期刊文献+
共找到132篇文章
< 1 2 7 >
每页显示 20 50 100
Microwave Simulations of Precipitation Distribution with Two Radiative Transfer Models
1
作者 刘锦丽 林龙福 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1994年第4期470-478,共9页
Two microwave radiative transfer models of precipitating cloud are used to simulate the microwave upwelling radiances emerging from precipitating clouds. Comparison of the simulation results shows that significant dif... Two microwave radiative transfer models of precipitating cloud are used to simulate the microwave upwelling radiances emerging from precipitating clouds. Comparison of the simulation results shows that significant difference of microwave upwelling radiances exists between these two radiative transfer models. Analysis of these differences in different cloud and precipitation conditions shows that it is complicated but has certain trend for different microwave frequencies. The results may be useful to quantitative rainfall rate retrieval of real precipitating clouds. 展开更多
关键词 Radiative transfer models PRECIPITATION Brightness temperature
在线阅读 下载PDF
Conjugate heat transfer investigations of turbine vane based on transition models 被引量:6
2
作者 Zhang Hongjun Zou Zhengping +2 位作者 Li Yu Ye Jian Song Songhe 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期890-897,共8页
The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a ... The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a 3D conjugate heat transfer solver is developed, where the fluid domain is discretized by multi-block structured grids, and the solid domain is discretized by unstructured grids. At the unmatched fluid/solid interface, the shape function interpolation method is adopted to ensure the conservation of the interfacial heat flux. Then the shear stress transport (SST) model, SST & AGS model and SST & c-Re h model are used to investigate the flow and heat transfer characteristics of Mark II turbine vane. The results indicate that compared with the full turbulence model (SST model), the transition models could improve the prediction accuracy of temperature and heat transfer coefficient at the laminar zone near the blade leading edge. Compared with the AGS transition model, the c-Re h model could predict the transition onset location induced by shock/boundary layer interaction more accurately, and the prediction accuracy of temperature field could be greatly improved. 展开更多
关键词 AGS and c-Re h transition models Conjugate heat transfer Flow and heat transfer char- acteristics Temperature prediction accuracy Transition flow
原文传递
Terahertz band simulations using two different radiative transfer models
3
作者 Linjun PAN Daren Lü 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第10期1482-1490,共9页
A high-resolution dual-band terahertz(THz) radiometer was designed to measure vertical distributions of chemical elements in the middle atmosphere of the Tibetan Plateau. A forward simulation, which always should be c... A high-resolution dual-band terahertz(THz) radiometer was designed to measure vertical distributions of chemical elements in the middle atmosphere of the Tibetan Plateau. A forward simulation, which always should be conducted firstly for the development of a matching retrieval algorithm, has not been done before. We use two radiative transfer models, ARTS and AM, to simulate the water vapor, ozone and carbon monoxide spectra on the plateau based on the spectral design of the THz radiometer. The emission line characteristics of the three gases in this spectral band are identified. Reasons for the differences in the spectral simulations between the two models are analyzed for individual gases. The impact of several different spectral parameter settings on the simulations are evaluated through a series of sensitivity experiments. This study suggests that the ARTS is more suitable for the development of the THz radiometer retrieval algorithm. An optimal parameter setting of the ARTS for the three elements are given. 展开更多
关键词 Terahertz radiation RADIOMETER Radiative transfer model Spectral simulation PLATEAU
原文传递
A Nonspherical Cloud Scattering Database Using Aggregates of Roughened Bullet Rosettes Model for the Advanced Radiative Transfer Modeling System(ARMS) 被引量:1
4
作者 Ziyue HUANG Hanyu LU +4 位作者 Ziqiang MA Yining SHI Yang HAN Hao HU Jun YANG 《Advances in Atmospheric Sciences》 2025年第7期1483-1498,共16页
Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up ... Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up table that contains the optical properties of five hydrometeor types—rain,cloud water,cloud ice,graupel,and snow—for the Advanced Radiative Transfer Modeling System(ARMS)at frequencies below 220 GHz.The discrete dipole approximation(DDA)method is employed to compute the single-scattering properties of solid cloud particles,modeling these particles as aggregated roughened bullet rosettes.The bulk optical properties of the cloud layer are derived by integrating the singlescattering properties with a modified Gamma size distribution,specifically for distributions with 18 effective radii.The bulk phase function is then projected onto a series of generalized spherical functions,applying the delta-M method for truncation.The results indicate that simulations using the newly developed nonspherical scattering look-up table exhibit significant consistency with observations under deep convection conditions.In contrast,assuming spherical solid cloud particles leads to excessive scattering at mid-frequency channels and insufficient scattering at high-frequency channels.This improvement in radiative transfer simulation accuracy for cloudy conditions will better support the assimilation of allsky microwave observations into numerical weather prediction models.·Frozen cloud particles were modeled as aggregates of bullet rosettes and the optical properties at microwave range were computed by DDA.·A complete process and technical details for constructing a look-up table of ARMS are provided.·The ARMS simulations generally show agreement with observations of MWTS and MWHS under typhoon conditions using the new look-up table. 展开更多
关键词 nonspherical particles scattering look-up table discrete dipole approximation Advanced Radiative transfer Modeling System
在线阅读 下载PDF
Liquid-solid mass transfer in micropacked bed reactors with immiscible liquid-liquid two-phase flow
5
作者 Yanfu Chen Chu Zhou +1 位作者 Dang Cheng Fener Chen 《Chinese Journal of Chemical Engineering》 2025年第9期1-6,共6页
Herein,the liquid-solid mass trans fer characteristics in micropacked bed reactors(μPBRs)operated with immiscible liquid-liquid two-phase flow is experimentally investigated.It is found that the overall volumetric li... Herein,the liquid-solid mass trans fer characteristics in micropacked bed reactors(μPBRs)operated with immiscible liquid-liquid two-phase flow is experimentally investigated.It is found that the overall volumetric liquid-solid mass transfer coefficient(k_(s)a)increases with the total flow rate and the channelto-particle diameter ratio,while decreases with the organic-to-aqueous phase flow rate ratio.A satisfactory correlation model for calculating k_(s)a of the liquid-liquid μPBRs is developed.The new knowledge obtained would be useful in guiding the design and optimization of the liquid-liquid μPBRs. 展开更多
关键词 MICROREACTOR Packed bed Spherical particle Liquid-liquid-solid system Mass transfer Liquid-liquid-solid transfer model
在线阅读 下载PDF
Insights into transferal to fractal space modeling:delayed forced Helmholtz-Duffing oscillator with the non-perturbative approach
6
作者 Yusry O El-Dib 《Communications in Theoretical Physics》 2025年第1期11-22,共12页
The damped Helmholtz-Duffing oscillator is a topic of great interest in many different fields of study due to its complex dynamics.By transitioning from conventional continuous differential equations to their fractal ... The damped Helmholtz-Duffing oscillator is a topic of great interest in many different fields of study due to its complex dynamics.By transitioning from conventional continuous differential equations to their fractal counterparts,one gains insights into the system's response under new mathematical frameworks.This paper presents a novel method for converting standard continuous differential equations into their fractal equivalents.This conversion occurs after the nonlinear system is transformed into its linear equivalent.Numerical analyses show that there are several resonance sites in the fractal system,which differ from the one resonance point found in the continuous system.One important finding is that the fractal system loses some of its stabilizing power when decaying behavior is transformed into a diffuse pattern.Interestingly,a decrease in the fractal order in resonance settings shows a stabilizing impact,highlighting the dynamics'complexity inside fractal systems.This endeavor to convert to fractals is a revolutionary technique that is being employed for the first time. 展开更多
关键词 nonlinear oscillations Helmholtz-Duffing oscillator forced with delay effect non-perturbative methodology stability outlines new perspectives on transferal to fractal space modeling
原文传递
Heat transfer model for microwave hot in-place recycling of asphalt pavements 被引量:3
7
作者 孙铜生 史金飞 朱松青 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期59-63,共5页
In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of uns... In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements. 展开更多
关键词 asphalt pavements microwave hot in-place recycling heat transfer model boundary condition intensity of radiation electric field microwave heating experiment
在线阅读 下载PDF
A review on single bubble gas–liquid mass transfer 被引量:1
8
作者 Yuyun Bao Jinting Jia +2 位作者 Shuaifei Tong Zhengming Gao Ziqi Cai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第11期2707-2722,共16页
