Theoretical calculations serve as an effective method for determining plasma temperatures within planetary atmospheres.To simulate plasma temperature,a comprehensive implementation of the energy equation is used,which...Theoretical calculations serve as an effective method for determining plasma temperatures within planetary atmospheres.To simulate plasma temperature,a comprehensive implementation of the energy equation is used,which is governed by five terms:conductivity,heating,cooling,adiabatic expansion,and advection.The derivations mentioned are strongly dependent on the collision cross section between electrons and other particles(e.g.,neutrals,ions).It is notable that the momentum transfer cross sections between electrons and neutrals have been updated in recent decades.However,the widely used momentum average collision cross sections between electrons and neutrals,derived from the momentum transfer cross sections,are collected in studies dating back nearly half a century.Therefore,it becomes imperative to revise the momentum average collision cross sections relevant to astrophysical contexts,based on the latest studies.In this study,we summarize the momentum average collision cross sections of 13 species common in planetary atmospheres:H,H_(2),He,O,CH_(4),H_(2)O,CO,N_(2),O_(2),Ar,CO_(2),N_(2)O,and NO_(2).All results are derived from the latest studies concerning the electron-neutral collision cross section and are compared with previous studies.Furthermore,we present a comparison of the derived total electron-neutral collision frequency at Mars between this study and previous studies.Prominent differences in the total electron-neutral collision frequency between this and prior studies support the significance of updating the momentum average collision cross section between electrons and neutrals in studying the planetary atmospheres.展开更多
Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sust...Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sustainable development.Despite significant progress in various electrochemical systems,the regulatory mechanisms of PDE in energy and mass transfer and the lifespan extension of electrolysis systems,particularly in water electrolysis(WE)for hydrogen production,remain insufficiently explored.Therefore,there is an urgent need for a deeper understanding of the unique contributions of PDE in mass transfer enhancement,microenvironment regulation,and hydrogen production optimization,aiming to achieve low-energy consumption,high catalytic activity,and long-term stability in the generation of target products.Here,this review critically examines the microenvironmental effects of PDE on energy and mass transfer,the electrode degradation mechanisms in the lifespan extension of electrolysis systems,and the key factors in enhancing WE for hydrogen production,providing a comprehensive summary of current research progress.The review focuses on the complex regulatory mechanisms of frequency,duty cycle,amplitude,and other factors in hydrogen evolution reaction(HER)performance within PDE strategies,revealing the interrelationships among them.Finally,the potential future directions and challenges for transitioning from laboratory studies to industrial applications are proposed.展开更多
