期刊文献+
共找到7,975篇文章
< 1 2 250 >
每页显示 20 50 100
Single-cell and spatial transcriptomics reveals an anti-tumor neutrophil subgroup in microwave thermochemotherapy-treated lip cancer
1
作者 Bingjun Chen Huayang Fan +8 位作者 Xin Pang Zeliang Shen Rui Gao Haofan Wang Zhenwei Yu Tianjiao Li Mao Li Yaling Tang Xinhua Liang 《International Journal of Oral Science》 2025年第4期529-543,共15页
Microwave thermochemotherapy(MTC)has been applied to treat lip squamous cell carcinoma(LSCC),but a deeper understanding of its therapeutic mechanisms and molecular biology is needed.To address this,we used single-cell... Microwave thermochemotherapy(MTC)has been applied to treat lip squamous cell carcinoma(LSCC),but a deeper understanding of its therapeutic mechanisms and molecular biology is needed.To address this,we used single-cell transcriptomics(scRNA-seq)and spatial transcriptomics(ST)to highlight the pivotal role of tumor-associated neutrophils(TANs)among tumor-infiltrating immune cells and their therapeutic response to MTC.MNDA+TANs with anti-tumor activity(N1-phenotype)are found to be abundantly infiltrated by MTC with benefit of increased blood perfusion,and these TANs are characterized by enhanced cytotoxicity,ameliorated hypoxia,and upregulated IL1B,activating T&NK cells and fibroblasts via IL1B-IL1R.In this highly anti-tumor immunogenic and hypoxia-reversed microenvironment under MTC,fibroblasts accumulated in the tumor front(TF)can recruit N1-TANs via CXCL2-CXCR2 and clear N2-TANs(pro-tumor phenotype)via CXCL12-CXCR4,which results in the aggregation of N1-TANs and extracellular matrix(ECM)deposition.In addition,we construct an N1-TANs marker,MX2,which positively correlates with better prognosis in LSCC patients,and employ deep learning techniques to predict expression of MX2 from hematoxylin-eosin(H&E)-stained images so as to conveniently guide decision making in clinical practice.Collectively,our findings demonstrate that the N1-TANs/fibroblasts defense wall formed in response to MTC effectively combat LSCC. 展开更多
关键词 spatial transcriptomics st molecular biology lip squamous cell carcinoma lscc single cell transcriptomics tumor associated neutrophils microwave thermochemotherapy mtc spatial transcriptomics anti tumor activity
暂未订购
Multidimensional decoding of colorectal cancer heterogeneity:Artificial intelligence-enabled precision exploration of single-cell and spatial transcriptomics
2
作者 Wen-Yu Luan Qi Zhao +3 位作者 Zheng Zhang Zhen-Xi Xu Si-Xiang Lin Yan-Dong Miao 《World Journal of Gastrointestinal Oncology》 2025年第10期92-107,共16页
As a common malignant tumor,the heterogeneity of colorectal cancer plays an important role in tumor progression and treatment response.In recent years,the rapid development of single-cell transcriptomics and spatial t... As a common malignant tumor,the heterogeneity of colorectal cancer plays an important role in tumor progression and treatment response.In recent years,the rapid development of single-cell transcriptomics and spatial transcriptomics technologies has provided new perspectives for resolving the heterogeneity of colorectal cancer.These techniques can reveal the complexity of cellular composition and their interactions in the tumor microenvironment,and thus facilitate a deeper understanding of tumor biology.However,in practical applications,researchers still face technical challenges such as data processing and result interpretation.The aim of this paper is to explore how to use artificial intelligence(AI)technology to enhance the research efficiency of single-cell and spatial transcriptomics,analyze the current research progress and its limitations,and explore how combining AI approaches can provide new ideas for decoding the heterogeneity of colorectal cancer,and ultimately provide theoretical basis and practical guidance for the clinical precision treatment. 展开更多
关键词 Artificial intelligence Single-cell transcriptomics Spatial transcriptomics Colorectal cancer Tumor heterogeneity
暂未订购
mRNA-miRNA Transcriptomics Analysis of Mechanism of Quercetin Inhibiting Sune-1 Cell Activities
3
作者 Qihuang LIN Wenwen LU Shuning YANG 《Medicinal Plant》 2025年第2期49-54,共6页
[Objectives]To further explore the mechanism of quercetin regulating the activity of Sune-1 cells.[Methods]High-throughput mRNA-miRNA transcriptome sequencing technology was used to screen miRNA in Sune-1 cells treate... [Objectives]To further explore the mechanism of quercetin regulating the activity of Sune-1 cells.[Methods]High-throughput mRNA-miRNA transcriptome sequencing technology was used to screen miRNA in Sune-1 cells treated with quercetin.