It is common to empirically correlate volumetric mass transfer coefficient kLa for predicting gas–liquid mass transfer in industrial applications,and the investigation of single bubble mass transfer is crucial for a ... It is common to empirically correlate volumetric mass transfer coefficient kLa for predicting gas–liquid mass transfer in industrial applications,and the investigation of single bubble mass transfer is crucial for a detailed understanding of mass transfer mechanism.In this work,experiments,models and simulations based on the experimental results were highlighted to elucidate the mass transfer between single bubbles and ambient liquid.The experimental setups,measurement methods,the mass transfer of single bubbles in the Newtonian and the nonNewtonian liquid,models derived from the concept of eddy diffusion,the extension of Whitman’s,Higbie’s and Danckwerts’models,or dimensionless numbers,and simulation methods on turbulence,gas–liquid partition methods and mass transfer source term determination are introduced and commented on.Although people have a great knowledge on mass transfer between single bubbles and ambient liquid in single conditions,it is still insufficient when facing complex liquid conditions or some phenomena such as turbulence,contamination or non-Newtonian behavior.Additional studies on single bubbles are required for experiments and models in various liquid conditions in future. 展开更多
关键词 Gas-liguid mass transfer Single bubbles Mass transfer models Simulation SURFACTANT Non-Newtonian fluid
在线阅读 下载PDF
Current Networks of Long Proxies for Building Reconstruction Models of the Atlantic Multidecadal Oscillation
9
作者 Markus Lindholm Risto Jalkanen Maxim G. Ogurtsov 《Atmospheric and Climate Sciences》 2016年第3期367-374,共8页
Currently available proxies were studied as networks for building reconstruction models of the Atlantic Multidecadal Oscillation (AMO). Only proxies that would double the current record length (backwards in time from ... Currently available proxies were studied as networks for building reconstruction models of the Atlantic Multidecadal Oscillation (AMO). Only proxies that would double the current record length (backwards in time from AD 1564) were included. We present two proxy networks and corresponding reconstruction (transfer) models, one for tree-growth based proxies only and another for multiproxies. Both of them show a useful match in timing as well as amplitude with the AMO. These model structures demonstrated reasonable model performance (overall r<sup>2</sup> = 0.45 - 0.36). The time stability of proxy-AMO relationships was also validated. The new models produced acceptable results in cross-calibration-verification (reduction of error and coefficient of efficiency statistics in 1856-1921 and 1922-1990 vary between 0.41 and 0.21). The spatial distribution of these data series indicate that proxies respond to an AMO-like climatic oscillation over much of the Northern Hemisphere. 展开更多
关键词 PROXIES Atlantic Multidecadal Oscillation Tree Growth Climate Change transfer models
在线阅读 下载PDF
Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China 被引量:5
10
作者 HU Guojie ZHAO Lin +6 位作者 LI Ren WU Tonghua WU Xiaodong PANG Qiangqiang XIAO Yao QIAO Yongping SHI Jianzong 《Chinese Geographical Science》 SCIE CSCD 2015年第6期713-727,共15页
Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-syst... Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water ex- changes between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thaw- ing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeoer and permafrost degradation. 展开更多
关键词 PERMAFROST coupled heat and mass transfer model (CoupModel) soil temperature soil moisture hydrothermal processes active layer
在线阅读 下载PDF
Vertical bearing capacity of pile based on load transfer model 被引量:7
11
作者 赵明华 杨明辉 邹新军 《Journal of Central South University of Technology》 EI 2005年第4期488-493,共6页
The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-s... The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice. 展开更多
关键词 pile foundation load transfer model top settlement vertical bearing capacity
在线阅读 下载PDF
The efficacy of the seamless transfer of care model to apply for the patients with cerebral apoplexy in China 被引量:9
12
作者 Wei Xie Zhen-Hua Zhao +1 位作者 Qing-Min Yang Fang-Hong Wei 《International Journal of Nursing Sciences》 2015年第1期52-57,共6页
Purpose:To evaluate the efficacy of the Seamless Transfer of Care Model(STCM)to improve readmission occurrence of patients withstroke.Methods:The sample was comprised of fifty-nine subjects with stroke who were hospit... Purpose:To evaluate the efficacy of the Seamless Transfer of Care Model(STCM)to improve readmission occurrence of patients withstroke.Methods:The sample was comprised of fifty-nine subjects with stroke who were hospitalized in the geriatric and neurology departments of a large university hospital in China.Subjects were allocated to an STCM group(n=30)or a routine care(control)group(n=29).Results:Compared with the control group,the STCM group had a higher quality of life(p<0.05),higher compliance(p<0.05)and a lower readmission rate(p<0.05).Conclusion:Based on our results,the application of the STCM in Chinese stroke patients can improve quality of life and compliance,and reduce readmission rate. 展开更多
