期刊文献+
共找到253,647篇文章
< 1 2 250 >
每页显示 20 50 100
融合群分解与Transformer-KAN的短期风速预测
1
作者 史加荣 张思怡 《南京信息工程大学学报》 北大核心 2026年第1期60-68,共9页
针对风速固有的不稳定性,通过融合群分解(Swarm Decomposition,SWD)、Transformer和Kolmogorov-Arnold网络(KAN),提出一种SWD-Transformer-KAN预测模型.首先,利用SWD对原始风速数据进行分解,以提取关键特征.其次,针对每个被分解的子序列... 针对风速固有的不稳定性,通过融合群分解(Swarm Decomposition,SWD)、Transformer和Kolmogorov-Arnold网络(KAN),提出一种SWD-Transformer-KAN预测模型.首先,利用SWD对原始风速数据进行分解,以提取关键特征.其次,针对每个被分解的子序列,建立Transformer-KAN模型,所建模型充分利用了Transformer的时序处理能力和KAN的非线性逼近能力.最后,对所有子序列的预测结果进行叠加,得到最终的风速预测值.为了验证所提出模型的有效性,将其与其他模型进行实验对比,结果表明,SWD-Transformer-KAN模型具有最优的预测性能,其决定系数(R2)高达99.91%. 展开更多
关键词 风速预测 群分解 transformER Kolmogorov-Arnold网络
在线阅读 下载PDF
基于LSTM-Transformer模型的突水条件下矿井涌水量预测
2
作者 李振华 姜雨菲 +1 位作者 杜锋 王文强 《河南理工大学学报(自然科学版)》 北大核心 2026年第1期77-85,共9页
目的矿井涌水量精准预测对预防矿井水害和保障矿井安全生产具有重要意义,为精准预测矿井涌水量,构建适用于华北型煤田受底板L_(1-4)灰岩含水层和奥陶系灰岩含水层水害威胁的矿井涌水量预测模型。方法以河南某典型矿井的水文监测数据为基... 目的矿井涌水量精准预测对预防矿井水害和保障矿井安全生产具有重要意义,为精准预测矿井涌水量,构建适用于华北型煤田受底板L_(1-4)灰岩含水层和奥陶系灰岩含水层水害威胁的矿井涌水量预测模型。方法以河南某典型矿井的水文监测数据为基础,提出LSTMTransformer模型。利用LSTM捕捉矿井涌水量的动态时序特征,通过Transformer的多头注意力机制分析含水层水位变化和矿井涌水量之间的复杂时序关联,构建水位动态变化驱动下的矿井涌水量精准预测框架。结果结果表明,LSTM-Transformer模型预测精度显著优于LSTM,CNN,Transformer和CNN-LSTM模型的,其均方根误差为20.91 m^(3)/h,平均绝对误差为16.08 m^(3)/h,平均绝对百分比误差为1.12%,且和单因素涌水量预测模型相比,水位-涌水量双因素预测模型预测结果更加稳定。结论LSTM-Transformer模型成功克服传统方法在捕捉复杂水文地质系统中水位-涌水量动态关联上的局限,为矿井涌水量动态预测提供可解释性强、鲁棒性好的解决方案,也为类似地质条件下矿井涌水量预测提供了新方法。 展开更多
关键词 涌水量预测 水位动态响应 LSTM-transformer耦合模型 时间序列预测 注意力机制 矿井安全生产
在线阅读 下载PDF
层级特征融合Transformer的图像分类算法
3
作者 段士玺 王博 《电子科技》 2026年第2期72-78,共7页
针对传统ViT(Vision Transformer)模型难以完成图像多层级分类问题,文中提出了基于ViT的图像分类模型层级特征融合视觉Transformer(Hierarchical Feature Fusion Vision Transformer,HICViT)。输入数据经过ViT提取模块生成多个不同层级... 针对传统ViT(Vision Transformer)模型难以完成图像多层级分类问题,文中提出了基于ViT的图像分类模型层级特征融合视觉Transformer(Hierarchical Feature Fusion Vision Transformer,HICViT)。输入数据经过ViT提取模块生成多个不同层级的特征图,每个特征图包含不同层次的抽象特征表示。基于层级标签将ViT提取的特征映射为多级特征,运用层级特征融合策略整合不同层级信息,有效增强模型的分类性能。在CIFRA-10、CIFRA-100和CUB-200-2011这3个数据集将所提模型与多种先进深度学习模型进行对比和分析。在CIFRA-10数据集,所提方法在第1层级、第2层级和第3层级的分类精度分别为99.70%、98.80%和97.80%。在CIFRA-100数据集,所提方法在第1层级、第2层级和第3层级的分类精度分别为95.23%、93.54%和90.12%。在CUB-200-2011数据集,所提方法在第1层级和第2层级的分类精度分别为98.09%和93.66%。结果表明,所提模型的分类准确率优于其他对比模型。 展开更多
关键词 深度学习 卷积神经网络 transformER 图像分类 层级特征 特征融合 多头注意力 Vision transformer
在线阅读 下载PDF
基于Transformer-卷积神经网络模型实现单节点腰部康复训练动作识别任务
4
作者 余圣涵 成贤锴 +1 位作者 郑跃 杨颖 《中国组织工程研究》 北大核心 2026年第16期4125-4136,共12页
背景:惯性测量单元被广泛用于人体姿态感知与动态捕捉。深度学习已逐步替代传统规则与特征工程,广泛应用于动作识别任务。卷积神经网络在提取局部动态特征方面表现良好,Transformer则在建模长时序依赖方面展现出强大能力。目的:通过基于... 背景:惯性测量单元被广泛用于人体姿态感知与动态捕捉。深度学习已逐步替代传统规则与特征工程,广泛应用于动作识别任务。卷积神经网络在提取局部动态特征方面表现良好,Transformer则在建模长时序依赖方面展现出强大能力。目的:通过基于Transformer-卷积神经网络融合模型识别方法,实现在单惯性传感器条件下的腰部康复训练动作识别任务。方法:采集6名健康受试者佩戴单个惯性传感器条件下执行腰部康复动作的加速度与角速度数据,以动作类型为数据进行标注,制作腰部康复动作数据集。通过腰部康复动作数据集对Transformer-卷积神经网络融合模型进行训练,构建动作分类模型。通过留一交叉验证评估模型准确性,并与线性判别分析、支持向量机、多层感知、经典Transformer等模型进行性能对比。结果与结论:在5类动作识别任务中,Transformer-卷积神经网络模型准确率达96.67%,F1-score为0.9669。在单传感器输入的条件下,相较于传统模型,在识别精度与泛化能力方面具有明显优势。验证了基于单惯性测量单元数据的深度模型在腰部康复动作分类任务中的实用性,为轻量化、高部署性的居家腰部康复训练系统提供基础。 展开更多