The development of optoelectronic technologies demands photodetectors with miniaturization,broadband operation,high sensitivity,and low power consumption.Although 2D van der Waals(vd W)heterostructures are promising c...The development of optoelectronic technologies demands photodetectors with miniaturization,broadband operation,high sensitivity,and low power consumption.Although 2D van der Waals(vd W)heterostructures are promising candidates due to their built-in electric fields,ultrafast photocarrier separation,and tunable bandgaps,defect states limit their performance.Therefore,the modulation of the optoelectronic properties in such heterostructures is imperative.Surface charge transfer doping(SCTD)has emerged as a promising strategy for non-destructive modulation of electronic and optoelectronic characteristics in two-dimensional materials.In this work,we demonstrate the construction of high-performance p-i-n vertical heterojunction photodetectors through SCTD of MoTe_(2)/ReS_(2)heterostructure using p-type F_(4)-TCNQ.Systematic characterization reveals that the interfacial doping process effectively amplifies the built-in electric field,enhancing photogenerated carrier separation efficiency.Compared to the pristine heterojunction device,the doped photodetector exhibits remarkable visible to nearinfrared(635-1064 nm)performance.Particularly under 1064 nm illumination at zero bias,the device achieves a responsivity of 2.86 A/W and specific detectivity of 1.41×10^(12)Jones.Notably,the external quantum efficiency reaches an exceptional value of 334%compared to the initial 11.5%,while maintaining ultrafast response characteristics with rise/fall times of 11.6/15.6μs.This work provides new insights into interface engineering through molecular doping for developing high-performance vd W optoelectronic devices.展开更多
Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been...Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.展开更多
针对无线电能传输WPT(wireless power transmission)系统耦合机构发生偏移时,输出电压波动的问题,提出1种基于恒压输出区间追踪的WPT系统抗偏移方法。首先,建立CLC-S型WPT系统的模型,分析该系统在谐振和非谐振状态下的互感与输出电压增...针对无线电能传输WPT(wireless power transmission)系统耦合机构发生偏移时,输出电压波动的问题,提出1种基于恒压输出区间追踪的WPT系统抗偏移方法。首先,建立CLC-S型WPT系统的模型,分析该系统在谐振和非谐振状态下的互感与输出电压增益之间的关系,由分析可知,系统工作在非谐振状态下的恒压输出区间内抗偏移能力更强;然后,设计电感补偿序列,提出恒压输出区间追踪控制策略,实现WPT系统输出电压恒定控制,提高系统的抗偏移能力;最后,搭建仿真模型和实验平台,仿真及实验结果均表明,采用恒压输出区间追踪控制策略,可以有效减小输出电压的波动,验证了系统在强互感干扰下的鲁棒性。相较于无恒压输出区间追踪的WPT系统,所提系统具有更好的输出电压动态调节能力。展开更多
传统双向E型无线电能传输(wireless power transfer,WPT)拓扑易进入硬开关状态,导致电能传输效率低。针对此,该文提出无线电能传输系统的改进E^(#)型拓扑及其移相控制策略。首先,构建软开关状态负载范围更宽的双向E^(#)型WPT电路拓扑数...传统双向E型无线电能传输(wireless power transfer,WPT)拓扑易进入硬开关状态,导致电能传输效率低。针对此,该文提出无线电能传输系统的改进E^(#)型拓扑及其移相控制策略。首先,构建软开关状态负载范围更宽的双向E^(#)型WPT电路拓扑数学模型,分析并提取电路实现软开关工作状态的关键变量与约束条件,理论上证明所提拓扑的有效性。然后,推导电路中线圈互感和负载阻抗等参数的解析关系式,并基于此提出可保证系统在负载时始终处于最佳工作状态的移相控制策略。该策略通过控制开关管的门极驱动信号相位,使谐振元件内部储存的能量提前或者滞后释放,从而将开关管修正回软开关状态。最后,通过仿真和实验验证所提双向E^(#)型WPT系统的有效性。实验结果表明,所提方法可保证在5~30Ω的负载范围内电路工作在软开关状态,该范围内的电能传输效率峰值达84.3%。展开更多
针对单相矩阵式无线电能传输MC-WPT(matrix converter based wireless power transfer)系统网侧电流谐波含量大的问题,提出1种谐波抑制调制策略,可有效降低网侧电流低次谐波含量及总谐波失真度THD(total harmonic distortion)。分析谐...针对单相矩阵式无线电能传输MC-WPT(matrix converter based wireless power transfer)系统网侧电流谐波含量大的问题,提出1种谐波抑制调制策略,可有效降低网侧电流低次谐波含量及总谐波失真度THD(total harmonic distortion)。分析谐振槽电压电流特性,基于参数归一化方法得到2个基波分量的等效电路,进而推导出MC-WPT的数学模型。在此基础上,以消除低次谐波含量为目标,应用计算法得到接收侧H桥的优化调制波,使网侧电流低频成分仅有工频分量,从而降低网侧电流THD。最后搭建实验平台,验证所提谐波抑制调制策略的可行性与有效性。展开更多
以提高无线电能传输WPT(wireless power transfer)系统的传输效率为目标,对WPT系统的结构参数进行优化。针对WPT系统结构参数设计领域内的传统优化方法效率低、全面性差的问题,建立SS型WPT系统的参数优化模型,确定优化参数。在此基础上...以提高无线电能传输WPT(wireless power transfer)系统的传输效率为目标,对WPT系统的结构参数进行优化。针对WPT系统结构参数设计领域内的传统优化方法效率低、全面性差的问题,建立SS型WPT系统的参数优化模型,确定优化参数。在此基础上,提出1种综合了正交试验、有限元仿真及改进的粒子群优化-反向传播神经网络算法的WPT系统结构参数优化方法。实验结果表明,预测结果与实验结果间的平均误差值为4.3%,该优化方法合理可行,对WPT系统的结构参数优化具有参考意义。展开更多
