Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in...Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in accuracy and efficiency.To address these challenges,we propose an adaptive multi-learning cooperation search algorithm(AMLCSA)for efficient identification of unknown parameters in PV models.AMLCSA is a novel algorithm inspired by teamwork behaviors in modern enterprises.It enhances the original cooperation search algorithm in two key aspects:(i)an adaptive multi-learning strategy that dynamically adjusts search ranges using adaptive weights,allowing better individuals to focus on local exploitation while guiding poorer individuals toward global exploration;and(ii)a chaotic grouping reflection strategy that introduces chaotic sequences to enhance population diversity and improve search performance.The effectiveness of AMLCSA is demonstrated on single-diode,double-diode,and three PV-module models.Simulation results show that AMLCSA offers significant advantages in convergence,accuracy,and stability compared to existing state-of-the-art algorithms.展开更多
This paper investigates the problem of seeking minimum of API (Auxiliary Performance Index) in parameters of Data Model instead of parameters of Adaptive Filter in order to avoid the phenomenon of over parameterizatio...This paper investigates the problem of seeking minimum of API (Auxiliary Performance Index) in parameters of Data Model instead of parameters of Adaptive Filter in order to avoid the phenomenon of over parameterization. This problem was stated by Semushin in [2]. The solution to the problem can be considered as the development of API approach to parameter identification in stochastic dynamic systems.展开更多
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
The precise control of turbofan engines thrust is an important guarantee for an aircraft to obtain good flight performance and a challenge due to complex nonlinear dynamics of engines and time-varying parameters. The ...The precise control of turbofan engines thrust is an important guarantee for an aircraft to obtain good flight performance and a challenge due to complex nonlinear dynamics of engines and time-varying parameters. The main difficulties lie in the following two aspects. Firstly, it is hard to obtain an accurate kinetic model for the turbofan engine. Secondly, some model parameters often change in different flight conditions and states and even fluctuate sharply in some cases. These variable parameters bring huge challenge for the turbofan engine control. To solve the turbofan engine control problem, this paper presents a non-affine parameter-dependent Linear Parameter Varying(LPV) model-based adaptive control approach. In this approach, polynomial-based LPV modeling method is firstly employed to obtain the basis matrices, and then the Radial Basis Function Neural Networks(RBFNN) is introduced for the online estimation of the non-affine model parameters to improve the simulation performance. LPV model-based Linear Matrix Inequality(LMI) control method is applied to derive the control law. A robust control term is introduced to fix the estimation error of the nonlinear time-varying model parameters for better control performance. Finally, the Lyapunov stability analysis is performed to ensure the asymptotical convergence of the closed loop system. The simulation results show that the states of the engine can change smoothly and the thrust of the engine can accurately follow the desired trajectory, indicating that the proposed control approach is effective. The contribution of this work lies in the combination of linear system control and nonlinear system control methods to design an effective controller for the turbofan engine and to provide a new way for turbofan engine control research.展开更多
Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretic...Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock.展开更多
The probability hypothesis density(PHD) filter has been recognized as a promising technique for tracking an unknown number of targets. The performance of the PHD filter, however, is sensitive to the available knowledg...The probability hypothesis density(PHD) filter has been recognized as a promising technique for tracking an unknown number of targets. The performance of the PHD filter, however, is sensitive to the available knowledge on model parameters such as the measurement noise variance and those associated with the changes in the maneuvering target trajectories. If these parameters are unknown in advance, the tracking performance may degrade greatly. To address this aspect, this paper proposes to incorporate the adaptive parameter estimation(APE) method in the PHD filter so that the model parameters, which may be static and/or time-varying, can be estimated jointly with target states. The resulting APE-PHD algorithm is implemented using the particle filter(PF), which leads to the PF-APE-PHD filter. Simulations show that the newly proposed algorithm can correctly identify the unknown measurement noise variances, and it is capable of tracking multiple maneuvering targets with abrupt changing parameters in a more robust manner, compared to the multi-model approaches.展开更多
An adaptive actuator failure compensation control scheme is developed using an indirect adaptive control method,by calculating the controller parameters from adaptive estimates of system parameters and actuator failur...An adaptive actuator failure compensation control scheme is developed using an indirect adaptive control method,by calculating the controller parameters from adaptive estimates of system parameters and actuator failure parameters.A key technical issue is how to deal with the actuator failure uncertainties such as failure pattern,time and values.A complete parametrization covering all possible failures is used to solve this issue for adaptive parameter estimation.A simultaneous mapping from the estimated system/failure parameters to the controller parameters is employed to make the control system capable of ensuring the desired system performance under failures,which is verified by simulation results.展开更多