关键词 慢性腰痛 康复训练 深度学习 transformER 单节点惯性传感器 动作分类
暂未订购
基于Transformer的无人机故障检测研究
5
作者 张自旺 沈剑 +3 位作者 王晓光 刘繁 曹卓 贺斌娜 《机械设计与制造工程》 2026年第1期82-86,共5页
无人机故障检测作为保障飞行安全的核心技术,当前研究多依赖于仿真实验数据,并且传统方法难以有效捕捉飞行数据中的长程时空依赖关系。针对这些挑战,提出了一种基于Transformer架构的无人机故障检测方法,通过可学习位置编码和多头自注... 无人机故障检测作为保障飞行安全的核心技术,当前研究多依赖于仿真实验数据,并且传统方法难以有效捕捉飞行数据中的长程时空依赖关系。针对这些挑战,提出了一种基于Transformer架构的无人机故障检测方法,通过可学习位置编码和多头自注意力机制,构建传感器数据的时空依赖关系;同时结合焦点损失函数缓解类别不平衡问题。实验结果表明,该方法在真实飞行数据集上准确率达95%、F1分数达94%,相比基于LSTM和随机森林的故障检测方法展现更优的综合性能,并且在实时检测模拟中具有良好的可靠性,充分验证了其在真实飞行场景中的工程适用性。 展开更多
关键词 无人机 故障检测 transformER 焦点损失函数 实时检测模拟
在线阅读 下载PDF
基于动态滑动时间窗口与Transformer的电动汽车充电负荷预测
6
作者 郝爽 祖国强 +2 位作者 贾明辉 张志杰 李少雄 《河北工业大学学报》 2026年第1期44-52,68,共10页
因电动汽车充电行为具有非线性、时变性,传统预测方法难以捕捉其负荷复杂特征,因此本文提出基于动态窗口与Transformer的电动汽车充电负荷预测方法。首先,引入结合萤火虫算法(firefly algorithm,FA)的变分模态分解(variational mode dec... 因电动汽车充电行为具有非线性、时变性,传统预测方法难以捕捉其负荷复杂特征,因此本文提出基于动态窗口与Transformer的电动汽车充电负荷预测方法。首先,引入结合萤火虫算法(firefly algorithm,FA)的变分模态分解(variational mode decomposition,VMD),利用FA算法优化VMD的超参数,提取不同频率模态分量,降低数据噪声与复杂度。其次,按各模态波动与变化率,用动态滑动时间窗口技术确定动态滑动时间大小。然后,根据动态滑动时间窗口调整长短期记忆网络(long short-term memory network,LSTM)-Transformer模型参数,将各模态分量与动态滑动时间窗口输入LSTM-Transformer模型,由LSTM负责捕捉短期动态,Transformer用于把握全局依赖,以此提升预测精度。最终,累加各分量预测值得出结果。经Palo Alto电动汽车负荷数据集验证,与固定时间窗口的VMD-LSTM-Transformer模型相比,所提方法的平均绝对百分比误差降低9.23%。 展开更多
关键词 电动汽车负荷预测 变分模态分解 萤火虫算法 动态滑动时间窗口 transformER
在线阅读 下载PDF
A Transformative Masterpiece--Chinese-built bridge in Tanzania boosts trade,connectivity
7
作者 DERRICK SILIMINA 《ChinAfrica》 2026年第1期42-43,共2页
In the Kigongo area of Mwanza Region,northwest Tanzania,fishmonger Neema Aisha remembers how the morning’s fresh catch would sour while she queued for the ferry,putting her business at risk.
关键词 business risk FERRY BRIDGE CONNECTIVITY TRADE fishmonger transformative
原文传递
Cell type-dependent role of transforming growth factor-βsignaling on postnatal neural stem cell proliferation and migration
8
作者 Kierra Ware Joshua Peter +1 位作者 Lucas McClain Yu Luo 《Neural Regeneration Research》 2026年第3期1151-1161,共11页
Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postn... Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo. 展开更多
关键词 adult neurogenesis DOUBLECORTIN HIPPOCAMPUS MIGRATION neural stem cells PROLIFERATION transforming growth factor-β
暂未订购
Effect of fluoride roasting on copper species transformation on chrysocolla surfaces and its role in enhanced sulfidation flotation
9
作者 Yingqiang Ma Xin Huang +5 位作者 Yafeng Fu Zhenguo Song Sen Luo Shuanglin Zheng Feng Rao Wanzhong Yin 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期165-176,共12页