[Results]Statistical analysis showed that 1264 miRNAs were differentially expressed in Sune-1 cells treated with quercetin,of which 716 were significantly up-regulated and 548 were significantly down-regulated;191 miRNAs were differentially expressed in Sune-1 cells treated with quercetin,of which 129 were significantly up-regulated and 62 were significantly down-regulated.By comparing the expression differences of these mRNAs and miRNAs in different samples,six different expression patterns were clustered.The expression of the above miRNAs was verified by real-time quantitative PCR(qPCR),and the results were highly consistent with the transcriptome sequencing data.In addition,Gene Ontology annotation and functional enrichment analysis of miRNA target genes showed that CTGF,VHL and H19,which are related to the regulation of cell proliferation signal transduction,were predicted to be new targets of differential miRNAs such as miR494-3p and miR675-3p and may play an important regulatory role in the process of Quercetin inhibiting the proliferation of Sune-1 cells.[Conclusions]This study provides a basis for the rational use of anti-tumor functional components of traditional Chinese medicine,and also provides a theoretical basis for the targeted therapy of nasopharyngeal carcinoma. 展开更多
关键词 QUERCETIN Sune-1 cells miRNA transcriptome mRNA transcriptome Cell proliferation
暂未订购
Establishment of somatic embryogenesis regeneration system and transcriptome analysis of early somatic embryogenesis in litchi 被引量:2
4
作者 Yaqi Qin Bo Zhang +5 位作者 Shiqian Wang Wuyan Guo Zhike Zhang Yonghua Qin Jietang Zhao Guibing Hu 《Horticultural Plant Journal》 2025年第2期535-547,共13页
Litchi chinensis Sonn.is an important economic fruit tree in tropical and subtropical regions.Regrettably,the efficiency of plant regeneration via somatic embryogenesis in litchi is typically low due to the poor conve... Litchi chinensis Sonn.is an important economic fruit tree in tropical and subtropical regions.Regrettably,the efficiency of plant regeneration via somatic embryogenesis in litchi is typically low due to the poor conversion of embryos to plants.The purpose of this study was to establish a regeneration system via somatic embryogenesis from immature embryos explants in‘Heiye'cultivar of litchi.Our results demonstrated that MS medium supplemented with 2.0 mg L^(-1)2,4-D was optimal for callus induction.For somatic embryo(SE)induction,MS medium containing0.5 g L^(-1) activated charcoal(AC)was the most effective,while the use of zeatin(ZT)and thidiazuron(TDZ)resulted in abnormal somatic embryos.The rooting and regeneration rate of 2.15%and 17.5%,respectively,were achieved using MS medium supplemented with 0.5 g L^(-1) AC.Furthermore,transcriptome analysis was performed on embryogenic callus(EC),globular embryo(GE),and heart embryo(HE)to explore the molecular mechanisms of early somatic embryogenesis.2,587 common differentially expressed genes(DEGs)between EC_vs_GE and EC_vs_HE were identified,and the expression patterns of these common DEGs were separated into twelve major clusters.GO annotation and KEGG pathway analysis revealed that these common DEGs were implicated in plant hormone signal transduction,auxin-activated signaling pathway,and other biological processes.Additionally,differentially expressed transcription factors were identified,and the function of LcBBM2 which is specifically highly expressed during early somatic embryogenesis was verified.Overexpression of LcBBM2 in tomato promotes callus and shoot formation.Therefore,this study can provide a theoretical basis and technical support for genetic breeding improvement of litchi. 展开更多
关键词 Litchi chinensis Somatic embryogenesis transcriptomE LcBBM2
在线阅读 下载PDF
Integration of transcriptome and metabolome reveals regulatory mechanisms of volatile flavor formation during tomato fruit ripening 被引量:1
5
作者 Zhiqiang Liu Jianxin Wu +5 位作者 Licai Wang Xiaonan Lu Golam Jalal Ahammed Xiaolan Zhang Xia Cui Haijing Wang 《Horticultural Plant Journal》 2025年第2期680-692,共13页
Tomato is an important economic crop all over the world.Volatile flavors in tomato fruit are key factors influencing consumer liking and commercial quality.However,the regulatory mechanism controlling the volatile fla... Tomato is an important economic crop all over the world.Volatile flavors in tomato fruit are key factors influencing consumer liking and commercial quality.However,the regulatory mechanism controlling the volatile flavors of tomatoes is still not clear.Here,we integrated the metabolome and transcriptome of the volatile flavors in tomato fruit to explore the regulatory mechanism of volatile flavor formation,using wild and cultivated tomatoes with significant differences in flavors.A total of 35 volatile flavor compounds were identified,based on the solid phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS).The content of the volatiles,affecting fruit flavor,significantly increased in the transition from breaker to red ripe fruit stage.Moreover,the total content of the volatiles in wild tomatoes was much higher than that in the cultivated tomatoes.The content variations of all volatile flavors were clustered into 10 groups by hierarchical cluster and Pearson coefficient correlation(PCC)analysis.The fruit transcriptome was also patterned into 10 groups,with significant variations both from the mature green to breaker fruit stage and from the breaker to red ripe fruit stage.Combining the metabolome and the transcriptome of the same developmental stage of fruits by co-expression analysis,we found that the