This paper comprehensively analyzes the evolution of traffic light systems in Shanghai,highlighting the technological advancements and their impact on traffic management and safety.Starting from the historical context...This paper comprehensively analyzes the evolution of traffic light systems in Shanghai,highlighting the technological advancements and their impact on traffic management and safety.Starting from the historical context of the first traffic light in London in 1868 to the modern automated systems,the study explores the complexity and adaptability of traffic lights in Shanghai.Through field surveys and interviews with traffic engineers,the paper debunks common misconceptions about traffic light operation,revealing a sophisticated network that responds to real-time traffic dynamics using software like the Sydney Coordinated Adaptive Traffic System(SCATS)6.The study also discusses the importance of pedestrian safety,suggesting future enhancements such as Global Positioning System(GPS)based emergency systems and accommodations for color-blind individuals.The paper further delves into the potential of Artificial Intelligence(AI)and Vehicle-to-Infrastructure(V21)technology in revolutionizing traffic light systems,emphasizing their role in improving traffic flow and safety.The findings underscore Shanghai’s progressive approach to traffic management,showcasing the city’s commitment to optimizing traffic control solutions for the benefit of both vehicles and pedestrians.展开更多
Management tactics for urban traffic management are presented.The tactics that underlie traffic demand management (TDM) are preferential development tactics, controlled development tactics,prohibited development tac...Management tactics for urban traffic management are presented.The tactics that underlie traffic demand management (TDM) are preferential development tactics, controlled development tactics,prohibited development tactics and economic lever tactics,and those that underlie traffic system management (TSM) are node traffic management tactics,arterial traffic management tactics and area traffic management tactics.The specific contents and design methods of urban traffic total demand control,urban traffic structure optimization,road traffic movement organization based on TDM and intersection traffic management,road signs and markings management,optimized design of traffic signals and management of parking spaces based on TSM are put forward.The urban traffic management planning scheme design method has already been used in the urban traffic management “Smooth Traffic Project” in China.展开更多
The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years th...The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years the evolution in ConOps has resulted in changes in the ATM′s physical architecture,improving its physical infrastructure,increasing the levels of automation and making operational changes to improve air traffic flow,to cope with increasing demand for air travel.However,what is less clear is the impact of such changes in ConOps on the ATM′s functional architecture.This is vital for ensuring optimality in the implementation of the physical architecture components to support the ATM functions.This paper reviews the changes in the ConOps over the years,proposes a temporally invariant ATM functional model,and discusses some of the main key technologies expected to make significant improvements to the ATM system.展开更多
The Single European Sky Air Traffic management(ATM)Research(SESAR)project is the technological pillar of the European Commission’s Single European Sky Initiative to modernize ATM.Here,we describe the process of estab...The Single European Sky Air Traffic management(ATM)Research(SESAR)project is the technological pillar of the European Commission’s Single European Sky Initiative to modernize ATM.Here,we describe the process of establishing SESAR and the main parts of the project:the research and development(R&D)part,which is led by the SESAR Joint Undertaking;the deployment part,which is managed by the SESAR Deployment Manager;and the European ATM Master Plan,which collects and lays out both the R&D and deployment needs.The latest European ATM Master Plan was adopted just prior to the current pandemic.The huge loss in air traffic due to the pandemic,and the speed of the recovery of the aviation industry will require reprioritization,but the main elements that have been established-particularly those in support of the environment-remain valid.展开更多
Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the opera...Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.展开更多
The main objective of this study is to evaluate the effectiveness of using active traffic management (ATM) strategies on freeways in terms of the driver's behavior and operational impacts. A few test beds were sele...The main objective of this study is to evaluate the effectiveness of using active traffic management (ATM) strategies on freeways in terms of the driver's behavior and operational impacts. A few test beds were selected to evaluate the impacts of ATM such as speed harmonization, shoulder utilization, and ramp metering. Test beds used in this study were at places where an ATM is either proposed or previously implemented, i.e., where data exists for condi- tions prior to and after the implementation of ATM. Data collected from the test beds were used in a simulation model to evaluate the impacts of each ATM strategy on speed, travel time, and crash rates. Simulation results indicated that the implementation of speed harmonization on US 90 showed a 14% reduction in crashes and a 2%-3% increase in freeway speed; the implementation of hard shoulders on US 90 showed a 39% increase in travel time, 22% increase in freeway capacity and 60% decrease in delays; and the implementation of ramp metering on US 59 between Bissonnet St. and Fondern road showed a decrease of 23 % in freeway travel time, a 14% increase in freeway speed and 11% decrease in accident rates.展开更多