关键词 Stroke Seamless transfer of care model Readmission occurrence
暂未订购
Analysis and Measurement of Mass Transfer in Airlift Loop Reactors 被引量:3
13
作者 张同旺 王铁峰 王金福 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第5期604-610,共7页
Inter-phase mass transfer is important to the design and performance of airlift loop reactors for either chemical or biochemical applications, and a good measurement technique is crucial for studying mass transfer in ... Inter-phase mass transfer is important to the design and performance of airlift loop reactors for either chemical or biochemical applications, and a good measurement technique is crucial for studying mass transfer in multiphase systems. According to the model of macro-scale mass transfer in airlift loop reactors, it was proved that the airlift loop reactor can be regarded as a continuous stirred tank reactor for measuring mass transfer coefficient. The calculated mass transfer coefficient on such a basis is different from the volumetric mass transfer coefficient in the macro-scale model and the difference is discussed. To describe the time delay of the probe response to the change of oxygen concentration in the liquid phase, a model taking into account the time constant of response is es-tablished. Sensitivity analysis shows that this model can be used to measure the volumetric mass transfer coefficient. Applying this model to the measurement of volumetric mass transfer coefficient in the loop reactor, results that co-incide with the turbulence theory in the literate were obtained. 展开更多
关键词 airlift loop reactor mass transfer model sensitivity analysis
在线阅读 下载PDF
A Simplified Scheme of the Generalized Layered Radiative Transfer Model 被引量:2
14
作者 戴秋丹 孙菽芬 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第2期213-226,共14页
In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted ... In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted sky diffuse radiation, as well as of canopy morphology, and in turn saves computer resources. Results from the SGRTM agree perfectly with those of the GRTM. Secondly, by applying the linear superposition principle of the optics and by using the basic solutions of the GRTM for radiative transfer within the canopy under the condition of assumed zero soil reflectance, two sets of explicit analytical solutions of radiative transfer within the canopy with any soil reflectance magnitude are derived: one for incident diffuse, and the other for direct beam radiation. The explicit analytical solutions need two sets of basic solutions of canopy reflectance and transmittance under zero soil reflectance, run by the model for both diffuse and direct beam radiation. One set of basic solutions is the canopy reflectance αf (written as α1 for direct beam radiation) and transmittance βf (written as β1 for direction beam radiation) with zero soil reflectance for the downward radiation from above the canopy (i.e. sky), and the other set is the canopy reflectance (αb) and transmittance βb for the upward radiation from below the canopy (i.e., ground). Under the condition of the same plant architecture in the vertical layers, and the same leaf adaxial and abaxial optical properties in the canopies for the uniform diffuse radiation, the explicit solutions need only one set of basic solutions, because under this condition the two basic solutions are equal, i.e., αf = αb and βf = βb. Using the explicit analytical solutions, the fractions of any kind of incident solar radiation reflected from (defined as surface albedo, or canopy reflectance), transmitted through (defined as canopy transmittance), and absorbed by (defined as canopy absorptance) the canopy and other properties pertinent to the radiative transfer within the canopy can be estimated easily on the ground surface below the canopy (soil or snow surface) with any reflectance magnitudes. The simplified transfer model is proven to have a similar accuracy compared to the detailed model, as well as very efficient computing. 展开更多
关键词 generalized layered canopy radiative transfer model simplified model analytical solutions basic solutions adaxial abaxial leaf optical properties
在线阅读 下载PDF
CFD study of non-premixed swirling burners: Effect of turbulence models 被引量:2
15
作者 Erfan Khodabandeh Hesam Moghadasi +4 位作者 Mohsen Saffari Pour Mikael Ersson Par G.Jonsson Marc A.Rosen Alireza Rahbari 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1029-1038,共10页
This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress mod... This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress model,spectral turbulence analysis and Re-Normalization Group.In addition,the P-1 and discrete ordinate(DO)models are used to simulate the radiative heat transfer in this model.The governing equations associated with the required boundary conditions are solved using the numerical model.The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities.Among different models proposed in this research,the Reynolds stress model with the Probability Density Function(PDF)approach is more accurate(nearly up to 50%)than other turbulent models for a swirling flow field.Regarding the effect of radiative heat transfer model,it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior.This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion. 展开更多