expression level of 1182 genes was highly correlated with the content of volatile flavor compounds,thereby constructing two regulatory pathways of important volatile flavors.One pathway is tetrahydrothiazolidine N-hydroxylase(SlTNH1)-dependent,which is regulated by two transcription factors(TFs)from the bHLH and AP2/ERF families,controlling the synthesis of 2-isobutylthiazole in amino acid metabolism.The other is lipoxygenase(Sl LOX)-dependent,which is regulated by one TF from the HD-Zip family,controlling the synthesis of hexanal and(Z)-2-heptenal in fatty acid metabolism.Dual-luciferase assay confirmed the binding of b HLH and AP2/ERF to their structural genes.The findings of this study provide new insights into volatile flavor formation in tomato fruit,which can be useful for tomato flavor improvement. 展开更多
关键词 TOMATO Volatile flavor transcriptomE Transcription factor CO-EXPRESSION
在线阅读 下载PDF
Transcriptomic and biochemical analysis of the mechanism of sodium gluconate promoting the degradation of benzo [a] pyrene by Bacillus subtilis MSC4 被引量:1
6
作者 Rui Chen Tangbing Cui 《Journal of Environmental Sciences》 2025年第6期39-53,共15页
Benzo[a]pyrene(B[a]P)is a carcinogenic environmental pollutant widely present in the environment and can enter the human body through the food chain.It is therefore essential to treat and remediate the B[a]P-contamina... Benzo[a]pyrene(B[a]P)is a carcinogenic environmental pollutant widely present in the environment and can enter the human body through the food chain.It is therefore essential to treat and remediate the B[a]P-contaminated environment.Microbial remediation of B[a]Pcontaminated environments is considered to be one of the most effective strategies,and the addition of biostimulants is a feasible method to further improve the effectiveness of microbial remediation.In this study,we used Bacillus subtilis MSC4 to screen for the stimulation of sodium gluconate,which promoted B[a]P degradation.Based on biochemical and transcriptomic analyses,Sodium gluconate was found to significantly increase the biomass of MSC4 and the expression of most genes involved in B[a]P degradation.Activities of central carbon metabolism,fatty acidβ-oxidation and oxidative phosphorylation were all promoted.The significant increase in acid-induced oxalate decarboxylase expression indicates a decrease in intracellular pH,which promoted the synthesis of acetoin and lactate.Genes involved in the nitrogen cycle,especially nitrification and denitrification,were significantly up-regulated,contributing to B[a]P degradation.Genes involved in the synthesis of enzyme cofactors,including thiamine,molybdenum cofactors,NAD and heme,were up-regulated,which contributes to increasing enzyme activity in metabolic pathways.Up-regulation of genes in flagella assembly,chemotaxis,and lipopeptide synthesis is beneficial for the dissolution and uptake of B[a]P.Genes related to the sugar transport system were upregulated,which facilitates the transport and absorption of monosaccharides and oligosaccharides by MSC4.This study provides a theoretical basis for the further application of sodium gluconate in the treatment of PAH-contaminated sites. 展开更多
关键词 transcriptomIC BIODEGRADATION BENZO[A]PYRENE Bacillus subtilis Sodium gluconate
原文传递
Spatial transcriptomics combined with single-nucleus RNA sequencing reveals glial cell heterogeneity in the human spinal cord
7
作者 Yali Chen Yiyong Wei +3 位作者 Jin Liu Tao Zhu Cheng Zhou Donghang Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第11期3302-3316,共15页
Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocyt... Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocytes,microglia,and oligodendrocytes in the central nervous system,and satellite glial cells and Schwann cells in the peripheral nervous system.Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models,few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord.Here,we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes,microglia,and oligodendrocytes in the human spinal cord.To explore the conservation and divergence across species,we compared these findings with those from mice.In the human spinal cord,astrocytes,microglia,and oligodendrocytes were each divided into six distinct transcriptomic subclusters.In the mouse spinal cord,astrocytes,microglia,and oligodendrocytes were divided into five,four,and five distinct transcriptomic subclusters,respectively.The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice.Additionally,we detected sex differences in gene expression in human spinal cord glial cells.Specifically,in all astrocyte subtypes,the levels of NEAT1 and CHI3L1 were higher in males than in females,whereas the levels of CST3 were lower in males than in females.In all microglial subtypes,all differentially expressed genes were located on the sex chromosomes.In addition to sex-specific gene differences,the levels of MT-ND4,MT2A,MT-ATP6,MT-CO3,MT-ND2,MT-ND3,and MT-CO_(2) in all spinal cord oligodendrocyte subtypes were higher in females than in males.Collectively,the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cordrelated illnesses,including chronic pain,amyotrophic lateral sclerosis,and multiple sclerosis. 展开更多
