The interstand tension control is one of the most important ways to meet tight tolerances for strip product quality during tandem cold rolling process. Using coordinate analysis and parabolic approximation for the mas...The interstand tension control is one of the most important ways to meet tight tolerances for strip product quality during tandem cold rolling process. Using coordinate analysis and parabolic approximation for the mass flow balance principle, the strip velocities eliminating the use of forward slips and backward slips were calculated. In order to reduce the effect of roll eccentricity on the tension measurement, a filter based on bilinear transformation was de- signed. Applying a first-order Taylor series approximation, the transfer function matrix model of interstand tension stress was derived. The actual measurements on-site and the final calculation results showed that the established model had high calculation accuracy and was beneficial for interstand tension control of random cold rolling process.展开更多
In this paper it is shown that the thermodynamic limit of the partition function of the statistical models under consideration on a one-dimensional lattice with an arbitrary finite number of interacting neighbors is e...In this paper it is shown that the thermodynamic limit of the partition function of the statistical models under consideration on a one-dimensional lattice with an arbitrary finite number of interacting neighbors is expressed in terms of the principal eigenvalue of a matrix of finite size. The high sparseness of these matrices for any number of interactions makes it possible to perform an effective numerical analysis of the macro characteristics of these models.展开更多
A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. Using the Fourier analysis, the vector radiative transfer equ...A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. Using the Fourier analysis, the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observa-tion zenith angle. Using the Gaussian-Quadrature method, VRTE is finally transferred into the matrix equation solved by the adding-doubling method. According to the reflective and refractive properties of the ocean-atmosphere interface, the vector radiative transfer numerical model of the ocean and at-mosphere is coupled in PCOART. Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer), it is shown that PCOART is an exactly numerical model, and the processing methods of the multi-scattering and polarization are correct. Also, validated with the standard problems of the radiative transfer in water, it is shown that PCOART can be used to calculate the underwater radiative transfer problems. Therefore, PCOART is a useful tool for exactly calculating the vector radiative transfer of the coupled ocean-atmosphere system, which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.展开更多
基金Item Sponsored by Fundamental Research Funds for the Central Universities of China(N110307001)
文摘The interstand tension control is one of the most important ways to meet tight tolerances for strip product quality during tandem cold rolling process. Using coordinate analysis and parabolic approximation for the mass flow balance principle, the strip velocities eliminating the use of forward slips and backward slips were calculated. In order to reduce the effect of roll eccentricity on the tension measurement, a filter based on bilinear transformation was de- signed. Applying a first-order Taylor series approximation, the transfer function matrix model of interstand tension stress was derived. The actual measurements on-site and the final calculation results showed that the established model had high calculation accuracy and was beneficial for interstand tension control of random cold rolling process.
文摘In this paper it is shown that the thermodynamic limit of the partition function of the statistical models under consideration on a one-dimensional lattice with an arbitrary finite number of interacting neighbors is expressed in terms of the principal eigenvalue of a matrix of finite size. The high sparseness of these matrices for any number of interactions makes it possible to perform an effective numerical analysis of the macro characteristics of these models.
基金the National Natural Science Foundation of Chinathe Yellow River Water Conservancy Commission (Grant Nos. 50239080 and 40271019)
文摘A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. Using the Fourier analysis, the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observa-tion zenith angle. Using the Gaussian-Quadrature method, VRTE is finally transferred into the matrix equation solved by the adding-doubling method. According to the reflective and refractive properties of the ocean-atmosphere interface, the vector radiative transfer numerical model of the ocean and at-mosphere is coupled in PCOART. Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer), it is shown that PCOART is an exactly numerical model, and the processing methods of the multi-scattering and polarization are correct. Also, validated with the standard problems of the radiative transfer in water, it is shown that PCOART can be used to calculate the underwater radiative transfer problems. Therefore, PCOART is a useful tool for exactly calculating the vector radiative transfer of the coupled ocean-atmosphere system, which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.