD)and Root Mean Square Propagation(RMSProp).The WELFake and FakeNewsPrediction datasets are used,which consist of labeled news articles having fake and real news samples.Tokenization and Synthetic Minority Over-sampling Technique(SMOTE)methods are used for data preprocessing to ensure linguistic normalization and class imbalance.The incorporation of the Self-Attention(SA)mechanism enables the model to highlight critical words and phrases,thereby enhancing predictive accuracy.The proposed model is evaluated using accuracy,precision,recall(sensitivity),and F1-score as performance metrics.The model achieved 99%accuracy on the WELFake dataset and 96.5%accuracy on the FakeNewsPrediction dataset.It outperformed the competitive schemes such as T5-SA-LSTM(RMSProp),T5-SA-LSTM(SGD)and some other models.展开更多
Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution,tampering,and copyright infringement.This study introduces a novel hybrid watermarking framework that...Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution,tampering,and copyright infringement.This study introduces a novel hybrid watermarking framework that integrates Discrete Wavelet Transform(DWT),Redundant Discrete Wavelet Transform(RDWT),and Möbius Transformations(MT),with optimization of transformation parameters achieved via a Genetic Algorithm(GA).By combining frequency and spatial domain techniques,the proposed method significantly enhances both the imper-ceptibility and robustness of watermark embedding.The approach leverages DWT and RDWT for multi-resolution decomposition,enabling watermark insertion in frequency subbands that balance visibility and resistance to attacks.RDWT,in particular,offers shift-invariance,which improves performance under geometric transformations.Möbius transformations are employed for spatial manipulation,providing conformal mapping and spatial dispersion that fortify watermark resilience against rotation,scaling,and translation.The GA dynamically optimizes the Möbius parameters,selecting configurations that maximize robustness metrics such as Peak Signal-to-Noise Ratio(PSNR),Structural Similarity Index Measure(SSIM),Bit Error Rate(BER),and Normalized Cross-Correlation(NCC).Extensive experiments conducted on medical and standard benchmark images demonstrate the efficacy of the proposed RDWT-MT scheme.Results show that PSNR exceeds 68 dB,SSIM approaches 1.0,and BER remains at 0.0000,indicating excellent imperceptibility and perfect watermark recovery.Moreover,the method exhibits exceptional resilience to a wide range of image processing attacks,including Gaussian noise,JPEG compression,histogram equalization,and cropping,achieving NCC values close to or equal to 1.0.Comparative evaluations with state-of-the-art watermarking techniques highlight the superiority of the proposed method in terms of robustness,fidelity,and computational efficiency.The hybrid framework ensures secure,adaptive watermark embedding,making it highly suitable for applications in digital rights management,content authentication,and medical image protection.The integration of spatial and frequency domain features with evolutionary optimization presents a promising direction for future watermarking technologies.展开更多
文摘In the Kigongo area of Mwanza Region,northwest Tanzania,fishmonger Neema Aisha remembers how the morning’s fresh catch would sour while she queued for the ferry,putting her business at risk.
基金supported by NIH grants,Nos.R01NS125074,R01AG083164,R01NS107365,and R21NS127177(to YL),1F31NS129204-01A1(to KW)and Albert Ryan Fellowship(to KW).
文摘Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo.
基金financially supported by the National Natural Science Foundation of China(No.52374259)the Open Fund of the State Key Laboratory of Mineral Processing Science and Technology,China(No.BGRIMM-KJSKL-2023-11)the Major Science and Technology Projects in Yunnan Province,China(No.202302 AF080004)。
文摘It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation.
文摘The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them was not a typical exhibition hall,but a building shaped like a gleaming stainless-steel cooking pot.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)under the Metaverse Support Program to Nurture the Best Talents(IITP-2024-RS-2023-00254529)grant funded by the Korea government(MSIT).
