期刊文献+
共找到141篇文章
< 1 2 8 >
每页显示 20 50 100
Enhancing prescribed-time trajectory tracking control for a stratospheric airship with prescribed performance 被引量:1
1
作者 Liran SUN Kangwen SUN +2 位作者 Xiao GUO Jiace YUAN Ming ZHU 《Chinese Journal of Aeronautics》 2025年第7期557-571,共15页
This paper studies the tracking control problem for stratospheric airships with userspecified performance.Dealing with the infinite gain phenomenon in the prescribed-time stability,a new stability criterion with bound... This paper studies the tracking control problem for stratospheric airships with userspecified performance.Dealing with the infinite gain phenomenon in the prescribed-time stability,a new stability criterion with bounded gain is proposed by using a new time-varying scaling function.Moreover,a same-side performance function and a novel barrier Lyapunov function are incorporated into the control algorithm,which can compress the feasible domain of tracking error to minimize the overshoot and solve the difficult in tracking error not converging to zero simultaneously.The proposed scheme guarantees the airship capable of operating autonomously with satisfactory transient performance and tracking accuracy,where the performance parameters can be designed artificially and link to the physical process directly.Finally,the effectiveness of the proposed control scheme is verified by theoretical analysis and numerical simulation. 展开更多
关键词 Prescribed-time control Prescribed performance trajectory tracking Barrier Lyapunov function Stratospheric airship
原文传递
High-precision trajectory tracking control of helicopter based on ant colony optimization-slime mould algorithm
2
作者 Binwu REN Siliang DU +2 位作者 Zhuangzhuang CUI Yousong XU Qijun ZHAO 《Chinese Journal of Aeronautics》 2025年第1期395-408,共14页
To achieve high-precision trajectory following during helicopter maneuver tasks and reduce the disruptive influences of unknown variabilities,this study introduces a cascaded-loop helicopter trajectory tracking contro... To achieve high-precision trajectory following during helicopter maneuver tasks and reduce the disruptive influences of unknown variabilities,this study introduces a cascaded-loop helicopter trajectory tracking controller,whose parameters are set using an Ant Colony OptimizationSlime Mould Algorithm(ACO-SMA).Initially,a nonlinear flight dynamics model of the helicopter is constructed.Observer gain functions and nonlinear feedback from a vibrational suppression function to improve the tracking performance of the controller,addressing issues in disturbance estimation and compensation of the Active Disturbance Rejection Control(ADRC).Simultaneously,a cascaded loop system,comprising an internal attitude loop and an external position loop,is created,and the ant colony-slime mold hybrid algorithm optimizes the system parameters of the trajectory tracking controller.Finally,helicopter trajectory tracking simulation experiments are conducted,including spiral ascending and“8”shape climbing maneuvers.The findings indicate that the ADRC employed for helicopter trajectory tracking exhibits outstanding performance in rejecting disturbances caused by gusts and accurately tracking trajectories.The trajectory tracking controller,whose parameters are optimized by the ACO-SMA,shows higher tracking precision compared to the conventional PID and ADRC,thereby substantially improving the precision of maneuver tasks. 展开更多
关键词 Flight control systems HELICOPTER ADRC trajectory tracking ACO-SMA Spiral ascent "8"shape climbing
原文传递
Fishing Ship Trajectory Tracking Control Based on the Closed-Loop Gain Shaping Algorithm Under Rough Sea
3
作者 SONG Chun-yu GUO Te-er SUI Jiang-hua 《China Ocean Engineering》 2025年第2期365-372,共8页
This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working... This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships. 展开更多
关键词 trajectory tracking control nonlinear feedback control fishing ship closed-loop gain shaping algorithm rough sea
在线阅读 下载PDF
Fault-tolerant control of wheeled mobile robots with prescribed trajectory tracking performance
4
作者 Jin-Xi Zhang Tianyou Chai 《Journal of Automation and Intelligence》 2025年第2期73-81,共9页
The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may ... The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings. 展开更多
关键词 Fault-tolerant control Prescribed performance trajectory tracking Wheeled mobile robots
在线阅读 下载PDF
Trajectory Tracking Control of Parking Automated Guided Vehicles Using Nonlinear Disturbance Observer-based Sliding Mode
