Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,...Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes.This event,conserved in mice,involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset.Furthermore,we identified 282 transcriptional regulators(TRs)that underwent activation or deactivation subsequent to this process.Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes,while secreted ENHO signals may alter metabolic patterns in these cells.Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia(NOA).This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.展开更多
Introducing a combination of transcription factors such as Oct4,Sox2,Klf4 and c-Myc(OSKM)enables reprogramming which converts somatic cells into induced pluripotent stem cells(i PSCs)(Takahashi and Yamanaka,2006...Introducing a combination of transcription factors such as Oct4,Sox2,Klf4 and c-Myc(OSKM)enables reprogramming which converts somatic cells into induced pluripotent stem cells(i PSCs)(Takahashi and Yamanaka,2006).i PSCs play an important role in clinical and regenerative medicine because they can be utilized to model a specific disease or differentiate into functional cells for transplantation.Enhancing the efficiency of induction and improving the qualities of iPSCs are constant themes in this field.展开更多
Background Fatty liver disease causes huge economic losses in the poultry industry due to its high occurrence and lethality rate.Three-dimensional(3D)chromatin architecture takes part in disease processing by regulati...Background Fatty liver disease causes huge economic losses in the poultry industry due to its high occurrence and lethality rate.Three-dimensional(3D)chromatin architecture takes part in disease processing by regulating tran-scriptional reprogramming.The study is carried out to investigate the alterations of hepatic 3D genome and H3K27ac profiling in early fatty liver(FLS)and reveal their effect on hepatic transcriptional reprogramming in laying hens.Results Results show that FLS model is constructed with obvious phenotypes including hepatic visible lipid deposi-tion as well as higher total triglyceride and cholesterol in serum.A/B compartment switching,topologically associat-ing domain(TAD)and chromatin loop changes are identified by high-throughput/resolution chromosome conforma-tion capture(HiC)technology.Targeted genes of these alternations in hepatic 3D genome organization significantly enrich pathways related to lipid metabolism and hepatic damage.H3K27ac differential peaks and differential expres-sion genes(DEGs)identified through RNA-seq analysis are also enriched in these pathways.Notably,certain DEGs are found to correspond with changes in 3D chromatin structure and H3K27ac binding in their promoters.DNA motif analysis reveals that candidate transcription factors are implicated in regulating transcriptional reprogram-ming.Furthermore,disturbed folate metabolism is observed,as evidenced by lower folate levels and altered enzyme expression.Conclusion Our findings establish a link between transcriptional reprogramming changes and 3D chromatin struc-ture variations during early FLS formation,which provides candidate transcription factors and folate as targets for FLS prevention or treatment.展开更多
Adaptation to compound environmental stress is fundamental to plant survival.The phytohormone abscisic acid(ABA)serves as a central regulator of both biotic and abiotic stress responses(Lee and Luan,2012).Following en...Adaptation to compound environmental stress is fundamental to plant survival.The phytohormone abscisic acid(ABA)serves as a central regulator of both biotic and abiotic stress responses(Lee and Luan,2012).Following environmental challenges,rapid ABA biosynthesis activates receptor-mediated signaling cascades,driving transcriptional reprogramming and post-translational modifications for stress adaptation(Cutler et al.,2010).Consequently,ABA perception constitutes a critical regulatory step.Recently,a landmark study by Ma et al.(2025)demonstrated that NRT1.1B(NITRATE TRANSPORTER 1.1B),beyond its canonical role as a nitrate transceptor(transporter and receptor)(Tsay et al.,1993;Ho et al.,2009;Hu et al.,2015),also functions as an ABA receptor.This bifunctional protein thus forms a competitive signaling hub in which nitrate and ABA act as competing ligands.Binding of nitrate or ABA to NRT1.1B triggers distinct downstream signaling outputs,enabling plants to dynamically prioritize nutrient acquisition or stress defense programs(Figure 1).展开更多
Facing a deteriorating natural environment and an increasing serious food crisis,bioengineering-based breeding is increasing in importance.To defend against pathogen infection,plants have evolved multiple defense mech...Facing a deteriorating natural environment and an increasing serious food crisis,bioengineering-based breeding is increasing in importance.To defend against pathogen infection,plants have evolved multiple defense mechanisms,including pathogen-associated molecular pattern(PAMP)-triggered immunity(PTI)and effector-triggered immunity(ETI).A complex regulatory network acts downstream of these PTI and ETI pathways,including hormone signal transduction and transcriptional reprogramming.In recent years,increasing lines of evidence show that epigenetic factors act,as key regulators involved in the transcriptional reprogramming,to modulate plant immune responses.Here,we summarize current progress on the regulatory mechanism of DNA methylation and histone modifications in plant defense responses.In addition,we also discuss the application of epigenetic mechanism-based resistance strategies in plant disease breeding.展开更多