The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming incr...The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.展开更多
In low-altitude air traffic management, non-cooperation targets are the greatest threat to security of low-flying aircraft. Among various aviation fatalities, flying bird is the main factor with the highest risk and d...In low-altitude air traffic management, non-cooperation targets are the greatest threat to security of low-flying aircraft. Among various aviation fatalities, flying bird is the main factor with the highest risk and directs economic losses amounted to nearly 10 billion US dollars each year.Therefore, Flying Bird Detection(FBD) has attracted considerable attention in low-altitude air traffic management. In this paper, we propose a skeleton based FBD method via describing bird motion information with a set of key poses. To overcome the variability of birds, the skeleton feature is selected as a relatively fixed and common characteristic for the pose appearance of flying bird. Based on the geometric topology among some key parts of bird body, a set of key poses can be described by some extracted skeleton features, which are used to represent the bird motion information. Aimed at robustly handling with the pose variations, multiple pose-specific classifiers are individually trained to learn the representative poses of the flying bird. At the detection stage,the flying bird skeleton features are combined with extracted key-pose sets to perform the flying bird classification task from each image. Afterwards, the key-frame pose-change set and the consistency of the classification results from sequent images are employed to validate the final detection results.Experiments on flying bird datasets demonstrate the effectiveness and efficiency of the proposed method.展开更多
The performance model proposed by this study represents an innovative approach to deal with performance assessment in ATM (air traffic management). It is based on Bayesian networks methodology, which presents severa...The performance model proposed by this study represents an innovative approach to deal with performance assessment in ATM (air traffic management). It is based on Bayesian networks methodology, which presents several advantages but also some drawbacks as highlighted along the paper. We illustrate the main steps required for building the model and present a number of interesting results. The contribution of the paper is two-fold: (1) It presents a new methodological approach to deal with a problem which is of strategic importance for ANSPs (air navigation service providers); (2) It provides insights on the interdependencies between factors influencing performance. Both results are considered particularly important nowadays, due to the SES (Single European Sky) performance scheme and its related target setting process.展开更多
The air traffic management(ATM)system is an intelligent system,which integrates the ground computer network,airborne network and space satellite(communication and navigation)network by the ground-air data link system....The air traffic management(ATM)system is an intelligent system,which integrates the ground computer network,airborne network and space satellite(communication and navigation)network by the ground-air data link system.Due to the openness and widely distribution of ATM system,the trust relationship of all parties in the system is pretty complex.At present,public key infrastructure(PKI)based identity authentication method is more and more difficult to meet the growing demand of ATM service.First,through the analysis of the organizational structure and operation mode of ATM system,this paper points out the existing identity authentication security threats in ATM system,and discusses the advantages of adopting blockchain technology in ATM system.Further,we briefly analyze some shortcomings of the current PKI-based authentication system in ATM.Particularly,to address the authentication problem,this paper proposes and presents a trusted ATM Security Authentication Model and authentication protocol based on blockchain.Finally,this paper makes a comprehensive analysis and simulation of the proposed security authentication scheme,and gets the expected effect.展开更多
The Global Air Navigation Plan is a flexible global engineering approach that allows all States to advance their Air Navigation capacities based on their specific operational requirements.Aviation professionals have a...The Global Air Navigation Plan is a flexible global engineering approach that allows all States to advance their Air Navigation capacities based on their specific operational requirements.Aviation professionals have an essential role in the transition to,and successful implementation of the GANP.The research work is focused on the creation of methodology for the partial automation of the comparison competences of Air Traffic Management(ATM)personal and synthesis of training courses and modules,using a formal,ontology-based approach as a tool to solve these problems.One of the problems in the implementation of the GANP is that,on the one hand,there are currently no unified requirements for all categories of ATM personnel,and on the other hand,the development of ATM technologies is far ahead of the pace of training of personnel of appropriate qualifications.This problem becomes even more noticeable in countries that have just started an active modernization of ATC systems and do not have enough experience in this field.The paper describes the general methodological approach based on the education ontology modelling for human competency gap analysis in ATM and for gap analysis between the university curricula outcomes and the ATM requirements.The ontology of key personnel competencies issues for the design and integration of large-scale future ATM programmes is proposed.展开更多