5
作者 Xudong Hu Bo Zhu +1 位作者 Dongkui Tan Nong Zhang 《Chinese Journal of Mechanical Engineering》 2025年第5期362-378,共17页
Automated valet parking systems based on parking automated guided vehicles(P-AGVs)are effective for improving parking convenience and increasing parking density.The ability of P-AGVs to move towards any position and a... Automated valet parking systems based on parking automated guided vehicles(P-AGVs)are effective for improving parking convenience and increasing parking density.The ability of P-AGVs to move towards any position and attain any orientation simultaneously due to their mecanum wheels makes it convenient to transport vehicles in a parking lot.In this study,a nonlinear disturbance observer-based sliding mode controller for the trajectory tracking problem of a P-AGV is proposed.The kinematic and dynamic models for a P-AGV tracking trajectory are first analyzed in sequence and the influences of disturbing forces considered.Subsequently,a nonlinear disturbance observer(NDO)is designed to estimate the disturbing forces and torques generated by the caster wheels.Based on the designed NDO,a robust nonsingular terminal sliding-mode(NTSM)controller is used to track reference trajectories.The stabilities of the NDO and NDO-NTSM control systems are theoretically verified using their Lyapunov functions.Finally,simulations and experiments are performed to verify the effectiveness of the proposed control scheme.The experimental results show that the proposed NDO-NTSM controller can improve the trajectory tracking stability by 42-68%compared to a traditional NTSM controller.The NDO-based sliding mode controller for trajectory tracking proposed in this study can effectively reduce the impact of disturbances on trajectory tracking accuracy. 展开更多
关键词 Parking AGV trajectory tracking Nonlinear disturbance observer Sliding mode
在线阅读 下载PDF
Trajectory tracking on the optimal path of two-dimensional quadratic barrier escaping
6
作者 Zengxuan Zhao Xiuying Zhang +4 位作者 Pengchen Zhao Chunyang Wang Chunlei Xia Mushtaq Rana Imran Joelous Malamula Nyasulu 《Chinese Physics B》 2025年第5期92-95,共4页
The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies.Generative adversari... The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies.Generative adversarial networks(GANs)emanating in the category of machine learning(ML)frameworks are used to generate and assess the rationality of the data.While their optimization is based on the long short-term memory(LSTM)strategies.In addition to drawing a heat map,the optimal path of two-dimensional(2D)diffusion is simultaneously demonstrated in a stereoscopic space.The results of our simulation are completely consistent with the previous theoretical predictions. 展开更多
关键词 trajectory tracking optimal path two-dimensional barrier escaping deep learning
原文传递
Robust Tube-MPC Trajectory Tracking Control for Four-Wheel Independent Steering Vehicles on Intermittent Snowy and Icy Roads
7
作者 Xiaochuan Zhou Ruiqi Liu +3 位作者 Jinyu Zhou Ziyu Zhang Chunyan Wang Wanzhong Zhao 《Chinese Journal of Mechanical Engineering》 2025年第5期64-82,共19页
Four-Wheel Independent Steering(4WIS)Vehicles can independently control the angle of each wheel,demonstrating superior trajectory tracking performance under normal conditions.However,on intermittent icy and snowy road... Four-Wheel Independent Steering(4WIS)Vehicles can independently control the angle of each wheel,demonstrating superior trajectory tracking performance under normal conditions.However,on intermittent icy and snowy roads,the presence of time-varying adhesion coefficients,time-varying cornering stiffness,and the irregularities due to ice and snow accumulation introduce multiple uncertainties into the steering system,significantly degrading the trajectory tracking performance of 4WIS vehicles.In response,this paper proposes a robust Tube Model Predictive Control(Tube-MPC)trajectory tracking control method for 4WIS.In this method,a Bi-directional Long Short-Term Memory neural network is established for online estimation of tire cornering stiffness under different road adhesion coefficients,providing accurate estimation of time-varying cornering stiffness for each wheel to mitigate the uncertainties of time-varying adhesion coefficients and cornering stiffness.Additionally,considering the road irregularities caused by snow accumulation on intermittent icy and snowy roads,a trajectory tracking controller that integrates