关键词 Computational Fluid Dynamics(CFD) Turbulent combustion Non-premixed flames Large eddy simulations Radiative heat transfer model Modeling validation
在线阅读 下载PDF
Controlling Roll Temperature by Fluid-Solid Coupled Heat Transfer 被引量:2
16
作者 Jing-Feng Zou Li-Feng Ma +3 位作者 Guo-Hua Zhang Zhi-Quan Huang Jin-Bao Lin Peng-Tao Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第5期66-79,共14页
Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; theref... Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; therefore, a new model using circular fluid flow control roll temperature has been designed. A fluid heat transfer structure was designed, the heat transfer process model of the fluid heating roll was simplified, and the finite di erence method was used to cal?culate the heat transfer process. Fluent software was used to simulate the fluid?solid coupling heat transfer, and both the trend and regularity of the temperature field in the heat transfer process were identified. The results show that the heating e ciency was much higher than traditional heating methods(when the fluid heat of the roll and tempera?ture distribution of the roll surface was more uniform). Moreover, there was a bigger temperature di erence between the input and the output, and after using reverse flow the temperature di erence decreased. The axial and circum?ferential temperature distributions along the sheet were uniform. Both theoretical calculation results and numerical simulation results of the heat transfer between fluid and roll were compared. The error was 1.8%–12.3%, showing that the theoretical model can both forecast and regulate the temperature of the roll(for magnesium alloy sheets) in the rolling process. 展开更多
关键词 Magnesium alloy Fluid heating Heat transfer model Numerical simulation of fluid?solid coupling
在线阅读 下载PDF
Unlocking the potential of thin-film composite reverse osmosis membrane performance:Insights from mass transfer modeling 被引量:1
17
作者 Kexin Yuan Yulei Liu +9 位作者 Haoran Feng Yi Liu Jun Cheng Beiyang Luo Qinglian Wu Xinyu Zhang Ying Wang Xian Bao Wanqian Guo Jun Ma 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第5期66-76,共11页
Thin-film composite(TFC)reverse osmosis(RO)membranes have attracted considerable attention in water treatment and desalination processes due to their specific separation advantages.Nevertheless,the trade-off effect be... Thin-film composite(TFC)reverse osmosis(RO)membranes have attracted considerable attention in water treatment and desalination processes due to their specific separation advantages.Nevertheless,the trade-off effect between water flux and salt rejection poses huge challenges to further improvement in TFC RO membrane performance.Numerous research works have been dedicated to optimizing membrane fabrication and modification for addressing this issue.In the meantime,several reviews summarized these approaches.However,the existing reviews seldom analyzed these methods from a theoretical perspective and thus failed to offer effective optimization directions for the RO process from the root cause.In this review,we first propose a mass transfer model to facilitate a better understanding of the entire process of how water and solute permeate through RO membranes in detail,namely the migration process outside the membrane,the dissolution process on the membrane surface,and the diffusion process within the membrane.Thereafter,the water and salt mass transfer behaviors obtained from model deduction are comprehensively analyzed to provide potential guidelines for alleviating the trade-off effect between water flux and salt rejection in the RO process.Finally,inspired by the theoretical analysis and the accurate identification of existing bottlenecks,several promising strategies for both regulating RO membranes and optimizing operational conditions are proposed to further exploit the potential of RO membrane performance.This review is expected to guide the development of high-performance RO membranes from a mass transfer theory standpoint. 展开更多
关键词 Reverse osmosis Mass transfer model Trade-off effect Membrane performance Optimization strategies
原文传递
Effect of External Forced Flow and Boiling Film on Heat Transfer of AISI 4140 Steel Horizontal Rod During Direct Quenching 被引量:1
18
作者 A H Meysami R Ghasemzadeh +1 位作者 S H Seyedein M R Aboutalebi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第10期34-41,共8页