Target of rapamycin(TOR)is an evolutionarily conserved protein kinase that functions as a central signaling hub to integrate diverse internal and external cues to precisely orchestrate cellular and organismal physiolo...Target of rapamycin(TOR)is an evolutionarily conserved protein kinase that functions as a central signaling hub to integrate diverse internal and external cues to precisely orchestrate cellular and organismal physiology.During evolution,TOR both maintains the highly conserved TOR complex compositions,and cellular and molecular functions,but also evolves distinctive roles and strategies to modulate cell growth,proliferation,metabolism,survival,and stress responses in eukaryotes.Here,we review recent discoveries on the plant TOR signaling network.We present an overview of plant TOR complexes,analyze the signaling landscape of the plant TOR signaling network from the upstream signals that regulate plant TOR activation to the downstream effectors involved in various biological processes,and compare their conservation and specificities within different biological contexts.Finally,we summarize the impact of dysregulation of TOR signaling on every stage of plant growth and development,from embryogenesis and seedling growth,to flowering and senescence.展开更多
In 2006,Takahashi and Yamanaka first created induced pluripotent stem cells from mouse fibroblasts via the retroviral introduction of genes encoding the transcription factors Oct3/4,Sox2,Klf44,and c-Myc.Since then,the...In 2006,Takahashi and Yamanaka first created induced pluripotent stem cells from mouse fibroblasts via the retroviral introduction of genes encoding the transcription factors Oct3/4,Sox2,Klf44,and c-Myc.Since then,the future clinical application of somatic cell reprogramming technology has become an attractive research topic in the field of regenerative medicine.Of note,considerable interest has been placed in circumventing ethical issues linked to embryonic stem cell research.However,tumorigenicity,immunogenicity,and heterogeneity may hamper attempts to deploy this technology therapeutically.This review highlights the progress aimed at reducing induced pluripotent stem cells tumorigenicity risk and howto assess the safety of induced pluripotent stem cells cell therapy products.展开更多
基金supported by the National Natural Science Foundation of China(82271645)National Key Research and Development Program of China(2021YFC2700200 to F.S.)。
文摘Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes.This event,conserved in mice,involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset.Furthermore,we identified 282 transcriptional regulators(TRs)that underwent activation or deactivation subsequent to this process.Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes,while secreted ENHO signals may alter metabolic patterns in these cells.Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia(NOA).This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA01020102)the grant from the Natural Science Foundation of China (No. 81225004)
文摘Introducing a combination of transcription factors such as Oct4,Sox2,Klf4 and c-Myc(OSKM)enables reprogramming which converts somatic cells into induced pluripotent stem cells(i PSCs)(Takahashi and Yamanaka,2006).i PSCs play an important role in clinical and regenerative medicine because they can be utilized to model a specific disease or differentiate into functional cells for transplantation.Enhancing the efficiency of induction and improving the qualities of iPSCs are constant themes in this field.
基金funded by the National Science Foundation of China (32372910 and 32102567)the Program for Shaanxi Science&Technology (2022KJXX-13, 2023-YBNY-144, K3031223077 and 2022GD-TSLD-46–0302)
文摘Background Fatty liver disease causes huge economic losses in the poultry industry due to its high occurrence and lethality rate.Three-dimensional(3D)chromatin architecture takes part in disease processing by regulating tran-scriptional reprogramming.The study is carried out to investigate the alterations of hepatic 3D genome and H3K27ac profiling in early fatty liver(FLS)and reveal their effect on hepatic transcriptional reprogramming in laying hens.Results Results show that FLS model is constructed with obvious phenotypes including hepatic visible lipid deposi-tion as well as higher total triglyceride and cholesterol in serum.A/B compartment switching,topologically associat-ing domain(TAD)and chromatin loop changes are identified by high-throughput/resolution chromosome conforma-tion capture(HiC)technology.Targeted genes of these alternations in hepatic 3D genome organization significantly enrich pathways related to lipid metabolism and hepatic damage.H3K27ac differential peaks and differential expres-sion genes(DEGs)identified through RNA-seq analysis are also enriched in these pathways.Notably,certain DEGs are found to correspond with changes in 3D chromatin structure and H3K27ac binding in their promoters.DNA motif analysis reveals that candidate transcription factors are implicated in regulating transcriptional reprogram-ming.Furthermore,disturbed folate metabolism is observed,as evidenced by lower folate levels and altered enzyme expression.Conclusion Our findings establish a link between transcriptional reprogramming changes and 3D chromatin struc-ture variations during early FLS formation,which provides candidate transcription factors and folate as targets for FLS prevention or treatment.