Tube-MPC and robust Sliding Mode Control is proposed.The nominal MPC model,developed from the estimated tire cornering stiffness,utilizes the sliding surface and the optimal auxiliary control unit law for the tube is derived from the reaching law in Tube-MPC,aiming to minimize the trajectory tracking error while enhancing the controller’s robustness against road uncertainties.The experiments show that the proposed method outperforms the Tube-MPC algorithm in terms of trajectory accuracy and robustness.This method demonstrates excellent trajectory tracking accuracy under intermittent icy and snowy road conditions,and it lays a theoretical foundation for future studies on vehicle stability and trajectory tracking under such road conditions. 展开更多
关键词 Intermittent icy and snowy roads Vehicle trajectory tracking Robust Tube-MPC Cornering stiffness estimation
在线阅读 下载PDF
A Back-stepping Based Trajectory Tracking Controller for a Non-chained Nonholonomic Spherical Robot 被引量:6
8
作者 战强 刘增波 蔡尧 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期472-480,共9页
Spherical robot has good static and dynamic stability, which provides it with strong viability in hostile environment, but the lack of effective control methods has hindered its application and development. This artic... Spherical robot has good static and dynamic stability, which provides it with strong viability in hostile environment, but the lack of effective control methods has hindered its application and development. This article deals with the dynamic trajectory tracking problem of the spherical robot BHQ-2 designed for unmanned environment exploration. The dynamic model of the spherical robot is established with a simplified Boltzmann-Hamel equation, based on which a trajectory tracking controller is designed by using the back-stepping method. The convergence of the controller is proved with the Lyapunov stability theory. Numerical simulations show that with the controller the robot can globally and asymptotically track desired trajectories, both linear and circular. 展开更多
关键词 spherical mobile robot trajectory tracking control back-stepping Lyapunov function
在线阅读 下载PDF
An adaptive switching control approach for trajectory tracking of robotic manipulators 被引量:1
9
作者 杨振 费树岷 +2 位作者 王芳 鲍安平 刘顾全 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期183-186,共4页
In order to design a suitable controller which can achieve accurate trajectory tracking and a good control performance, and guarantee the stability and robustness of a robot system due to external disturbances error a... In order to design a suitable controller which can achieve accurate trajectory tracking and a good control performance, and guarantee the stability and robustness of a robot system due to external disturbances error and internal parameter variations, an adaptive switching control strategy is proposed. The proposed scheme is designed under the condition of bounded distances and consists of an adaptive switching law and a PD controller. Based on the Lyapunov stability theory, it is proved that the proposed scheme can guarantee the tracking performance of the robotic manipulator and is adapted to varying unknown loads. Simulations are carded out on a two-link robotic manipulator, which illustrate the feasibility and validity of the proposed control scheme and the robustness for variational payloads. 展开更多
关键词 adaptive control switch control roboticmanipulator trajectory tracking
在线阅读 下载PDF
Modeling and Trajectory Tracking Control for Flapping-Wing Micro Aerial Vehicles 被引量:23
10
作者 Wei He Xinxing Mu +1 位作者 Liang Zhang Yao Zou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期148-156,共9页
This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic ... This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination.To achieve autonomous tracking,an adaptive control scheme is proposed under the hierarchical framework.Specifically,a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force,and a pitch command is extracted from the designed position controller.Next,an adaptive attitude controller is designed to track the extracted pitch command,where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque.Finally,the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers,respectively.In terms of Lyapunov's direct method,it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin.Simulations are carried out to verify the effectiveness of the proposed control scheme. 展开更多