文摘Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information,existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors.In order to address these challenges and maximize the performance of brain tumor segmentation,this research introduces a novel SwinUNETR-based model by integrating a new decoder block,the Hierarchical Channel-wise Attention Decoder(HCAD),into a powerful SwinUNETR encoder.The HCAD decoder block utilizes hierarchical features and channelspecific attention mechanisms to further fuse information at different scales transmitted from the encoder and preserve spatial details throughout the reconstruction phase.Rigorous evaluations on the recent BraTS GLI datasets demonstrate that the proposed SwinHCAD model achieved superior and improved segmentation accuracy on both the Dice score and HD95 metrics across all tumor subregions(WT,TC,and ET)compared to baseline models.In particular,the rationale and contribution of the model design were clarified through ablation studies to verify the effectiveness of the proposed HCAD decoder block.The results of this study are expected to greatly contribute to enhancing the efficiency of clinical diagnosis and treatment planning by increasing the precision of automated brain tumor segmentation.
基金funded by the National Natural Science Foundation of China,grant numbers 52374156 and 62476005。
文摘Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.
基金Supported by the National Defense Basic Scientific Research Program of China.
文摘Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R195)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contextual understanding,sequential dependencies,and/or data imbalance.This makes distinction between genuine and fabricated news a challenging task.To address this problem,we propose a novel hybrid architecture,T5-SA-LSTM,which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attentionenhanced(SA)Long Short-Term Memory(LSTM).The LSTM is trained using the Adam optimizer,which provides faster and more stable convergence compared to the Stochastic Gradient Descend(SGD)and Root Mean Square Propagation(RMSProp).The WELFake and FakeNewsPrediction datasets are used,which consist of labeled news articles having fake and real news samples.Tokenization and Synthetic Minority Over-sampling Technique(SMOTE)methods are used for data preprocessing to ensure linguistic normalization and class imbalance.The incorporation of the Self-Attention(SA)mechanism enables the model to highlight critical words and phrases,thereby enhancing predictive accuracy.The proposed model is evaluated using accuracy,precision,recall(sensitivity),and F1-score as performance metrics.The model achieved 99%accuracy on the WELFake dataset and 96.5%accuracy on the FakeNewsPrediction dataset.It outperformed the competitive schemes such as T5-SA-LSTM(RMSProp),T5-SA-LSTM(SGD)and some other models.
文摘Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution,tampering,and copyright infringement.This study introduces a novel hybrid watermarking framework that integrates Discrete Wavelet Transform(DWT),Redundant Discrete Wavelet Transform(RDWT),and Möbius Transformations(MT),with optimization of transformation parameters achieved via a Genetic Algorithm(GA).By combining frequency and spatial domain techniques,the proposed method significantly enhances both the imper-ceptibility and robustness of watermark embedding.The approach leverages DWT and RDWT for multi-resolution decomposition,enabling watermark insertion in frequency subbands that balance visibility and resistance to attacks.RDWT,in particular,offers shift-invariance,which improves performance under geometric transformations.Möbius transformations are employed for spatial manipulation,providing conformal mapping and spatial dispersion that fortify watermark resilience against rotation,scaling,and translation.The GA dynamically optimizes the Möbius parameters,selecting configurations that maximize robustness metrics such as Peak Signal-to-Noise Ratio(PSNR),Structural Similarity Index Measure(SSIM),Bit Error Rate(BER),and Normalized Cross-Correlation(NCC).Extensive experiments conducted on medical and standard benchmark images demonstrate the efficacy of the proposed RDWT-MT scheme.Results show that PSNR exceeds 68 dB,SSIM approaches 1.0,and BER remains at 0.0000,indicating excellent imperceptibility and perfect watermark recovery.Moreover,the method exhibits exceptional resilience to a wide range of image processing attacks,including Gaussian noise,JPEG compression,histogram equalization,and cropping,achieving NCC values close to or equal to 1.0.Comparative evaluations with state-of-the-art watermarking techniques highlight the superiority of the proposed method in terms of robustness,fidelity,and computational efficiency.The hybrid framework ensures secure,adaptive watermark embedding,making it highly suitable for applications in digital rights management,content authentication,and medical image protection.The integration of spatial and frequency domain features with evolutionary optimization presents a promising direction for future watermarking technologies.