针对立体车库中电动汽车无线充电问题,提出一种基于电场-磁场混合式无线电能传输系统的全双工电能与信号并行传输技术,以提升系统的传输功率和效率。以磁场耦合机构作为电能传输通道,基于LCC-S补偿网络设计电能传输参数,实现恒压输出;...针对立体车库中电动汽车无线充电问题,提出一种基于电场-磁场混合式无线电能传输系统的全双工电能与信号并行传输技术,以提升系统的传输功率和效率。以磁场耦合机构作为电能传输通道,基于LCC-S补偿网络设计电能传输参数,实现恒压输出;以电场耦合金属电极和磁场耦合线圈作为信号传输通道,上下金属载车板和车载金属电极构成四电极层叠式电场耦合机构。在电能传输、信号传输、电能串扰和信号串扰等不同模式下,对交叉耦合电容与耦合线圈电感等参数关系进行分析,对全双工通信过程中的阻波网络参数进行设定,对电能与信号之间的串扰关系进行分析。仿真结果表明,运用此并行传输技术,输出功率可达3 300 W、信号最大传输速率可达200 k B∕s。展开更多
Mitochondria play a crucial role as organelles,managing several physiological processes such as redox balance,cell metabolism,and energy synthesis.Initially,the assumption was that mitochondria primarily resided in th...Mitochondria play a crucial role as organelles,managing several physiological processes such as redox balance,cell metabolism,and energy synthesis.Initially,the assumption was that mitochondria primarily resided in the host cells and could exclusively transmit from oocytes to offspring by a mechanism known as vertical inheritance of mitochondria.Recent scholarly works,however,suggest that certain cell types transmit their mitochondria to other developmental cell types via a mechanism referred to as intercellular or horizontal mitochondrial transfer.This review details the process of which mitochondria are transferred across cells and explains the impact of mitochondrial transfer between cells on the efficacy and functionality of cancer cells in various cancer forms.Specifically,we review the role of mitochondria transfer in regulating cellular metabolism restoration,excess reactive oxygen species(ROS)generation,proliferation,invasion,metastasis,mitophagy activation,mitochondrial DNA(mtDNA)inheritance,immune system modulation and therapeutic resistance in cancer.Additionally,we highlight the possibility of using intercellular mitochondria transfer as a therapeutic approach to treat cancer and enhance the efficacy of cancer treatments.展开更多
基金the National Natural Science Foundation of China through Grants 42261160643,42441806,42241114,and 42304166supported by the open project funded by the Key Laboratory of Geospace Environment,Chinese Academy of Sciences,University of Science and Technology of China.
文摘Theoretical calculations serve as an effective method for determining plasma temperatures within planetary atmospheres.To simulate plasma temperature,a comprehensive implementation of the energy equation is used,which is governed by five terms:conductivity,heating,cooling,adiabatic expansion,and advection.The derivations mentioned are strongly dependent on the collision cross section between electrons and other particles(e.g.,neutrals,ions).It is notable that the momentum transfer cross sections between electrons and neutrals have been updated in recent decades.However,the widely used momentum average collision cross sections between electrons and neutrals,derived from the momentum transfer cross sections,are collected in studies dating back nearly half a century.Therefore,it becomes imperative to revise the momentum average collision cross sections relevant to astrophysical contexts,based on the latest studies.In this study,we summarize the momentum average collision cross sections of 13 species common in planetary atmospheres:H,H_(2),He,O,CH_(4),H_(2)O,CO,N_(2),O_(2),Ar,CO_(2),N_(2)O,and NO_(2).All results are derived from the latest studies concerning the electron-neutral collision cross section and are compared with previous studies.Furthermore,we present a comparison of the derived total electron-neutral collision frequency at Mars between this study and previous studies.Prominent differences in the total electron-neutral collision frequency between this and prior studies support the significance of updating the momentum average collision cross section between electrons and neutrals in studying the planetary atmospheres.