Active traffic management(ATM)enhances highway capacity,yet single strategies are inadequate for increasing traffic demands,and poorly integrated multi-strategy approaches can degrade performance.This paper introduces...Active traffic management(ATM)enhances highway capacity,yet single strategies are inadequate for increasing traffic demands,and poorly integrated multi-strategy approaches can degrade performance.This paper introduces a coupled multi-strategy ATM framework leveraging a multi-agent deep deterministic policy gradient with a communication protocol(MADDPGCP).This method stabilizes training via shared agent observations.The study also investigates the influence of compliance degree on control performance in mixed traffic comprising connected/automated vehicles(CAVs)and human-driven vehicles(HDVs).Numerical experiments with real-world data confirm MADDPG-CP's stable convergence.The proposed MADDPG-CPbased multi-strategy ATM,validated against traditional methods,significantly improves highway capacity utilization by elucidating individual strategy mechanisms and verifying control efficiency.展开更多
Air traffic flow management has been a major means for balancing air traffic demandand airport or airspace capacity to reduce congestion and flight delays.However,unpredictable fac-tors,such as weather and equipment m...Air traffic flow management has been a major means for balancing air traffic demandand airport or airspace capacity to reduce congestion and flight delays.However,unpredictable fac-tors,such as weather and equipment malfunctions,can cause dynamic changes in airport and sectorcapacity,resulting in significant alterations to optimized flight schedules and the calculated pre-departure slots.Therefore,taking into account capacity uncertainties is essential to create a moreresilient flight schedule.This paper addresses the flight pre-departure sequencing issue and intro-duces a capacity uncertainty model for optimizing flight schedule at the airport network level.The goal of the model is to reduce the total cost of flight delays while increasing the robustnessof the optimized schedule.A chance-constrained model is developed to address the capacity uncer-tainty of airports and sectors,and the significance of airports and sectors in the airport network isconsidered when setting the violation probability.The performance of the model is evaluated usingreal flight data by comparing them with the results of the deterministic model.The development ofthe model based on the characteristics of this special optimization mechanism can significantlyenhance its performance in addressing the pre-departure flight scheduling problem at the airportnetwork level.展开更多
This article focuses on traffic safety management during the reconstruction and expansion of highways,with the research objective of understanding traffic safety management issues and exploring more effective traffic ...This article focuses on traffic safety management during the reconstruction and expansion of highways,with the research objective of understanding traffic safety management issues and exploring more effective traffic safety management measures.The research employs practical observation and logical analysis as research methods.Firstly,it elaborates on the connotation of traffic safety management during the reconstruction and expansion of highways,analyzes its key points,and affirms its management value from different perspectives.It provides a detailed analysis of issues such as the weak foundation of traffic safety management systems and the inadequacy of comprehensive traffic safety management,and interprets the restrictive impact of related issues.Based on the manifestation of relevant issues,strategies such as strengthening the institutional foundation of traffic safety management and constructing a comprehensive traffic safety management system are proposed,aiming to provide traffic safety management references for relevant enterprises.展开更多
At present,transportation construction plays a certain promoting and driving role in the economic and social development of our country.At the same time,because of the accelerated pace of transportation construction,t...At present,transportation construction plays a certain promoting and driving role in the economic and social development of our country.At the same time,because of the accelerated pace of transportation construction,the traffic network structure of each region of China has gradually been optimized and perfected.This not only significantly improves people’s quality of life and living conditions,but also provides many conveniences for the transportation of goods.However,in the current process of highway construction and development in China,there is still a certain degree of danger,which will also significantly increase the probability of road safety problems occurring.Therefore,it is necessary to apply intelligent transportation technology to effectively enhance the safety of road use.As a result,this study provides a detailed analysis of the overview of intelligent transportation technology,the advantages of the application of intelligent transportation technology in traffic safety management,as well as an in-depth discussion of the role and application of intelligent transportation technology in traffic safety management.展开更多