It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla we... It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation. 展开更多
关键词 sulfidation flotation CHRYSOCOLLA fluoride roasting copper species transformation enhanced sulfidation
在线阅读 下载PDF
Tracking a High-Tech Transition--How technology is powering Guangdong’s manufacturing transformation
10
作者 HU FAN 《ChinAfrica》 2026年第1期30-32,共3页
The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them w... The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them was not a typical exhibition hall,but a building shaped like a gleaming stainless-steel cooking pot. 展开更多
关键词 othello kitchenware museum TECHNOLOGY industrial strength high tech transition guangdong manufacturing transformation
原文传递
SwinHCAD: A Robust Multi-Modality Segmentation Model for Brain Tumors Using Transformer and Channel-Wise Attention
11
作者 Seyong Jin Muhammad Fayaz +2 位作者 L.Minh Dang Hyoung-Kyu Song Hyeonjoon Moon 《Computers, Materials & Continua》 2026年第1期511-533,共23页
Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the b... Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information,existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors.In order to address these challenges and maximize the performance of brain tumor segmentation,this research introduces a novel SwinUNETR-based model by integrating a new decoder block,the Hierarchical Channel-wise Attention Decoder(HCAD),into a powerful SwinUNETR encoder.The HCAD decoder block utilizes hierarchical features and channelspecific attention mechanisms to further fuse information at different scales transmitted from the encoder and preserve spatial details throughout the reconstruction phase.Rigorous evaluations on the recent BraTS GLI datasets demonstrate that the proposed SwinHCAD model achieved superior and improved segmentation accuracy on both the Dice score and HD95 metrics across all tumor subregions(WT,TC,and ET)compared to baseline models.In particular,the rationale and contribution of the model design were clarified through ablation studies to verify the effectiveness of the proposed HCAD decoder block.The results of this study are expected to greatly contribute to enhancing the efficiency of clinical diagnosis and treatment planning by increasing the precision of automated brain tumor segmentation. 展开更多
关键词 Attention mechanism brain tumor segmentation channel-wise attention decoder deep learning medical imaging MRI transformER U-Net
在线阅读 下载PDF
M2ATNet: Multi-Scale Multi-Attention Denoising and Feature Fusion Transformer for Low-Light Image Enhancement
12
作者 Zhongliang Wei Jianlong An Chang Su 《Computers, Materials & Continua》 2026年第1期1819-1838,共20页
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach... Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments. 展开更多
关键词 Low-light image enhancement multi-scale multi-attention transformER