基金financially supported by the Key Research and Development Program of Heilongjiang Province(No.2024ZXJ03C06)National Natural Science Foundation of China(No.52476192,No.52106237)+1 种基金Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)Technology Project of China Datang Technology Innovation Co.,Ltd(No.DTKC-2024-20610).
文摘Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sustainable development.Despite significant progress in various electrochemical systems,the regulatory mechanisms of PDE in energy and mass transfer and the lifespan extension of electrolysis systems,particularly in water electrolysis(WE)for hydrogen production,remain insufficiently explored.Therefore,there is an urgent need for a deeper understanding of the unique contributions of PDE in mass transfer enhancement,microenvironment regulation,and hydrogen production optimization,aiming to achieve low-energy consumption,high catalytic activity,and long-term stability in the generation of target products.Here,this review critically examines the microenvironmental effects of PDE on energy and mass transfer,the electrode degradation mechanisms in the lifespan extension of electrolysis systems,and the key factors in enhancing WE for hydrogen production,providing a comprehensive summary of current research progress.The review focuses on the complex regulatory mechanisms of frequency,duty cycle,amplitude,and other factors in hydrogen evolution reaction(HER)performance within PDE strategies,revealing the interrelationships among them.Finally,the potential future directions and challenges for transitioning from laboratory studies to industrial applications are proposed.
基金financial support from 2024 Domestic Visiting Scholar Program for Teachers'Professional Development in Universities(Grant No.FX2024022)National Natural Science Foundation of China(Grant No.61904043)。
文摘The development of optoelectronic technologies demands photodetectors with miniaturization,broadband operation,high sensitivity,and low power consumption.Although 2D van der Waals(vd W)heterostructures are promising candidates due to their built-in electric fields,ultrafast photocarrier separation,and tunable bandgaps,defect states limit their performance.Therefore,the modulation of the optoelectronic properties in such heterostructures is imperative.Surface charge transfer doping(SCTD)has emerged as a promising strategy for non-destructive modulation of electronic and optoelectronic characteristics in two-dimensional materials.In this work,we demonstrate the construction of high-performance p-i-n vertical heterojunction photodetectors through SCTD of MoTe_(2)/ReS_(2)heterostructure using p-type F_(4)-TCNQ.Systematic characterization reveals that the interfacial doping process effectively amplifies the built-in electric field,enhancing photogenerated carrier separation efficiency.Compared to the pristine heterojunction device,the doped photodetector exhibits remarkable visible to nearinfrared(635-1064 nm)performance.Particularly under 1064 nm illumination at zero bias,the device achieves a responsivity of 2.86 A/W and specific detectivity of 1.41×10^(12)Jones.Notably,the external quantum efficiency reaches an exceptional value of 334%compared to the initial 11.5%,while maintaining ultrafast response characteristics with rise/fall times of 11.6/15.6μs.This work provides new insights into interface engineering through molecular doping for developing high-performance vd W optoelectronic devices.
基金supported by The University of Hong Kong,China(109000487,109001694,204610401,and 204610519)National Natural Science Foundation of China(82402225)(to JH).
文摘Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.