关键词 astrocyte glial cell HUMAN microglia oligodendrocyte sex differentiation single-nucleus RNA sequencing spatial transcriptomics species variation spinal cord
暂未订购
Single-cell transcriptomic profiling reveals ZEB1-mediated regulation in microglial subtypes and the impact of exercise on neuroinflammatory responses
8
作者 Jin-Fang Wu Yi-Sheng Chen Yu-Chun Xie 《Traditional Medicine Research》 2025年第2期55-64,共10页
Background:This study aims to identify distinct cellular subtypes within brain tissue using single-cell transcriptomic analysis,focusing on specific biomarkers that differentiate cell types and the effects of traditio... Background:This study aims to identify distinct cellular subtypes within brain tissue using single-cell transcriptomic analysis,focusing on specific biomarkers that differentiate cell types and the effects of traditional and exercise therapy.Methods:Four samples were analyzed:older control(OC),older exercise(OE),younger control(YC),and younger exercise(YE).Single-cell RNA sequencing was used to distinguish cellular subtypes through their biomarker profiles.Data visualization included violin and t-SNE plots to illustrate biomarker expression across cell clusters such as oligodendrocytes,microglia,and astrocytes.Additionally,BV2 cells were exposed to amyloid-beta fragments to simulate Alzheimer’s disease,assessing the impact of exercise-induced cellular responses.Results:Distinct cellular subtypes were identified:oligodendrocytes(MBP,St18),microglia(Dock8),and astrocytes(Aqp4,Gpc5).Sample OE was predominantly oligodendrocytes,while YE had more astrocytes,inhibitory neurons,and Canal-Retzius cells.YC showed a significant presence of Olfm3+ganglion neurons.ZEB1 gene knockout revealed changes in SMAD family gene expression,which regulate ferroptosis.Oxidative stress levels were also evaluated.Conclusion:This profiling enhances our understanding of brain cellular functions and interactions,potentially informing targeted therapies in neurological research.Exercise may influence brain cell immune responses and cell death pathways by regulating specific gene expressions,offering new insights for treating neuroinflammation and degeneration. 展开更多
关键词 single-cell transcriptomics brain tissue cellular subtypes biomarker expression neuronal diversity
暂未订购
Transcriptomics Analysis of Penicillium expansumΔWSC1 Infection and Defense Mechanism against It in Pear Fruits
9
作者 ZHAO Lina HU Yize +4 位作者 SHU Yuling Solairaj DHANASEKARAN ZHANG Xiaoyun YANG Qiya ZHANG Hongyin 《食品科学》 北大核心 2025年第13期75-85,共11页
The WSC proteins produced by Penicillium expansum play a crucial role in causing blue mold on pears.To analyze the role of the WSC1 gene in the pathogenic process of this fungal pathogen,we conducted transcriptomic an... The WSC proteins produced by Penicillium expansum play a crucial role in causing blue mold on pears.To analyze the role of the WSC1 gene in the pathogenic process of this fungal pathogen,we conducted transcriptomic analysis of a WSC1 knockout(ΔWSC1)strain.The knockout of WSC1 significantly altered the gene expression profile in P.expansum,particularly for genes involved in cell wall integrity,signaling,stress response,and toxin production.The differential expression of these genes might make theΔWSC1 strain more vulnerable to environmental stress,while reducing the toxin production capacity,ultimately leading to a decrease in the pathogenicity.The transcriptomic analysis revealed that the expression of genes related to stress response signals,defense mechanisms and oxidative stress management changed when pear fruits were infected with theΔWSC1 strain.These changes may trigger a cascade of responses in pear fruits.In addition,compared with those infected with the wild-type strain,pear fruits infected with theΔWSC1 strain exhibited up-regulated expression of genes related to defense and oxidative stress.This study clarifies how the WSC1 gene influences P.expansum’s ability to infect pear fruits and how pear fruits respond to the infection. 展开更多
关键词 pear fruit Penicillium expansum transcriptomic analysis INFECTION
在线阅读 下载PDF
Integrated transcriptomics and metabolomics analysis provide insights into the alleviation of waterlogging stress in maize by exogenous spermidine application
10
作者 Xiuling Wang Li Niu +12 位作者 Huaipan Liu Xucun Jia Yulong Zhao Qun Wang Yali Zhao Pengfei Dong Moubiao Zhang Hongping Li Panpan An Zhi Li Xiaohuan Mu Yongen Zhang Chaohai Li 《Journal of Integrative Agriculture》 2025年第12期4546-4560,共15页