关键词 Flapping-wing micro aerial vehicles(FWMAVs) MODELING neural networks trajectory tracking
在线阅读 下载PDF
Trajectory tracking control of a VTOL unmanned aerial vehicle using offset-free tracking MPC 被引量:16
11
作者 Tayyab MANZOOR Yuanqing XIA +1 位作者 Di-Hua ZHAI Dailiang MA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第7期2024-2042,共19页
Designing a stable and robust flight control system for an Unmanned Aerial Vehicle(UAV)is an arduous task.This paper addresses the trajectory tracking control problem of a Ducted Fan UAV(DFUAV)using offset-free Model ... Designing a stable and robust flight control system for an Unmanned Aerial Vehicle(UAV)is an arduous task.This paper addresses the trajectory tracking control problem of a Ducted Fan UAV(DFUAV)using offset-free Model Predictive Control(MPC)technique in the presence of various uncertainties and external disturbances.The designed strategy aims to ensure adequate flight robustness and stability while overcoming the effects of time delays,parametric uncertainties,and disturbances.The six degrees of freedom DFUAV model is divided into three flight modes based on its airspeed,namely the hover,transition,and cruise mode.The Dryden wind turbulence is applied to the DFUAV in the linear and angular velocity component.Moreover,different uncertainties such as parametric,time delays in state and input,are introduced in translational and rotational components.From the previous work,the Linear Quadratic Tracker with Integrator(LQTI)is used for comparison to corroborate the performance of the designed controller.Simulations are computed to investigate the control performance for the aforementioned modes and different flight phases including the autonomous flight to validate the performance of the designed strategy.Finally,discussions are provided to demonstrate the effectiveness of the given methodology. 展开更多
关键词 Autonomous flight control Model Predictive Control(MPC) Time delays trajectory tracking Unmanned Aerial Vehicle(UAV)
原文传递
Comparative Study of Trajectory Tracking Control for Automated Vehicles via Model Predictive Control and Robust H-infinity State Feedback Control 被引量:15
12
作者 Kai Yang Xiaolin Tang +3 位作者 Yechen Qin Yanjun Huang Hong Wang Huayan Pu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期168-181,共14页
A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC co... A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC controllers’performance in tracking predefined trajectory under different scenarios.MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire,which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode.RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison.Then,three test cases are built in CarSim-Simulink joint platform.Specifically,the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions.Besides,the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability.Furthermore,an extreme curve test is built where the road adhesion changes suddenly,in order to test the performance of both controllers under extreme conditions.Finally,the advantages and disadvantages of MPC and RSC under different scenarios are also discussed. 展开更多
关键词 trajectory tracking Automated vehicles Model predictive control Robust H∞state feedback control
在线阅读 下载PDF
Adaptive Trajectory Tracking Control for a Nonholonomic Mobile Robot 被引量:14
13
作者 CAO Zhengcai ZHAO Yingtao WU Qidi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期546-552,共7页
As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately... As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately, so that the presented strategy is difficult to realize satisfactory tracking quality in practical application. Considering the unknown parameters of two models, this paper presents an adaptive controller for solving the trajectory tracking problem of a mobile robot. Firstly, an adaptive kinematic controller utilized to generate the command of velocity is designed based on Backstepping method. Then, in order to make the real velocity of mobile robot reach the desired velocity asymptotically, a dynamic adaptive controller is proposed adopting reference model and Lyapunov stability theory. Finally, through simulating typical trajectories including circular trajectory, fold line and parabola trajectory in normal and perturbed cases, the results illustrate that the control scheme can solve the tracking problem effectively. The proposed control law, which can tune the kinematic and dynamic model parameters online and overcome external disturbances, provides a novel method for improving trajectory tracking performance of the mobile robot. 展开更多