A traffic management scheme in serial RapidlO (SR10) interconnect is proposed to deal with the performance degradation caused by noise and electromagnetic interference (EMI), which is generated by hardly avoidable...A traffic management scheme in serial RapidlO (SR10) interconnect is proposed to deal with the performance degradation caused by noise and electromagnetic interference (EMI), which is generated by hardly avoidable errors of hardware implementation and tough working environment. The main idea of this scheme includes adaptive speed transition and freeze-acknowledgement (freeze-ACK). Adaptive speed transition can improve throughput and reduce delay in high bit error rate (BER) environment. Simultaneously, freeze-ACK is adopted to conquer frequent usage of feedback channel. Simulation shows that the scheme of combining adaptive speed transition with freeze-ACK offers great performance improvement in SRIO network.展开更多
Due to the inherent nature of being highly digitalized,networked and intelligent,Unmanned Aerial System(UAS)operations pose a huge challenge to traditional aviation regulation and technical systems.How to keep safe,ef...Due to the inherent nature of being highly digitalized,networked and intelligent,Unmanned Aerial System(UAS)operations pose a huge challenge to traditional aviation regulation and technical systems.How to keep safe,efficient and integrated operation for different Airspace users has become a pressing issue faced by civil aviation around the world.This paper focuses on the main operational scenarios and characteristics of unmanned aviation development in China.New operational characteristics and associated challenges due to diverse low-altitude users are analyzed,including operation concepts,UAS traffic management,technological test and verification,and standards.Drawing light on the practices in Europe and the United States,this paper summarizes China's practices and progress in low-altitude operations management,and analyzes future technological development needs and trends,as well as feasible implementation pathways and measures based on actual needs.展开更多
We present a simulation run allocation scheme for improving efficiency in simulation experiments for decision making under uncertainty. This scheme is called Optimal Computing Budget Allocation (OCBA). OCBA advances t...We present a simulation run allocation scheme for improving efficiency in simulation experiments for decision making under uncertainty. This scheme is called Optimal Computing Budget Allocation (OCBA). OCBA advances the state-of-the-art by intelligently allocating a computing budget to the candidate alternatives under evaluation. The basic idea is to spend less computational effort on simulating non-critical alternatives to save computation cost. In particular, OCBA is employed to intelligently provide the smallest number of simulation runs for a desired accuracy. In this paper, we present a new and more general OCBA scheme which can consider cases that users are interested not only the best design, but also any one in a good design set. In addition, this paper also presents the application of our OCBA to a design problem in US air traffic management. The national air traffic system in US is modeled as a large, complex, and stochastic network. The numerical examples show that the computation time can be reduced by 54% to 88% with the use of OCBA.展开更多
Air traffic is exhibiting the characteristics of high density,high volume,and unmanned operations.To ensure smooth,efficient,safe,and reliable operations,it is necessary to promote the digital transformation of Air Tr...Air traffic is exhibiting the characteristics of high density,high volume,and unmanned operations.To ensure smooth,efficient,safe,and reliable operations,it is necessary to promote the digital transformation of Air Traffic Management(ATM)with digitalization,autonomy,and collaboration as its typical features.This article,based on the background of current and foreseeable future ATM needs,deeply analyzes the challenges and opportunities faced by traditional ATM.It explores and proposes to further investigate the commonalities,characteristics,and evolution of air traffic,the interaction mechanism of"human-machine-environment"in air traffic,the integrated design of airborne avionics and ATM systems,the comprehensive integration of ATM based on vulnerability analysis,airspace classification management,air traffic flow management,key technologies of"perception-collision avoidance",wake vortex monitoring and interval reduction,unmanned aerial vehicle management,and the expansion of ATM capabilities in the"high frontier".The research suggests strengthening top-level planning,building an open,mutually beneficial,and win-win digital ATM ecological framework based on multi-party collaboration,coordinating the research and application of new digital ATM technologies,accelerating the occupation of the new track of low-altitude economy,and enhancing ATM capabilities driven by the digital transformation of ATM.展开更多
In recent years,modern metropolitan areas are the main indicators of economic growth of nation.In metropolitan areas,number and frequency of vehicles have increased tremendously,and they create issues,like traffic con...In recent years,modern metropolitan areas are the main indicators of economic growth of nation.In metropolitan areas,number and frequency of vehicles have increased tremendously,and they create issues,like traffic congestion,accidents,environmental pollution,economical losses and unnecessary waste of fuel.In this paper,we propose traffic management system based on the prediction information to reduce the above mentioned issues in a metropolitan area.The proposed traffic management system makes use of static and mobile agents,where the static agent available at region creates and dispatches mobile agents to zones in a metropolitan area.The migrated mobile agents use emergent intelligence technique to collect and share traffic flow parameters(speed and density),historical data,resource information,spatio-temporal data and so on,and are analyzes the static agent.The emergent intelligence technique at static agent uses analyzed,historical and spatio-temporal data for monitoring and predicting the expected patterns of traffic density(commuters and vehicles)and travel times in each zone and region.The static agent optimizes predicted and analyzed data for choosing optimal routes to divert the traffic,in order to ensure smooth traffic flow and reduce frequency of occurrence of traffic congestion,reduce traffic density and travel time.The performance analysis is performed in realistic scenario by integrating NS2,SUMO,OpenStreatMap(OSM)and MOVE tool.The effectiveness of the proposed approach has been compared with the existing approach.展开更多