文摘针对无线电能传输WPT(wireless power transmission)系统耦合机构发生偏移时,输出电压波动的问题,提出1种基于恒压输出区间追踪的WPT系统抗偏移方法。首先,建立CLC-S型WPT系统的模型,分析该系统在谐振和非谐振状态下的互感与输出电压增益之间的关系,由分析可知,系统工作在非谐振状态下的恒压输出区间内抗偏移能力更强;然后,设计电感补偿序列,提出恒压输出区间追踪控制策略,实现WPT系统输出电压恒定控制,提高系统的抗偏移能力;最后,搭建仿真模型和实验平台,仿真及实验结果均表明,采用恒压输出区间追踪控制策略,可以有效减小输出电压的波动,验证了系统在强互感干扰下的鲁棒性。相较于无恒压输出区间追踪的WPT系统,所提系统具有更好的输出电压动态调节能力。
文摘传统双向E型无线电能传输(wireless power transfer,WPT)拓扑易进入硬开关状态,导致电能传输效率低。针对此,该文提出无线电能传输系统的改进E^(#)型拓扑及其移相控制策略。首先,构建软开关状态负载范围更宽的双向E^(#)型WPT电路拓扑数学模型,分析并提取电路实现软开关工作状态的关键变量与约束条件,理论上证明所提拓扑的有效性。然后,推导电路中线圈互感和负载阻抗等参数的解析关系式,并基于此提出可保证系统在负载时始终处于最佳工作状态的移相控制策略。该策略通过控制开关管的门极驱动信号相位,使谐振元件内部储存的能量提前或者滞后释放,从而将开关管修正回软开关状态。最后,通过仿真和实验验证所提双向E^(#)型WPT系统的有效性。实验结果表明,所提方法可保证在5~30Ω的负载范围内电路工作在软开关状态,该范围内的电能传输效率峰值达84.3%。
文摘针对单相矩阵式无线电能传输MC-WPT(matrix converter based wireless power transfer)系统网侧电流谐波含量大的问题,提出1种谐波抑制调制策略,可有效降低网侧电流低次谐波含量及总谐波失真度THD(total harmonic distortion)。分析谐振槽电压电流特性,基于参数归一化方法得到2个基波分量的等效电路,进而推导出MC-WPT的数学模型。在此基础上,以消除低次谐波含量为目标,应用计算法得到接收侧H桥的优化调制波,使网侧电流低频成分仅有工频分量,从而降低网侧电流THD。最后搭建实验平台,验证所提谐波抑制调制策略的可行性与有效性。
文摘以提高无线电能传输WPT(wireless power transfer)系统的传输效率为目标,对WPT系统的结构参数进行优化。针对WPT系统结构参数设计领域内的传统优化方法效率低、全面性差的问题,建立SS型WPT系统的参数优化模型,确定优化参数。在此基础上,提出1种综合了正交试验、有限元仿真及改进的粒子群优化-反向传播神经网络算法的WPT系统结构参数优化方法。实验结果表明,预测结果与实验结果间的平均误差值为4.3%,该优化方法合理可行,对WPT系统的结构参数优化具有参考意义。
文摘针对立体车库中电动汽车无线充电问题,提出一种基于电场-磁场混合式无线电能传输系统的全双工电能与信号并行传输技术,以提升系统的传输功率和效率。以磁场耦合机构作为电能传输通道,基于LCC-S补偿网络设计电能传输参数,实现恒压输出;以电场耦合金属电极和磁场耦合线圈作为信号传输通道,上下金属载车板和车载金属电极构成四电极层叠式电场耦合机构。在电能传输、信号传输、电能串扰和信号串扰等不同模式下,对交叉耦合电容与耦合线圈电感等参数关系进行分析,对全双工通信过程中的阻波网络参数进行设定,对电能与信号之间的串扰关系进行分析。仿真结果表明,运用此并行传输技术,输出功率可达3 300 W、信号最大传输速率可达200 k B∕s。
基金supported by the National Natural Science Foundation of China(Grant No.:82272749)the Natural Science Foundation of Liaoning Province,China(Grant No.:2022-MS-190).
文摘Mitochondria play a crucial role as organelles,managing several physiological processes such as redox balance,cell metabolism,and energy synthesis.Initially,the assumption was that mitochondria primarily resided in the host cells and could exclusively transmit from oocytes to offspring by a mechanism known as vertical inheritance of mitochondria.Recent scholarly works,however,suggest that certain cell types transmit their mitochondria to other developmental cell types via a mechanism referred to as intercellular or horizontal mitochondrial transfer.This review details the process of which mitochondria are transferred across cells and explains the impact of mitochondrial transfer between cells on the efficacy and functionality of cancer cells in various cancer forms.Specifically,we review the role of mitochondria transfer in regulating cellular metabolism restoration,excess reactive oxygen species(ROS)generation,proliferation,invasion,metastasis,mitophagy activation,mitochondrial DNA(mtDNA)inheritance,immune system modulation and therapeutic resistance in cancer.Additionally,we highlight the possibility of using intercellular mitochondria transfer as a therapeutic approach to treat cancer and enhance the efficacy of cancer treatments.