文摘Adaptation to compound environmental stress is fundamental to plant survival.The phytohormone abscisic acid(ABA)serves as a central regulator of both biotic and abiotic stress responses(Lee and Luan,2012).Following environmental challenges,rapid ABA biosynthesis activates receptor-mediated signaling cascades,driving transcriptional reprogramming and post-translational modifications for stress adaptation(Cutler et al.,2010).Consequently,ABA perception constitutes a critical regulatory step.Recently,a landmark study by Ma et al.(2025)demonstrated that NRT1.1B(NITRATE TRANSPORTER 1.1B),beyond its canonical role as a nitrate transceptor(transporter and receptor)(Tsay et al.,1993;Ho et al.,2009;Hu et al.,2015),also functions as an ABA receptor.This bifunctional protein thus forms a competitive signaling hub in which nitrate and ABA act as competing ligands.Binding of nitrate or ABA to NRT1.1B triggers distinct downstream signaling outputs,enabling plants to dynamically prioritize nutrient acquisition or stress defense programs(Figure 1).
基金supported by a grant from the National Natural Science Foundation of China(32270200 to CGD).
文摘Facing a deteriorating natural environment and an increasing serious food crisis,bioengineering-based breeding is increasing in importance.To defend against pathogen infection,plants have evolved multiple defense mechanisms,including pathogen-associated molecular pattern(PAMP)-triggered immunity(PTI)and effector-triggered immunity(ETI).A complex regulatory network acts downstream of these PTI and ETI pathways,including hormone signal transduction and transcriptional reprogramming.In recent years,increasing lines of evidence show that epigenetic factors act,as key regulators involved in the transcriptional reprogramming,to modulate plant immune responses.Here,we summarize current progress on the regulatory mechanism of DNA methylation and histone modifications in plant defense responses.In addition,we also discuss the application of epigenetic mechanism-based resistance strategies in plant disease breeding.
基金supported by the National Natural Science Foundation of China(31870269 to Y.X.,31800199 and 32170273 to Y.L.)the funding from Fujian Agriculture and Forestry University(Y.X.)。
文摘Target of rapamycin(TOR)is an evolutionarily conserved protein kinase that functions as a central signaling hub to integrate diverse internal and external cues to precisely orchestrate cellular and organismal physiology.During evolution,TOR both maintains the highly conserved TOR complex compositions,and cellular and molecular functions,but also evolves distinctive roles and strategies to modulate cell growth,proliferation,metabolism,survival,and stress responses in eukaryotes.Here,we review recent discoveries on the plant TOR signaling network.We present an overview of plant TOR complexes,analyze the signaling landscape of the plant TOR signaling network from the upstream signals that regulate plant TOR activation to the downstream effectors involved in various biological processes,and compare their conservation and specificities within different biological contexts.Finally,we summarize the impact of dysregulation of TOR signaling on every stage of plant growth and development,from embryogenesis and seedling growth,to flowering and senescence.
基金We thank the National Natural Science Foundation of China(grants No.32171387 and 32071452)Shenzhen Bay Laboratory Open Program(grant No.SZBL2020090501003)the Pearl River Talents Program Local Innovative and Research Teams(grant No.2017BT01S131).
文摘In 2006,Takahashi and Yamanaka first created induced pluripotent stem cells from mouse fibroblasts via the retroviral introduction of genes encoding the transcription factors Oct3/4,Sox2,Klf44,and c-Myc.Since then,the future clinical application of somatic cell reprogramming technology has become an attractive research topic in the field of regenerative medicine.Of note,considerable interest has been placed in circumventing ethical issues linked to embryonic stem cell research.However,tumorigenicity,immunogenicity,and heterogeneity may hamper attempts to deploy this technology therapeutically.This review highlights the progress aimed at reducing induced pluripotent stem cells tumorigenicity risk and howto assess the safety of induced pluripotent stem cells cell therapy products.