Waterlogging stress significantly impairs plant growth and reduces crop yields.Spermidine(Spd),functioning as a second messenger,demonstrates positive effects on plant growth under waterlogging stress conditions.Howev... Waterlogging stress significantly impairs plant growth and reduces crop yields.Spermidine(Spd),functioning as a second messenger,demonstrates positive effects on plant growth under waterlogging stress conditions.However,the molecular mechanisms by which exogenous Spd application alleviates waterlogging stress remain unclear.This study employed physiological analysis and multi-omics approaches to investigate the effect of Spd application on waterlogging stress.The application of Spd enhanced the expression of genes related to light-harvesting complex(LHC),photosynthesis,and starch-related pathways,while inhibiting chlorophyll degradation and maintaining higher photosynthetic rates,thereby increasing biomass accumulation under waterlogging stress.The activation of genes associated with trehalose and Spd biosynthesis resulted in elevated accumulation of trehalose and endogenous Spd.The inhibition of 1-aminocyclopropane-1-carboxylic acid(ACC)oxidase(ACO)expression contributed to reduced ethylene emission,enhancing maize resistance to waterlogging.Following Spd application,auxin-related genes were up-regulated and indole acetic acid(IAA)content increased,promoting cell elongation in maize and maintaining normal growth under waterlogging stress.Additionally,the upregulation of lipid-related genes led to increased lipid content,protecting cell membranes under waterlogging conditions.These molecular and physiological modifications collectively enhanced resistance to waterlogging stress.These findings advance our understanding of Spd's regulatory roles in mitigating waterlogging damage and provide valuable insights for breeding waterlogging-tolerant maize varieties. 展开更多
关键词 MAIZE SPERMIDINE waterlogging stress transcriptomE METABOLOME
在线阅读 下载PDF
Prediction of genomic biomarkers for endometriosis using the transcriptomic dataset
11
作者 Zeynep Kucukakcali Sami Akbulut Cemil Colak 《World Journal of Clinical Cases》 2025年第20期6-19,共14页
BACKGROUND Endometriosis is a clinical condition characterized by the presence of endometrial glands outside the uterine cavity.While its incidence remains mostly uncertain,endometriosis impacts around 180 million wom... BACKGROUND Endometriosis is a clinical condition characterized by the presence of endometrial glands outside the uterine cavity.While its incidence remains mostly uncertain,endometriosis impacts around 180 million women worldwide.Despite the presentation of several epidemiological and clinical explanations,the precise mechanism underlying the disease remains ambiguous.In recent years,researchers have examined the hereditary dimension of the disease.Genetic research has aimed to discover the gene or genes responsible for the disease through association or linkage studies involving candidate genes or DNA mapping techniques.AIM To identify genetic biomarkers linked to endometriosis by the application of machine learning(ML)approaches.METHODS This case-control study accounted for the open-access transcriptomic data set of endometriosis and the control group.We included data from 22 controls and 16 endometriosis patients for this purpose.We used AdaBoost,XGBoost,Stochasting Gradient Boosting,Bagged Classification and Regression Trees(CART)for classification using five-fold cross validation.We evaluated the performance of the models using the performance measures of accuracy,balanced accuracy,sensitivity,specificity,positive predictive value,negative predictive value and F1 score.RESULTS Bagged CART gave the best classification metrics.The metrics obtained from this model are 85.7%,85.7%,100%,75%,75%,100%and 85.7%for accuracy,balanced accuracy,sensitivity,specificity,positive predictive value,negative predictive value and F1 score,respectively.Based on the variable importance of modeling,we can use the genes CUX2,CLMP,CEP131,EHD4,CDH24,ILRUN,LINC01709,HOTAIR,SLC30A2 and NKG7 and other transcripts with inaccessible gene names as potential biomarkers for endometriosis.CONCLUSION This study determined possible genomic biomarkers for endometriosis using transcriptomic data from patients with/without endometriosis.The applied ML model successfully classified endometriosis and created a highly accurate diagnostic prediction model.Future genomic studies could explain the underlying pathology of endometriosis,and a non-invasive diagnostic method could replace the invasive ones. 展开更多
关键词 ENDOMETRIOSIS RNA-SEQ transcriptomICS Machine learning Classification
暂未订购
Identification of transcription factors contributing to vitamin C synthesis during Rosa roxburghii fruit development by integrating transcriptomics and metabolomics
12
作者 Liyao Su Tian Zhang Zong-Ming(Max)Cheng 《Horticultural Plant Journal》 2025年第1期123-132,共10页