文摘This paper comprehensively analyzes the evolution of traffic light systems in Shanghai,highlighting the technological advancements and their impact on traffic management and safety.Starting from the historical context of the first traffic light in London in 1868 to the modern automated systems,the study explores the complexity and adaptability of traffic lights in Shanghai.Through field surveys and interviews with traffic engineers,the paper debunks common misconceptions about traffic light operation,revealing a sophisticated network that responds to real-time traffic dynamics using software like the Sydney Coordinated Adaptive Traffic System(SCATS)6.The study also discusses the importance of pedestrian safety,suggesting future enhancements such as Global Positioning System(GPS)based emergency systems and accommodations for color-blind individuals.The paper further delves into the potential of Artificial Intelligence(AI)and Vehicle-to-Infrastructure(V21)technology in revolutionizing traffic light systems,emphasizing their role in improving traffic flow and safety.The findings underscore Shanghai’s progressive approach to traffic management,showcasing the city’s commitment to optimizing traffic control solutions for the benefit of both vehicles and pedestrians.
基金The National Natural Science Foundation of China(No.50378016).
文摘Management tactics for urban traffic management are presented.The tactics that underlie traffic demand management (TDM) are preferential development tactics, controlled development tactics,prohibited development tactics and economic lever tactics,and those that underlie traffic system management (TSM) are node traffic management tactics,arterial traffic management tactics and area traffic management tactics.The specific contents and design methods of urban traffic total demand control,urban traffic structure optimization,road traffic movement organization based on TDM and intersection traffic management,road signs and markings management,optimized design of traffic signals and management of parking spaces based on TSM are put forward.The urban traffic management planning scheme design method has already been used in the urban traffic management “Smooth Traffic Project” in China.
文摘The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years the evolution in ConOps has resulted in changes in the ATM′s physical architecture,improving its physical infrastructure,increasing the levels of automation and making operational changes to improve air traffic flow,to cope with increasing demand for air travel.However,what is less clear is the impact of such changes in ConOps on the ATM′s functional architecture.This is vital for ensuring optimality in the implementation of the physical architecture components to support the ATM functions.This paper reviews the changes in the ConOps over the years,proposes a temporally invariant ATM functional model,and discusses some of the main key technologies expected to make significant improvements to the ATM system.
文摘The Single European Sky Air Traffic management(ATM)Research(SESAR)project is the technological pillar of the European Commission’s Single European Sky Initiative to modernize ATM.Here,we describe the process of establishing SESAR and the main parts of the project:the research and development(R&D)part,which is led by the SESAR Joint Undertaking;the deployment part,which is managed by the SESAR Deployment Manager;and the European ATM Master Plan,which collects and lays out both the R&D and deployment needs.The latest European ATM Master Plan was adopted just prior to the current pandemic.The huge loss in air traffic due to the pandemic,and the speed of the recovery of the aviation industry will require reprioritization,but the main elements that have been established-particularly those in support of the environment-remain valid.
基金supported by the National Natural Science Foundation of China (Nos.U1833103, 71801215, U1933103)the Fundamental Research Funds for the Central Universities (No.3122019129)。
文摘Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.
文摘The main objective of this study is to evaluate the effectiveness of using active traffic management (ATM) strategies on freeways in terms of the driver's behavior and operational impacts. A few test beds were selected to evaluate the impacts of ATM such as speed harmonization, shoulder utilization, and ramp metering. Test beds used in this study were at places where an ATM is either proposed or previously implemented, i.e., where data exists for condi- tions prior to and after the implementation of ATM. Data collected from the test beds were used in a simulation model to evaluate the impacts of each ATM strategy on speed, travel time, and crash rates. Simulation results indicated that the implementation of speed harmonization on US 90 showed a 14% reduction in crashes and a 2%-3% increase in freeway speed; the implementation of hard shoulders on US 90 showed a 39% increase in travel time, 22% increase in freeway capacity and 60% decrease in delays; and the implementation of ramp metering on US 59 between Bissonnet St. and Fondern road showed a decrease of 23 % in freeway travel time, a 14% increase in freeway speed and 11% decrease in accident rates.