关键词 nonholonomic mobile robot trajectory tracking model reference adaptive
在线阅读 下载PDF
Trajectory tracking control for underactuated unmanned surface vehicles with dynamic uncertainties 被引量:10
14
作者 廖煜雷 张铭钧 +1 位作者 万磊 李晔 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期370-378,共9页
The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturban... The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller. 展开更多
关键词 trajectory tracking UNDERACTUATED unmanned surface vehicle (USV) BACKSTEPPING dynamic sliding mode control
在线阅读 下载PDF
Stabilization and trajectory tracking of autonomous airship's planar motion 被引量:7
15
作者 Zhang Yan Qu Weidong +1 位作者 Xi Yugeng Cai Zili 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期974-981,共8页
The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying L... The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying Lyapunov stability method, the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem. In particular, the controller does not need knowledge on system parameters in the case of set-point stabilization, which makes the controller robust with respect to parameter uncertainty. Numerical simulations illustrate the effectiveness of the controller designed. 展开更多
关键词 AIRSHIP planar motion STABILIZATION trajectory tracking ROBUSTNESS Lyapunov stability Matrosov theorem.
在线阅读 下载PDF
Neural Network Based Robust Controller for Trajectory Tracking of Underwater Vehicles 被引量:7
16
作者 罗伟林 邹早建 《China Ocean Engineering》 SCIE EI 2007年第2期281-292,共12页
A robust neural network controller (NNC) is presented for tracking control of underwater vehicles with uncertainties. The controller is obtained by using backstepping technique and Lyapunov function design in combin... A robust neural network controller (NNC) is presented for tracking control of underwater vehicles with uncertainties. The controller is obtained by using backstepping technique and Lyapunov function design in combination with neural network identification. Modeling errors and environmental disturbances are considered in the mathematical model. A twolayer neural network is introduced to compensate the modeling errors, while H∞ control strategy is used to achieve the L2-gain performance. The uniformly ultimately bounded (UUB) stabilities of tracking errors and NN weights are guaran- teed through the proposed controller. An on-line NN weights tuning algorithm is also propesed. Good performances of the tracking control system are illustrated bv the results of numerical simulations. 展开更多
关键词 underwater vehicle trajectory tracking robust control neural network
在线阅读 下载PDF
Nonlinear trajectory tracking control of a new autonomous underwater vehicle in complex sea conditions 被引量:9
17
作者 高富东 潘存云 +1 位作者 韩艳艳 张湘 《Journal of Central South University》 SCIE EI CAS 2012年第7期1859-1868,共10页
Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in c... Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in complex sea conditions was presented. According to the theory of submarines,the six-DOF kinematic and dynamic models were decomposed into two mutually non-coupled vertical and horizontal plane subsystems. Then,different sliding mode control algorithms were used to study the trajectory tracking control. Because the yaw angle and yaw angle rate rather than the displacement of the new AUV can be measured directly on the horizontal plane,the sliding mode control algorithm combining cross track error method and line of sight method was used to fulfill its high-precision trajectory tracking control in the complex sea conditions. As the vertical displacement of the new AUV can be measured,in order to achieve the tracking of time-varying depth signal,a stable sliding mode controller was designed based on the single-input multi-state system,which took into account the characteristic of the hydroplane and the amplitude and rate constraints of the hydroplane angle. Moreover,the application of dynamic boundary layer can improve the robustness and control accuracy of the system. The computational results show that the designed sliding mode control systems of the horizontal and vertical planes can ensure the trajectory tracking performance and accuracy of the new AUV in complex sea conditions. The impacts of currents and waves on the sliding mode controller of the new AUV were analyzed qualitatively and quantitatively by comparing the trajectory tracking performance of the new AUV in different sea conditions,which provides an effective theoretical guidance and technical support for the control system design of the new AUV in real complex environment. 展开更多