在线阅读 下载PDF
Extreme Attitude Prediction of Amphibious Vehicles Based on Improved Transformer Model and Extreme Loss Function
13
作者 Qinghuai Zhang Boru Jia +3 位作者 Zhengdao Zhu Jianhua Xiang Yue Liu Mengwei Li 《哈尔滨工程大学学报(英文版)》 2026年第1期228-238,共11页
Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instabili... Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics. 展开更多
关键词 Amphibious vehicle Attitude prediction Extreme value loss function Enhanced transformer architecture External information embedding
在线阅读 下载PDF
A Transformer-Based Deep Learning Framework with Semantic Encoding and Syntax-Aware LSTM for Fake Electronic News Detection
14
作者 Hamza Murad Khan Shakila Basheer +3 位作者 Mohammad Tabrez Quasim Raja`a Al-Naimi Vijaykumar Varadarajan Anwar Khan 《Computers, Materials & Continua》 2026年第1期1024-1048,共25页
With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contex... With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contextual understanding,sequential dependencies,and/or data imbalance.This makes distinction between genuine and fabricated news a challenging task.To address this problem,we propose a novel hybrid architecture,T5-SA-LSTM,which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attentionenhanced(SA)Long Short-Term Memory(LSTM).The LSTM is trained using the Adam optimizer,which provides faster and more stable convergence compared to the Stochastic Gradient Descend(SGD)and Root Mean Square Propagation(RMSProp).The WELFake and FakeNewsPrediction datasets are used,which consist of labeled news articles having fake and real news samples.Tokenization and Synthetic Minority Over-sampling Technique(SMOTE)methods are used for data preprocessing to ensure linguistic normalization and class imbalance.The incorporation of the Self-Attention(SA)mechanism enables the model to highlight critical words and phrases,thereby enhancing predictive accuracy.The proposed model is evaluated using accuracy,precision,recall(sensitivity),and F1-score as performance metrics.The model achieved 99%accuracy on the WELFake dataset and 96.5%accuracy on the FakeNewsPrediction dataset.It outperformed the competitive schemes such as T5-SA-LSTM(RMSProp),T5-SA-LSTM(SGD)and some other models. 展开更多
关键词 Fake news detection tokenization SMOTE text-to-text transfer transformer(T5) long short-term memory(LSTM) self-attention mechanism(SA) T5-SA-LSTM WELFake dataset FakeNewsPrediction dataset
在线阅读 下载PDF
基于动态图卷积Transformer的瓦斯浓度预测模型
15
作者 董立红 赵楠楠 +1 位作者 王丹 秦昳 《工矿自动化》 北大核心 2025年第9期72-80,共9页