基金supported by the National Natural Science Foundation of China(62073330)the Natural Science Foundation of Hunan Province(2020JJ4339)the Scientific Research Fund of Hunan Province Education Department(20B272).
文摘The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.
基金co-supported by the National Key Research and Development Program of China (No. 2016YFB1200100)National Natural Science Foundation of China (Nos. 61521091, 91538204 and 61425014)
文摘In low-altitude air traffic management, non-cooperation targets are the greatest threat to security of low-flying aircraft. Among various aviation fatalities, flying bird is the main factor with the highest risk and directs economic losses amounted to nearly 10 billion US dollars each year.Therefore, Flying Bird Detection(FBD) has attracted considerable attention in low-altitude air traffic management. In this paper, we propose a skeleton based FBD method via describing bird motion information with a set of key poses. To overcome the variability of birds, the skeleton feature is selected as a relatively fixed and common characteristic for the pose appearance of flying bird. Based on the geometric topology among some key parts of bird body, a set of key poses can be described by some extracted skeleton features, which are used to represent the bird motion information. Aimed at robustly handling with the pose variations, multiple pose-specific classifiers are individually trained to learn the representative poses of the flying bird. At the detection stage,the flying bird skeleton features are combined with extracted key-pose sets to perform the flying bird classification task from each image. Afterwards, the key-frame pose-change set and the consistency of the classification results from sequent images are employed to validate the final detection results.Experiments on flying bird datasets demonstrate the effectiveness and efficiency of the proposed method.
文摘The performance model proposed by this study represents an innovative approach to deal with performance assessment in ATM (air traffic management). It is based on Bayesian networks methodology, which presents several advantages but also some drawbacks as highlighted along the paper. We illustrate the main steps required for building the model and present a number of interesting results. The contribution of the paper is two-fold: (1) It presents a new methodological approach to deal with a problem which is of strategic importance for ANSPs (air navigation service providers); (2) It provides insights on the interdependencies between factors influencing performance. Both results are considered particularly important nowadays, due to the SES (Single European Sky) performance scheme and its related target setting process.
基金This work was supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418).
文摘The air traffic management(ATM)system is an intelligent system,which integrates the ground computer network,airborne network and space satellite(communication and navigation)network by the ground-air data link system.Due to the openness and widely distribution of ATM system,the trust relationship of all parties in the system is pretty complex.At present,public key infrastructure(PKI)based identity authentication method is more and more difficult to meet the growing demand of ATM service.First,through the analysis of the organizational structure and operation mode of ATM system,this paper points out the existing identity authentication security threats in ATM system,and discusses the advantages of adopting blockchain technology in ATM system.Further,we briefly analyze some shortcomings of the current PKI-based authentication system in ATM.Particularly,to address the authentication problem,this paper proposes and presents a trusted ATM Security Authentication Model and authentication protocol based on blockchain.Finally,this paper makes a comprehensive analysis and simulation of the proposed security authentication scheme,and gets the expected effect.
基金The research is a part of the project“Latvian State Fellowships for Research2017/2018”Supported by The Latvian State Education Development Agency.
文摘The Global Air Navigation Plan is a flexible global engineering approach that allows all States to advance their Air Navigation capacities based on their specific operational requirements.Aviation professionals have an essential role in the transition to,and successful implementation of the GANP.The research work is focused on the creation of methodology for the partial automation of the comparison competences of Air Traffic Management(ATM)personal and synthesis of training courses and modules,using a formal,ontology-based approach as a tool to solve these problems.One of the problems in the implementation of the GANP is that,on the one hand,there are currently no unified requirements for all categories of ATM personnel,and on the other hand,the development of ATM technologies is far ahead of the pace of training of personnel of appropriate qualifications.This problem becomes even more noticeable in countries that have just started an active modernization of ATC systems and do not have enough experience in this field.The paper describes the general methodological approach based on the education ontology modelling for human competency gap analysis in ATM and for gap analysis between the university curricula outcomes and the ATM requirements.The ontology of key personnel competencies issues for the design and integration of large-scale future ATM programmes is proposed.