Ascorbic acid, also referred to as vitamin C(Vc), is an important nutrient found in fruits and vegetables that promotes produce quality and human health. Rosa roxburghii is an underutilized natural fruit that contains... Ascorbic acid, also referred to as vitamin C(Vc), is an important nutrient found in fruits and vegetables that promotes produce quality and human health. Rosa roxburghii is an underutilized natural fruit that contains very high levels of Vc. However, the Vc content of R. roxburghii varies considerably during plant development and ripening. To better understand the molecular mechanisms that underlie fluctuations in Vc content of R. roxburghii fruit at different developmental stages, we performed transcriptomic and metabolomic analyses and identified two significant gene networks/modules and 168 transcription factors directly involved in Vc synthesis. Promoter analysis of two core genes involved in Vc synthesis, RrGGP and RrGalUR, revealed the presence of a retroviral long terminal repeat(LTR) insert in the RrGalUR promoter. Using yeast one-hybrid and dual-luciferase assays, we demonstrated that the transcription factors RrHY5H and RrZIP9 bind to the promoter of RrGGP to promote its expression. RrZIP6 and RrWRKY4 bind to the LTR in the RrGalUR promoter to promote its expression. Our results reveal a molecular mechanism that controls Vc synthesis and accumulation in R. roxburghii fruit. 展开更多
关键词 Rosa roxburghii Vitamin C WGCNA transcriptomE METABOLOME
在线阅读 下载PDF
Inhibition mechanisms of perchlorate on the photosynthesis of cyanobacterium Synechocystis sp.PCC6803:Insights from physiology and transcriptome analysis
13
作者 Xianyuan Zhang Yixiao Zhang +3 位作者 Zixu Chen Lanzhou Chen Xiaoyan Li Gaohong Wang 《Journal of Environmental Sciences》 2025年第4期515-531,共17页
Perchlorate(ClO_(4)^(−))is a type of novel persistent inorganic pollutant that has gained increasing attention because of its high solubility,poor degradability,and widespread distribution.However,the impacts of perch... Perchlorate(ClO_(4)^(−))is a type of novel persistent inorganic pollutant that has gained increasing attention because of its high solubility,poor degradability,and widespread distribution.However,the impacts of perchlorate on aquatic autotrophs such cyanobacterium are still unclear.Herein,Synechocystis sp.PCC6803(Synechocystis)was used to investigate the response mechanisms of perchlorate on cyanobacterium by integrating physiological and transcriptome analyses.Physiological results showed that perchlorate mainly damaged the photosystem of Synechocystis,and the inhibition degree of photosystem II(PSII)was severer than that of photosystem I(PSI).When the exposed cells were moved to a clean medium,the photosynthetic activities were slightly repaired but still lower than in the control group,indicating irreversible damage.Furthermore,perchlorate also destroyed the cellular ultrastructure and induced oxidative stress in Synechocystis.The antioxidant glutathione(GSH)content and the superoxide dismutase(SOD)enzyme activity were enhanced to scavenge harmful reactive oxygen(ROS)in Synechocystis.Transcriptome analysis revealed that the genes associated with“photosynthesis”and“electron transport”were significantly regulated.For instance,most genes related to PSI(e.g.,psaf,psaJ)and the“electron transport chain”were upregulated,whereas most genes related to PSII(e.g.,psbA3,psbD1,psbB,and psbC)were downregulated.Additionally,perchlorate also induced the expression of genes related to the antioxidant system(sod2,gpx,gst,katG,and gshB)to reduce oxidative damage.Overall,this study is the first to investigate the impacts andmechanisms of cyanobacterium under perchlorate stress,which is conducive to assessing the risk of perchlorate in aquatic environments. 展开更多
关键词 PERCHLORATE SYNECHOCYSTIS PHOTOSYNTHESIS Oxidative stress transcriptomE
原文传递
Integrative transcriptomic and proteomic analysis reveals that SERPING1 inhibits neuronal proliferation via the CaMKII-CREB-BDNF pathway in schizophrenia
14
作者 Feng Li Xing Ren +3 位作者 Jia-Xiu Liu Tian-Dao Wang Bi Wang Xiao-Bin Wei 《World Journal of Psychiatry》 2025年第2期193-208,共16页
BACKGROUND Schizophrenia(SZ),a chronic and widespread brain disorder,presents with complex etiology and pathogenesis that remain inadequately understood.Despite the absence of a universally recognized endophenotype,pe... BACKGROUND Schizophrenia(SZ),a chronic and widespread brain disorder,presents with complex etiology and pathogenesis that remain inadequately understood.Despite the absence of a universally recognized endophenotype,peripheral blood mononuclear cells(PBMCs)serve as a robust model for investigating intracellular alterations linked to SZ.AIM To preliminarily investigate potential pathogenic mechanisms and identify novel biomarkers for SZ.METHODS PBMCs from SZ patients were subjected to integrative transcriptomic and proteomic analyses to uncover differentially expressed genes(DEGs)and differentially expressed proteins while mapping putative disease-associated signaling pathways.Key findings were validated using western blot(WB)and real-time fluorescence quantitative PCR(RT-qPCR).RNAi-lentivirus was employed to transfect rat hippocampal CA1 neurons in vitro,with subsequent verification of target gene expression via RT-qPCR.The levels of neuronal conduction proteins,including calmodulin-dependent protein kinase II(caMKII),CREB,and BDNF,were assessed through WB.Apoptosis was quantified by flow cytometry,while cell proliferation and viability were evaluated using the Cell Counting Kit-8 assay.RESULTS The integration of transcriptomic and proteomic analyses identified 6079 co-expressed genes,among which 25 DEGs were significantly altered