准确预测瓦斯浓度对预防瓦斯灾害事故至关重要,预测精度受瓦斯浓度时间变化规律和瓦斯扩散时空分布特征的双重影响。现有的模型驱动预测方法难以胜任长期和大规模瓦斯浓度预测任务,而数据驱动预测方法未考虑动态空间维度特征的影响,导... 准确预测瓦斯浓度对预防瓦斯灾害事故至关重要,预测精度受瓦斯浓度时间变化规律和瓦斯扩散时空分布特征的双重影响。现有的模型驱动预测方法难以胜任长期和大规模瓦斯浓度预测任务,而数据驱动预测方法未考虑动态空间维度特征的影响,导致模型泛化性能较差。为了捕获瓦斯浓度变化的时空依赖性,提高瓦斯预测精确性,提出一种融合多尺度机制的时序−动态图卷积Transformer(TDMformer)并用于构建瓦斯浓度预测模型。在ITransformer框架基础上,设计了时序−变量注意力机制,用于同时建模时序与变量维度特征;融合动态图卷积网络,用于描述井下瓦斯传感器网络拓扑结构,捕获瓦斯浓度数据的空间依赖性;引入多尺度门控Tanh单元,以增强多尺度特征提取能力。实验结果表明,与Graph−WaveNet,GRU,Transformer,AGCRN,DSformer,STAEformer,FourierGNN等模型相比,TDMformer模型的均方根误差分别降低了24.87%,26.37%,21.69%,19.57%,11.90%,10.84%,9.20%,平均绝对误差分别降低了17.09%,25.58%,26.89%,14.56%,11.10%,5.75%,4.53%,拟合系数分别提高了5.94%,6.51%,4.79%,4.12%,2.21%,2.08%,1.76%,验证了该模型具有更高的预测精度和数据拟合度。 展开更多
关键词 瓦斯浓度预测 transformER Itransformer 动态图卷积网络 时序-变量注意力机制
在线阅读 下载PDF
基于多尺度胶囊Swin Transformer的SAR图像目标识别方法 被引量:1
16
作者 侯宇超 王洁 +4 位作者 李洪涛 郝岩 段晓旗 黄凯文 田有亮 《通信学报》 北大核心 2025年第3期274-290,共17页
通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transfor... 通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transformer编码结构,融合后对输入图像进行分类。每个结构通过基于膨胀卷积切片划分的胶囊令牌编码器和三维胶囊Swin Transformer模块构建,能捕获更深层次、更广泛的语义特征。在运动和静止目标的获取与识别(MSTAR)数据集及FUSAR-Ship数据集上的实验结果表明,MSCSTN在各种测试条件下均优于其他方法。结果表明,MSCSTN展现了良好的识别性能、泛化能力和应用潜力。 展开更多
关键词 膨胀卷积切片分区 胶囊令牌编码器 三维胶囊Swin transformer模块 多尺度胶囊Swin transformer网络 SAR图像目标识别
在线阅读 下载PDF
基于Transformer的时间序列预测方法综述 被引量:5
17
作者 陈嘉俊 刘波 +2 位作者 林伟伟 郑剑文 谢家晨 《计算机科学》 北大核心 2025年第6期96-105,共10页
时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制... 时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制,在自然语言处理与计算机视觉领域取得突破,也开始拓展至时间序列预测领域并取得显著成果。因此,探究如何将Transformer高效运用于时间序列预测,成为推动该领域发展的关键。首先,介绍了时间序列的特性,阐述了时间序列预测的常见任务类别及评估指标。接着,深入解析Transformer的基本架构,并挑选了近年来在时间序列预测中广受关注的Transfo-rmer衍生模型,从模块及架构层面进行分类,并分别从问题解决、创新点及局限性3个维度进行比较和分析。最后,进一步探讨了时间序列预测Transformer在未来可能的研究方向。 展开更多
关键词 时间序列 transformer模型 深度学习 注意力机制 预测
在线阅读 下载PDF
多变量时序标记Transformer及其在电潜泵故障诊断中的应用 被引量:6
18
作者 李康 李爽 +2 位作者 高小永 李强 张来斌 《控制与决策》 北大核心 2025年第4期1145-1153,共9页
电潜泵故障诊断对于确保安全可靠采油至关重要,但是,电潜泵数据呈现出的多变量、非线性和动态变化等复杂特性为该任务带来了严峻挑战.近年来,深度学习在复杂数据特征提取方面表现出的强大能力催生了一系列基于神经网络的电潜泵故障诊断... 电潜泵故障诊断对于确保安全可靠采油至关重要,但是,电潜泵数据呈现出的多变量、非线性和动态变化等复杂特性为该任务带来了严峻挑战.近年来,深度学习在复杂数据特征提取方面表现出的强大能力催生了一系列基于神经网络的电潜泵故障诊断方法.然而,多数方法忽略了电潜泵数据的动态特性以及长时依赖特征提取困难的问题.针对上述问题,提出一种多变量时序标记Transformer神经网络来实现电潜泵故障诊断.该模型设计新的多变量时间序列标记策略,继承引入多头注意力机制和残差连接的传统Transformer神经网络编码器在长时依赖特征提取方面的优势,用前向神经网络替代传统Transformer神经网络解码器来简化模型复杂度.通过对油田现场故障数据分析,验证所提出方法的有效性.实验结果表明,所提出方法实现了10类电潜泵故障的精确诊断,相比于流行的深度学习方法诊断性能更优. 展开更多
关键词 电潜泵 transformer神经网络 深度学习 特征提取 故障诊断 多变量时序标记
原文传递
基于Transformer模型的时序数据预测方法综述 被引量:16
19
作者 孟祥福 石皓源 《计算机科学与探索》 北大核心 2025年第1期45-64,共20页
时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据... 时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据难以使用传统的机器学习解决,而Transformer在自然语言处理和计算机视觉等领域的诸多任务表现优秀,学者们利用Transformer模型有效捕获长期依赖关系,使得时序数据预测任务取得了飞速发展。综述了基于Transformer模型的时序数据预测方法,按时间梳理了时序数据预测的发展进程,系统介绍了时序数据预处理过程和方法,介绍了常用的时序预测评价指标和数据集。以算法框架为研究内容系统阐述了基于Transformer的各类模型在TSF任务中的应用方法和工作原理。通过实验对比了各个模型的性能、优点和局限性,并对实验结果展开了分析与讨论。结合Transformer模型在时序数据预测任务中现有工作存在的挑战提出了该方向未来发展趋势。 展开更多
关键词 深度学习 时序数据预测 数据预处理 transformer模型
在线阅读 下载PDF