基金supported by the National Natural Science Foundation of China under Grant[72431009,72171210,72350710798]Hainan Provincial Natural Science Foundation of China under Grant[522MS036]Zhejiang Provincial Natural Science Foundation of China under Grant[LZ23E080002].
文摘Active traffic management(ATM)enhances highway capacity,yet single strategies are inadequate for increasing traffic demands,and poorly integrated multi-strategy approaches can degrade performance.This paper introduces a coupled multi-strategy ATM framework leveraging a multi-agent deep deterministic policy gradient with a communication protocol(MADDPGCP).This method stabilizes training via shared agent observations.The study also investigates the influence of compliance degree on control performance in mixed traffic comprising connected/automated vehicles(CAVs)and human-driven vehicles(HDVs).Numerical experiments with real-world data confirm MADDPG-CP's stable convergence.The proposed MADDPG-CPbased multi-strategy ATM,validated against traditional methods,significantly improves highway capacity utilization by elucidating individual strategy mechanisms and verifying control efficiency.
基金supported by the National Natural Science Foundation of China(Nos.U2033203,U1833126,61773203,61304190)。
文摘Air traffic flow management has been a major means for balancing air traffic demandand airport or airspace capacity to reduce congestion and flight delays.However,unpredictable fac-tors,such as weather and equipment malfunctions,can cause dynamic changes in airport and sectorcapacity,resulting in significant alterations to optimized flight schedules and the calculated pre-departure slots.Therefore,taking into account capacity uncertainties is essential to create a moreresilient flight schedule.This paper addresses the flight pre-departure sequencing issue and intro-duces a capacity uncertainty model for optimizing flight schedule at the airport network level.The goal of the model is to reduce the total cost of flight delays while increasing the robustnessof the optimized schedule.A chance-constrained model is developed to address the capacity uncer-tainty of airports and sectors,and the significance of airports and sectors in the airport network isconsidered when setting the violation probability.The performance of the model is evaluated usingreal flight data by comparing them with the results of the deterministic model.The development ofthe model based on the characteristics of this special optimization mechanism can significantlyenhance its performance in addressing the pre-departure flight scheduling problem at the airportnetwork level.
文摘This article focuses on traffic safety management during the reconstruction and expansion of highways,with the research objective of understanding traffic safety management issues and exploring more effective traffic safety management measures.The research employs practical observation and logical analysis as research methods.Firstly,it elaborates on the connotation of traffic safety management during the reconstruction and expansion of highways,analyzes its key points,and affirms its management value from different perspectives.It provides a detailed analysis of issues such as the weak foundation of traffic safety management systems and the inadequacy of comprehensive traffic safety management,and interprets the restrictive impact of related issues.Based on the manifestation of relevant issues,strategies such as strengthening the institutional foundation of traffic safety management and constructing a comprehensive traffic safety management system are proposed,aiming to provide traffic safety management references for relevant enterprises.
文摘At present,transportation construction plays a certain promoting and driving role in the economic and social development of our country.At the same time,because of the accelerated pace of transportation construction,the traffic network structure of each region of China has gradually been optimized and perfected.This not only significantly improves people’s quality of life and living conditions,but also provides many conveniences for the transportation of goods.However,in the current process of highway construction and development in China,there is still a certain degree of danger,which will also significantly increase the probability of road safety problems occurring.Therefore,it is necessary to apply intelligent transportation technology to effectively enhance the safety of road use.As a result,this study provides a detailed analysis of the overview of intelligent transportation technology,the advantages of the application of intelligent transportation technology in traffic safety management,as well as an in-depth discussion of the role and application of intelligent transportation technology in traffic safety management.
基金supported by the Korean Electronics and Telecommunications Research Institute,the Hi-Tech Research and Development Program of China (2006AA01Z283)the National Basic Research Program of China (60772113)
文摘A traffic management scheme in serial RapidlO (SR10) interconnect is proposed to deal with the performance degradation caused by noise and electromagnetic interference (EMI), which is generated by hardly avoidable errors of hardware implementation and tough working environment. The main idea of this scheme includes adaptive speed transition and freeze-acknowledgement (freeze-ACK). Adaptive speed transition can improve throughput and reduce delay in high bit error rate (BER) environment. Simultaneously, freeze-ACK is adopted to conquer frequent usage of feedback channel. Simulation shows that the scheme of combining adaptive speed transition with freeze-ACK offers great performance improvement in SRIO network.