between the SZ group and healthy controls.Notably,haptoglobin(HP),lactotransferrin(LTF),and SERPING1 exhibited marked upregulation.KEGG pathway enrichment analysis implicated neuroactive ligand-receptor interaction pathways in disease pathogenesis.Clinical sample validation demonstrated elevated protein and mRNA levels of HP,LTF,and SERPING1 in the SZ group compared to controls.WB analysis of all clinical samples further corroborated the significant upregulation of SERPING1.In hippocampal CA1 neurons transfected with lentivirus,reduced SERPING1 expression was accompanied by increased levels of CaMKII,CREB,and BDNF,enhanced cell viability,and reduced apoptosis.CONCLUSION SERPING1 may suppress neural cell proliferation in SZ patients via modulation of the CaMKII-CREB-BDNF signaling pathway. 展开更多
关键词 transcriptomICS Proteomics SCHIZOPHRENIA SERPING1 Pathogenesis
暂未订购
Comparative transcriptome analysis identifies key regulators of nitrogen use efficiency in chrysanthemum
15
作者 Lijiao Ge Weihao Miao +8 位作者 Kuolin Duan Tong Sun Xinyan Fang Zhiyong Guan Jiafu Jiang Sumei Chen Weimin Fang Fadi Chen Shuang Zhao 《Journal of Integrative Agriculture》 2025年第1期176-195,共20页
Nitrogen(N)is a limiting factor that determines the yield and quality of chrysanthemum.Genetic variation in N use efficiency(NUE)has been reported among chrysanthemum genotypes.We performed a transcriptome analysis of... Nitrogen(N)is a limiting factor that determines the yield and quality of chrysanthemum.Genetic variation in N use efficiency(NUE)has been reported among chrysanthemum genotypes.We performed a transcriptome analysis of two chrysanthemum genotypes,'Nannonglihuang'(LH,N-efficient genotype)and'Nannongxuefeng"(XF,N-inefficient genotype),under low N(0.4 mmol L^(-1)N)and normal N(8 mmol L^(-1)N)treatments for 15 d and an N recovery treatment for 12 h(low N treatment for 15 d and then normal N treatment for 12 h)to understand the genetic factors impacting NUE in chrysanthemum.The two genotypes exhibited contrasting responses to the different N treatments.The N-efficient genotype LH had significant superiority in agronomic traits,N accumulation and glutamine synthase activity under both normal N and low N treatments.Low N treatment promoted root growth in LH,but inhibited root growth in XF.Transcriptome analysis revealed that the low N treatment increased the expression of some N metabolism genes,genes related to auxin and abscisic acid signal transduction in the roots of both genotypes,as well as genes related to gibberellin signal transduction in roots of LH.The N recovery treatment just increased the expression of genes related to cytokinin signal transduction in roots of LH.The expression levels of the NRT2.1,AMT1.1,and Gln1 genes related to gibberellin and cytokinin signal transduction were higher in roots of LH than in XF under different N treatments,suggesting that the genes related to N metabolism and hormone(auxin,abscisic acid,gibberellin,and cytokinin)signal transduction in roots of LH are more sensitive to different N treatments than those of XF.Co-expression network analysis(WGCNA)also identified hub genes like bZIP43,bHLH93,NPF6.3,IBR10,MYB62,PP2C,PP2C06 and NLP7,which may be the key regulators of N-mediated responses in chrysanthemum and play crucial roles in enhancing NUE and resistance to low N stress in the N-efficient chrysanthemum genotype.These results revealed the key factors involved in regulating NUE in chrysanthemum at the genetic level,which provides new insights into the complex mechanism of efficient nitrogen utilization in chrysanthemum,and can be useful for the improvement and breeding of high NUE chrysanthemum genotypes. 展开更多
关键词 CHRYSANTHEMUM GENOTYPE NUE gene expression transcriptome analysis
在线阅读 下载PDF
Transcriptomic analysis uncovers the red leaf coloration mechanism in Euonymus sacrosancta Koidz
16
作者 Xinyan Gao Zhongjia Yuan +5 位作者 Haoda Liu Yang Liu Ying Wang Lianfeng Xu Huihui Zhang Xuemei Liu 《Journal of Forestry Research》 2025年第5期245-259,共15页
Two leaf color variants red-leaf(R-type)and common-leaf(G-type)of Euonymus sacrosancta Koidz.,were employed as experimental materials to elucidate the molecular mechanisms underlying chromatic transition.Physiological... Two leaf color variants red-leaf(R-type)and common-leaf(G-type)of Euonymus sacrosancta Koidz.,were employed as experimental materials to elucidate the molecular mechanisms underlying chromatic transition.Physiological profiling identified anthocyanins and flavo-noids as the predominant pigments responsible for the red foliar phenotype,which exhibited reduced chlorophyll and carotenoid accumulation but elevated soluble sugars and proteins.Comparative transcriptomic analysis revealed that differentially expressed genes(DEGs)between R-type and G-type were significantly enriched in flavonoid biosynthe-sis and carotenoid metabolism pathways.The up-regulation of 22 key genes of anthocyanin synthesis(e.g.,CHS,CHI,LAR,LDOX and UFGT)in R-type may lead to the phenotype of red leaves through the increase of anthocyanin accumula-tion.The downregulated expression