A Robust Image Watermarking Based on DWT and RDWT Combined with Mobius Transformations
20
作者 Atheer Alrammahi Hedieh Sajedi 《Computers, Materials & Continua》 2025年第7期887-918,共32页
Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution,tampering,and copyright infringement.This study introduces a novel hybrid watermarking framework that... Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution,tampering,and copyright infringement.This study introduces a novel hybrid watermarking framework that integrates Discrete Wavelet Transform(DWT),Redundant Discrete Wavelet Transform(RDWT),and Möbius Transformations(MT),with optimization of transformation parameters achieved via a Genetic Algorithm(GA).By combining frequency and spatial domain techniques,the proposed method significantly enhances both the imper-ceptibility and robustness of watermark embedding.The approach leverages DWT and RDWT for multi-resolution decomposition,enabling watermark insertion in frequency subbands that balance visibility and resistance to attacks.RDWT,in particular,offers shift-invariance,which improves performance under geometric transformations.Möbius transformations are employed for spatial manipulation,providing conformal mapping and spatial dispersion that fortify watermark resilience against rotation,scaling,and translation.The GA dynamically optimizes the Möbius parameters,selecting configurations that maximize robustness metrics such as Peak Signal-to-Noise Ratio(PSNR),Structural Similarity Index Measure(SSIM),Bit Error Rate(BER),and Normalized Cross-Correlation(NCC).Extensive experiments conducted on medical and standard benchmark images demonstrate the efficacy of the proposed RDWT-MT scheme.Results show that PSNR exceeds 68 dB,SSIM approaches 1.0,and BER remains at 0.0000,indicating excellent imperceptibility and perfect watermark recovery.Moreover,the method exhibits exceptional resilience to a wide range of image processing attacks,including Gaussian noise,JPEG compression,histogram equalization,and cropping,achieving NCC values close to or equal to 1.0.Comparative evaluations with state-of-the-art watermarking techniques highlight the superiority of the proposed method in terms of robustness,fidelity,and computational efficiency.The hybrid framework ensures secure,adaptive watermark embedding,making it highly suitable for applications in digital rights management,content authentication,and medical image protection.The integration of spatial and frequency domain features with evolutionary optimization presents a promising direction for future watermarking technologies. 展开更多
关键词 Digital watermarking Möbius transforms discrete wavelet transform redundant discrete wavelet transform genetic algorithm ROBUSTNESS geometric attacks
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部