The effects of rod falling and moving, external flow field, boiling film and radiation were investigated on fluid flow and heat transfer of AISI 4140 steel horizontal rod during direct quenching by mathematical modeli... The effects of rod falling and moving, external flow field, boiling film and radiation were investigated on fluid flow and heat transfer of AISI 4140 steel horizontal rod during direct quenching by mathematical modeling. The flow field and heat transfer in quenching tank were simulated by computational fluid dynamics (CFD) method considering falling and moving of rods during process. Therefore, modeling of flow field was done by a fixed-mesh method for general moving objects equations, and then, energy equation was solved with a numerical approach so that effeet of boiling film heat flux was considered as a source term in energy equation for solid-liquid boundary. Simulated results were verified by comparing with published and experimental data and there was a good agreement between them. Also, the effects of external forced flow and film boiling were investigated on heat flux output, temperature distribution and heat transfer coefficient of rod. Also simulated results determined optimum quenching time for this process. 展开更多
关键词 direct quenching AISI 4140 moving object heat transfer modeling
原文传递
Experimental investigation of dynamic mass transfer during droplet formation using micro-LIF in a coaxial microchannel 被引量:1
19
作者 Zhuo Chen Qiqiang Xiong +2 位作者 Shaowei Li Yundong Wang Jianhong Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第11期51-58,共8页
The mass transfer of Rhodamine 6G from the droplet to the continuous phase in a coaxial micro-channel is studied using micro-LIF(Laser-Induced Fluorescence).The mass distribution inside droplet is measured and visuali... The mass transfer of Rhodamine 6G from the droplet to the continuous phase in a coaxial micro-channel is studied using micro-LIF(Laser-Induced Fluorescence).The mass distribution inside droplet is measured and visualized.The experimental results affirm that there exists the internal circulation inside the droplet and it could enhance the convective mass transfer.The stagnant center of vortices is also observed.The extraction fraction could reach 40%80%.In order to establish the mass transfer model,different flow rates of the dispersed and continuous phase are adopted.The high continuous phase flow rate and low dispersed phase flow rate are both beneficial to enhance mass transfer by expediting the internal circulation.A modified mass transfer model is found to calculate the extraction fraction.A good agreement between the model and experiment in various conditions demonstrates that the mass transfer model in this work is reliable and feasible. 展开更多
关键词 Droplet formation Micro-LIF measurement Internal circulation Mass transfer model
在线阅读 下载PDF
A Multi-Domain Compression Radiative Transfer Model for the Fengyun-4 Geosynchronous Interferometric Infrared Sounder (GIIRS) 被引量:1
20
作者 Mingyue SU Chao LIU +6 位作者 Di DI Tianhao LE Yujia SUN Jun LI Feng LU Peng ZHANG Byung-Ju SOHN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1844-1858,共15页
Forward radiative transfer(RT)models are essential for atmospheric applications such as remote sensing and weather and climate models,where computational efficiency becomes equally as important as accuracy for high-re... Forward radiative transfer(RT)models are essential for atmospheric applications such as remote sensing and weather and climate models,where computational efficiency becomes equally as important as accuracy for high-resolution hyperspectral measurements that need rigorous RT simulations for thousands of channels.This study introduces a fast and accurate RT model for the hyperspectral infrared(HIR)sounder based on principal component analysis(PCA)or machine learning(i.e.,neural network,NN).The Geosynchronous Interferometric Infrared Sounder(GIIRS),the first HIR sounder onboard the geostationary Fengyun-4 satellites,is considered to be a candidate example for model development and validation.Our method uses either PCA or NN(PCA/NN)twice for the atmospheric transmittance and radiance,respectively,to reduce the number of independent but similar simulations to accelerate RT simulations;thereby,it is referred to as a multi-domain compression model.The first PCA/NN gives monochromatic gas transmittance in both spectral and atmospheric pressure domains for each gas independently.The second PCA/NN is performed in the traditional spectral radiance domain.Meanwhile,a new method is introduced to choose representative variables for the PCA/NN scheme developments.The model is three orders of magnitude faster than the standard line-by-line-based simulations with averaged brightness temperature difference(BTD)less than 0.1 K,and the compressions based on PCA or NN methods result in comparable efficiency and accuracy.Our fast model not only avoids an excessively complicated transmittance scheme by using PCA/NN but is also highly flexible for hyperspectral instruments with similar spectral ranges simply by updating the corresponding spectral response functions. 展开更多
关键词 radiative transfer model principal component analysis machine learning GIIRS
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部