期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于TranAD模型的边缘计算技术在水电厂辅机监测的研究
1
作者 余仕丹 《现代工业经济和信息化》 2025年第9期119-121,共3页
传统水电设备监控系统存在数据传输延迟高、实时响应能力不足以及利用率低等问题,极大降低了水电设备的安全性。提出一种基于TranAD模型的边缘计算实时异常检测方法,采用先进的边缘计算和深度学习实时数据流处理技术,能迅速识别设备异常... 传统水电设备监控系统存在数据传输延迟高、实时响应能力不足以及利用率低等问题,极大降低了水电设备的安全性。提出一种基于TranAD模型的边缘计算实时异常检测方法,采用先进的边缘计算和深度学习实时数据流处理技术,能迅速识别设备异常,显著提高监测准确性和实时性。实践表明,该方法能够有效提升了水电设备的利用效率,为水电厂智能化运维的实现提供了坚实基础。 展开更多
关键词 tranad模型 边缘计算 实时异常检测 水电辅机监测
在线阅读 下载PDF
Robustness and Performance Comparison of Generative AI Time Series Anomaly Detection under Noise
2
作者 Jeongsu Park Moohong Min 《Computer Modeling in Engineering & Sciences》 2025年第12期3913-3948,共36页
Time series anomaly detection is critical in domains such as manufacturing,finance,and cybersecurity.Recent generative AI models,particularly Transformer-and Autoencoder-based architectures,show strong accuracy but th... Time series anomaly detection is critical in domains such as manufacturing,finance,and cybersecurity.Recent generative AI models,particularly Transformer-and Autoencoder-based architectures,show strong accuracy but their robustness under noisy conditions is less understood.This study evaluates three representative models—AnomalyTransformer,TranAD,and USAD—on the Server Machine Dataset(SMD)and cross-domain benchmarks including the SoilMoisture Active Passive(SMAP)dataset,theMars Science Laboratory(MSL)dataset,and the Secure Water Treatment(SWaT)testbed.Seven noise settings(five canonical,two mixed)at multiple intensities are tested under fixed clean-data training,with variations in window,stride,and thresholding.Results reveal distinct robustness profiles:AnomalyTransformermaintains recall but loses precision under abrupt noise,TranAD balances sensitivity yet is vulnerable to structured anomalies,and USAD resists Gaussian perturbations but collapses under block anomalies.Quantitatively,F1 drops 60%–70%on noisy SMD,with severe collapse in SWaT(F1≤0.10,Drop up to 84%)but relative stability on SMAP/MSL(Drop within±10%).Overall,generative models exhibit complementary robustness patterns,highlighting noise-type dependent vulnerabilities and providing practical guidance for robust deployment. 展开更多
关键词 Time series anomaly detection robustness evaluation generative AI models AnomalyTransformer tranad USAD noise injection cross-domain datasets(SMD SMAP MSL SWaT)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部