of 13 carotenoid syn-thesis-related genes(e.g.,PSY,PDS and VDE)and 6 carot-enoid degradation genes(e.g.,ABA2,CYP707A and NCED)may lead to lower carotenoid content in R-type compared to G-type.Combined with weighted gene co-expression network analysis(WGCNA),five candidate genes(EsLAR,EsLDOX,EsPDS,EsCYP707A and EsABA2)were screened from two modules highly correlated with anthocyanin con-tent in E.sacrosancta leaves.These genes may play key regulatory roles in leaf coloration and could serve as candi-date genetic resources for leaf color improvement in E.sac-rosancta.Additionally,transcription factors such as C2H2s,C3Hs,and WRKYs were identified as potential regulators in the formation of R-type in E.sacrosancta.This study pro-vides the first systematic elucidation of the transcriptional regulatory network governing red-leaf formation in E.sac-rosancta,establishing a critical theoretical foundation for molecular breeding in ornamental plants. 展开更多
关键词 Euonymus sacrosancta transcriptomE Leaf coloration ANTHOCYANIN Carotenoids
在线阅读 下载PDF
Physiology and transcriptome profiling reveal the drought tolerance of five grape varieties under high temperatures
17
作者 Xuehao Zhang Qiuling Zheng +7 位作者 Yongjiang Hao Yingying Zhang Weijie Gu Zhihao Deng Penghui Zhou Yulin Fang Keqin Chen Kekun Zhang 《Journal of Integrative Agriculture》 2025年第8期3055-3072,共18页
Evaluating plant stress tolerance and screening key regulatory genes under the combined stresses of high temperature and drought are important for studying plant stress tolerance mechanisms. In this study, the drought... Evaluating plant stress tolerance and screening key regulatory genes under the combined stresses of high temperature and drought are important for studying plant stress tolerance mechanisms. In this study, the drought tolerance of five grape varieties was evaluated under high-temperature conditions to screen key genes for further exploration of resistance mechanisms. By comparing and analysing the morphological characteristics and physiological indicators associated with the response of grapevines to drought stress and integrating them with the membership function to assess the strength of their drought tolerance, the order of drought tolerance was found to be as follows: 420A>110R>Cabernet Sauvignon(CS)>Fercal>188-08. To further analyse the mechanism of differences in drought tolerance, transcriptomic sequencing was performed on the drought-tolerant cultivar 420A, the drought-sensitive cultivar 188-08 and the control cultivar CS. The functional analysis of differential metabolic pathways indicated that the differentially expressed genes were enriched mainly in biological process category, that 420A had higher antioxidant activity. Furthermore, differentially expressed transcription factors were analyzed in five grape varieties. Genes like Vv AGL15, Vv LBD41, and Vv MYB86 showed close associations with drought tolerance,indicating their potential role in regulating drought tolerance and research significance. 展开更多
关键词 GRAPE ROOTSTOCK drought stress drought tolerance transcriptomE
在线阅读 下载PDF
A time-course transcriptome reveals the response of watermelon to low-temperature stress
18
作者 Jin Wang Minghua Wei +3 位作者 Haiyan Wang Changjuan Mo Yingchun Zhu Qiusheng Kong 《Journal of Integrative Agriculture》 2025年第5期1786-1799,共14页
Watermelon(Citrullus lanatus)is an economically important horticultural crop.However,it is susceptible to lowtemperature stress,which significantly challenges its production and supply.Despite the great economic impor... Watermelon(Citrullus lanatus)is an economically important horticultural crop.However,it is susceptible to lowtemperature stress,which significantly challenges its production and supply.Despite the great economic importance of watermelon,little is known about its response to low-temperature stress at the transcriptional level.In this study,we performed a time-course transcriptome analysis to systematically investigate the regulatory network of watermelon under low-temperature stress.Six low-temperature-responsive gene clusters representing six expression patterns were identified,revealing diverse regulation of metabolic pathways in watermelon under lowtemperature stress.Analysis of temporally specific differentially expressed genes revealed the time-dependent nature of the watermelon response to low temperature.Moreover,ClMYB14 was found to be a negative regulator of low-temperature tolerance as ClMYB14-OE lines were more susceptible to low-temperature stress.Co-expression network analysis demonstrated that ClMYB14 participates in the low-temperature response by regulating the unsaturated fatty acid pathway and heat shock transcription factor.This study provides substantial information for understanding the regulatory network of watermelon in response to low-temperature stress,and identifies candidate genes for the genetic improvement of watermelon with higher low-temperature tolerance. 展开更多
关键词 WATERMELON time-course transcriptome low temperature ClMYB14 CO-EXPRESSION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部