关键词 complex sea condition autonomous underwater vehicle (AUV) trajectory tracking sliding mode control
在线阅读 下载PDF
Model-free adaptive optimal design for trajectory tracking control of rocket-powered vehicle 被引量:6
18
作者 Wenming NIE Huifeng LI Ran ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第6期1703-1716,共14页
An adaptive optimal trajectory tracking controller is presented for the Solid-RocketPowered Vehicle(SRPV)with uncertain nonlinear non-affine dynamics in the framework of adaptive dynamic programming.First,considering ... An adaptive optimal trajectory tracking controller is presented for the Solid-RocketPowered Vehicle(SRPV)with uncertain nonlinear non-affine dynamics in the framework of adaptive dynamic programming.First,considering that the ascent model of the SRPV is non-affine,a model-free Single Network Adaptive Critic(SNAC)method is developed based on the dynamic neural network and the traditional SNAC method.This developed model-free SNAC method overcomes the limitation of the traditional SNAC method that can only be applied to affine systems.Then,a closed-form adaptive optimal controller is designed for the non-affine dynamics of SRPVs.This controller can adjust its parameters under different flight conditions and converge to the approximate optimal controller through online self-learning.Finally,the convergence to the approximate optimal controller is proved.The theoretical analysis of the uniformly ultimate boundedness of the tracking error is also presented.Simulation results demonstrate the effectiveness of the proposed controller. 展开更多
关键词 Adaptive dynamic program­ming Dynamic neural network MODEL-FREE Solid-rocket-powered vehi­cle trajectory tracking
原文传递
Optimal Control of a Mackerel-Mimicking Robot for Energy Efficient Trajectory Tracking 被引量:7
19
作者 Seunghee Lee Jounghyun Park Cheolheui Han 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第4期209-215,共7页
A robotic fish, BASEMACK1, is designed and fabricated by mimicking the shape of a live mackerel. Three DC servo-motors are serially linked together and actuated to mimic the mackerel's Carangiform motion. Hydrodynami... A robotic fish, BASEMACK1, is designed and fabricated by mimicking the shape of a live mackerel. Three DC servo-motors are serially linked together and actuated to mimic the mackerel's Carangiform motion. Hydrodynamic characteristics of a fish-mimetic test model are experimentally identified and utilized in order to numerically simulate fish swimming. The discrete set of kinematic and dynamic parameters are obtained by considering required horizontal and lateral forces and minimum energy consumption. Using the optimized parameter set, optimal control of the robot is studied. 展开更多
关键词 mackerel-mimicking robot optimal control trajectory tracking
在线阅读 下载PDF
Dynamics Modeling and Robust Trajectory Tracking Control for a Class of Hybrid Humanoid Arm Based on Neural Network 被引量:4
20
作者 WANG Yueling JIN Zhenlin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期355-363,共9页
In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from mo... In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from motors, a multistep dynamics modeling strategy is proposed and a robust controller based on neural network(NN)-adaptive algorithm is designed. At the first step of dynamics modeling, the dynamics model of the reduced HHA is established by Lagrange method. At the second step of dynamics modeling, the parameter uncertain part resulting mainly from the idealization of the HHA is learned by adaptive algorithm. In the trajectory tracking controller, the radial basis function(RBF) NN, whose optimal weights are learned online by adaptive algorithm, is used to learn the upper limit function of the total uncertainties including frictions, disturbances, abrasion and pulse forces. To a great extent, the conservatism of this robust trajectory tracking controller is reduced, and by this controller the HHA can impersonate mostly human actions. The proof and simulation results testify the validity of the adaptive strategy for parameter learning and the neural network-adaptive strategy for the trajectory tracking control. 展开更多
关键词 hybrid humanoid arm dynamic modeling neural network adaptive control trajectory tracking
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部