基金This work was supported by National Natural Science Foundation of China(Grant Nos.U1933130)research and demonstration of key technologies for the air-ground collaborative and smart operation of general aviation(No.2022C01055)。
文摘Due to the inherent nature of being highly digitalized,networked and intelligent,Unmanned Aerial System(UAS)operations pose a huge challenge to traditional aviation regulation and technical systems.How to keep safe,efficient and integrated operation for different Airspace users has become a pressing issue faced by civil aviation around the world.This paper focuses on the main operational scenarios and characteristics of unmanned aviation development in China.New operational characteristics and associated challenges due to diverse low-altitude users are analyzed,including operation concepts,UAS traffic management,technological test and verification,and standards.Drawing light on the practices in Europe and the United States,this paper summarizes China's practices and progress in low-altitude operations management,and analyzes future technological development needs and trends,as well as feasible implementation pathways and measures based on actual needs.
文摘We present a simulation run allocation scheme for improving efficiency in simulation experiments for decision making under uncertainty. This scheme is called Optimal Computing Budget Allocation (OCBA). OCBA advances the state-of-the-art by intelligently allocating a computing budget to the candidate alternatives under evaluation. The basic idea is to spend less computational effort on simulating non-critical alternatives to save computation cost. In particular, OCBA is employed to intelligently provide the smallest number of simulation runs for a desired accuracy. In this paper, we present a new and more general OCBA scheme which can consider cases that users are interested not only the best design, but also any one in a good design set. In addition, this paper also presents the application of our OCBA to a design problem in US air traffic management. The national air traffic system in US is modeled as a large, complex, and stochastic network. The numerical examples show that the computation time can be reduced by 54% to 88% with the use of OCBA.
基金supported by the National Key R&D Program of China(No.2022YFB4300900).
文摘Air traffic is exhibiting the characteristics of high density,high volume,and unmanned operations.To ensure smooth,efficient,safe,and reliable operations,it is necessary to promote the digital transformation of Air Traffic Management(ATM)with digitalization,autonomy,and collaboration as its typical features.This article,based on the background of current and foreseeable future ATM needs,deeply analyzes the challenges and opportunities faced by traditional ATM.It explores and proposes to further investigate the commonalities,characteristics,and evolution of air traffic,the interaction mechanism of"human-machine-environment"in air traffic,the integrated design of airborne avionics and ATM systems,the comprehensive integration of ATM based on vulnerability analysis,airspace classification management,air traffic flow management,key technologies of"perception-collision avoidance",wake vortex monitoring and interval reduction,unmanned aerial vehicle management,and the expansion of ATM capabilities in the"high frontier".The research suggests strengthening top-level planning,building an open,mutually beneficial,and win-win digital ATM ecological framework based on multi-party collaboration,coordinating the research and application of new digital ATM technologies,accelerating the occupation of the new track of low-altitude economy,and enhancing ATM capabilities driven by the digital transformation of ATM.
文摘In recent years,modern metropolitan areas are the main indicators of economic growth of nation.In metropolitan areas,number and frequency of vehicles have increased tremendously,and they create issues,like traffic congestion,accidents,environmental pollution,economical losses and unnecessary waste of fuel.In this paper,we propose traffic management system based on the prediction information to reduce the above mentioned issues in a metropolitan area.The proposed traffic management system makes use of static and mobile agents,where the static agent available at region creates and dispatches mobile agents to zones in a metropolitan area.The migrated mobile agents use emergent intelligence technique to collect and share traffic flow parameters(speed and density),historical data,resource information,spatio-temporal data and so on,and are analyzes the static agent.The emergent intelligence technique at static agent uses analyzed,historical and spatio-temporal data for monitoring and predicting the expected patterns of traffic density(commuters and vehicles)and travel times in each zone and region.The static agent optimizes predicted and analyzed data for choosing optimal routes to divert the traffic,in order to ensure smooth traffic flow and reduce frequency of occurrence of traffic congestion,reduce traffic density and travel time.The performance analysis is performed in realistic scenario by integrating NS2,SUMO,OpenStreatMap(OSM)and MOVE tool.The effectiveness of the proposed approach has been compared with the existing approach.