An adaptive antenna array system adjusts the main lobe of radiation pattern in the direction of desired signal and points the nulls in the direction of undesired signals or interferers. The essential goal of beamformi...An adaptive antenna array system adjusts the main lobe of radiation pattern in the direction of desired signal and points the nulls in the direction of undesired signals or interferers. The essential goal of beamforming is to reduce the complexity of weighting process and to decrease the time needed for adjusting the antenna radiation pattern. In this article a new adaptive weighting algorithm is proposed for both least mean squares (LMS) and constant modulus (CM) algorithms. It is appropriate and applicable for antenna array systems with moving targets and also mobile applications as well as sensor networks. By predicting the relative velocity of source, the next location of the source will be estimated and the array weights will be determined using LMS or CM algorithm before arriving to the new point. For the next time associated to the new sampling point, evaluated weights will be used. Furthermore, by updating these weights between two consecutive times the effects of error propagation will be eliminated. Therefore, in addition to reduction in computational complexity at the time of weight allocation, relatively accurate weight allocation can be obtained. Simulation results of this investigation show that the angular error related to both LMS-based and CM-based algorithms is less than the conventional LMS and CM algorithms at different signal to noise ratios (SNRs). On the other hand, due to considering off-line process, online computational complexity of new algorithms is slightly low with respect to previous ones.展开更多
One of the main objectives of adaptive antenna array processing is reducing the computational complexity and convergence time in a joint state. This article proposes a speed-sensitive adaptive algorithm for estimating...One of the main objectives of adaptive antenna array processing is reducing the computational complexity and convergence time in a joint state. This article proposes a speed-sensitive adaptive algorithm for estimating the weights of smart antenna systems based on least mean squares (LMS) or constant modulus (CM) algorithms. According to the next estimated location as well as the source velocity, this novel proposed weighting algorithm selects those weights that have a higher effect on the radiation pattern and will then form the antenna pattern by only changing these weights. In this research, 3 versions of the new algorithm named as: Not-zero (Leaves half number of weights as it is the other half), Zero (Sets half number of weights to be zero and estimates other half), and Updating (Leaves half of weights unchanged and estimates other half in one phase and updates all weights in the next phase) are proposed. Through simulation of these 3 versions of speed-sensitive algorithms and comparing among conventional full weight LMS and CM algorithms, new LMS-based and CM-based algorithms have been finally proposed that offer reduced complexity and acceptable performance at different signal to noise ratios (SNRs). In this investigation, three channel scenarios are simulated which are as follows: pure noisy channel, channel with one interferer and channel with two interferers. In accordance with the simulation results, an appropriate algorithm based on weighting half number of array elements and updating all existing weights between two consecutive times to avoid error propagation effect has been proposed.展开更多
文摘An adaptive antenna array system adjusts the main lobe of radiation pattern in the direction of desired signal and points the nulls in the direction of undesired signals or interferers. The essential goal of beamforming is to reduce the complexity of weighting process and to decrease the time needed for adjusting the antenna radiation pattern. In this article a new adaptive weighting algorithm is proposed for both least mean squares (LMS) and constant modulus (CM) algorithms. It is appropriate and applicable for antenna array systems with moving targets and also mobile applications as well as sensor networks. By predicting the relative velocity of source, the next location of the source will be estimated and the array weights will be determined using LMS or CM algorithm before arriving to the new point. For the next time associated to the new sampling point, evaluated weights will be used. Furthermore, by updating these weights between two consecutive times the effects of error propagation will be eliminated. Therefore, in addition to reduction in computational complexity at the time of weight allocation, relatively accurate weight allocation can be obtained. Simulation results of this investigation show that the angular error related to both LMS-based and CM-based algorithms is less than the conventional LMS and CM algorithms at different signal to noise ratios (SNRs). On the other hand, due to considering off-line process, online computational complexity of new algorithms is slightly low with respect to previous ones.
文摘One of the main objectives of adaptive antenna array processing is reducing the computational complexity and convergence time in a joint state. This article proposes a speed-sensitive adaptive algorithm for estimating the weights of smart antenna systems based on least mean squares (LMS) or constant modulus (CM) algorithms. According to the next estimated location as well as the source velocity, this novel proposed weighting algorithm selects those weights that have a higher effect on the radiation pattern and will then form the antenna pattern by only changing these weights. In this research, 3 versions of the new algorithm named as: Not-zero (Leaves half number of weights as it is the other half), Zero (Sets half number of weights to be zero and estimates other half), and Updating (Leaves half of weights unchanged and estimates other half in one phase and updates all weights in the next phase) are proposed. Through simulation of these 3 versions of speed-sensitive algorithms and comparing among conventional full weight LMS and CM algorithms, new LMS-based and CM-based algorithms have been finally proposed that offer reduced complexity and acceptable performance at different signal to noise ratios (SNRs). In this investigation, three channel scenarios are simulated which are as follows: pure noisy channel, channel with one interferer and channel with two interferers. In accordance with the simulation results, an appropriate algorithm based on weighting half number of array elements and updating all existing weights between two consecutive times to avoid error propagation effect has been proposed.