Climate change adaptation strategies provide a cushion for smallholder farmers,especially in subSaharan Africa against the risks posed by climate hazards such as droughts and floods.However,the decision-making process...Climate change adaptation strategies provide a cushion for smallholder farmers,especially in subSaharan Africa against the risks posed by climate hazards such as droughts and floods.However,the decision-making process in climate adaptation is complex.To better understand the dynamics of the process,we strive to answer this question:what are the potential trade-offs and synergies related to decision-making and implementation of climate adaptation strategies among smallholder farmers in sub-Saharan Africa region?A systematic literature review methodology was used through the Preferred Reporting Items for Systematic Review and Meta-Analysis(PRISMA)statement with the four-stage inclusion/exclusion criteria to identify the literature from selected databases(Scopus and Google Scholar).The climate adaptation strategies are organized into five broad categories(crop management,risk management,soil/land management,water management,and livestock management strategies).Evidence suggests that potential trade-offs may arise concerning added costs,additional labor requirements,and competition among objectives or available resources.The synergies,on the other hand,arise from implementing two or more adaptation strategies concurrently in respect of increased productivity,resilience,yield stability,sustainability,and environmental protection.Trade-offs and synergies may also differ among the various adaptation strategies with minimum/zero tillage,comparatively,presenting more tradeoffs.The development and promotion of low-cost adaptation strategies and complementary climate adaptation options that minimize the trade-offs and maximize the synergies are suggested.Skills and knowledge on proper implementation of climate change adaptation strategies are encouraged,especially at the local farm level.展开更多
The paper discusses lag synchronization of Lorenz chaotic system with three uncertain parameters. Based on adaptive technique, the lag synchronization of Lorenz chaotic system is achieved by designing a novel nonlinea...The paper discusses lag synchronization of Lorenz chaotic system with three uncertain parameters. Based on adaptive technique, the lag synchronization of Lorenz chaotic system is achieved by designing a novel nonlinear controller. Furthermore, the parameters identification is realized simultaneously. A sufficient condition is given and proved theoreticcally by Lyapunov stability theory and LaSalle’s invariance principle. Finally, the numerical simulations are provided to show the effectiveness and feasibility of the proposed method.展开更多
This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty gener...This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.展开更多
Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinizat...Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.展开更多
Based on Lyapunov stability theory, a novel adaptive controller is designed for a class of chaotic systems .The parameters identification and synchronization of chaotic systems can be carried out simultaneously. The c...Based on Lyapunov stability theory, a novel adaptive controller is designed for a class of chaotic systems .The parameters identification and synchronization of chaotic systems can be carried out simultaneously. The controller and the updating law of parameters identification are directly constructed by analytic formula. Simulation results with Chen’s system and R?ssler system show the effectiveness of the proposed controller.展开更多
Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycle...Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.展开更多
This paper studies the parameter identification problem of chaotic systems. Adaptive identification laws are pro- posed to estimate the parameters of uncertain chaotic systems. It proves that the asymptotical identifi...This paper studies the parameter identification problem of chaotic systems. Adaptive identification laws are pro- posed to estimate the parameters of uncertain chaotic systems. It proves that the asymptotical identification is ensured by a persistently exciting condition. Additionally, the method can be applied to identify the uncertain parameters with any number. Numerical simulations are given to validate the theoretical analysis.展开更多
Approximate linear methods and nonlinear methods were adopted usually for solving models of nonlinear surveying and mapping parameters adjustment. But, these iterative algorithms need to compare harsh initial value. A...Approximate linear methods and nonlinear methods were adopted usually for solving models of nonlinear surveying and mapping parameters adjustment. But, these iterative algorithms need to compare harsh initial value. A kind of new algorithm-adaptive algorithm based on analyzing the general methods was put forward. The new algorithm has quick rate of convergence and low dependence for initial value, so it can avoid calculating complex second derivative of the target function. The results indicate that its performance is better than those of the others.展开更多
In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of mul...In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of multiple energy sources can be realized,while the swing braking energy can be recovered and used by means of hydraulic energy.Additionally,considering the system constraints and comprehensive optimization conditions of energy efficiency and dynamic characteristics,an improved multi-objective particle swarm optimization(IMOPSO)combined with an adaptive grid is proposed for parameter optimization of the SSEHS.Meanwhile,a parameter rule-based control strategy is designed,which can switch to a reasonable working mode according to the real-time state.Finally,a physical prototype of a 50-t excavator and its AMESim model is established.The semi-simulation and semi-experiment results demonstrate that compared with a conventional swing system,energy consumption under the 90°rotation condition could be reduced by about 51.4%in the SSEHS before parameter optimization,while the energy-saving efficiency is improved by another 13.2%after parameter optimization.This confirms the effectiveness of the SSEHS and the IMOPSO parameter optimization method proposed in this paper.The IMOPSO algorithm is universal and can be used for parameter matching and optimization of hybrid power systems.展开更多
In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance princi...In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance principle, a cri- teflon is established by constructing an effective control identification scheme and adjusting automatically the adaptive coupling strength. The proposed control law is applied to a complex community network which is periodically synchro- nized with different chaotic states. Numerical simulations are conducted to demonstrate the feasibility of the proposed method.展开更多
This paper addresses the problem of adaptively estimating the consistent parameters for non Gaussian nonminimum MA processes with symmetric PDF using the fourth order cumulant of the underlying processes. The process...This paper addresses the problem of adaptively estimating the consistent parameters for non Gaussian nonminimum MA processes with symmetric PDF using the fourth order cumulant of the underlying processes. The processes may be corrupted by additive noise.展开更多
This paper proposes a simple scheme for the lag synchronization and the parameter identification of fractional order chaotic systems based on the new stability theory. The lag synchronization is achieved and the unkno...This paper proposes a simple scheme for the lag synchronization and the parameter identification of fractional order chaotic systems based on the new stability theory. The lag synchronization is achieved and the unknown parameters are identified by using the adaptive lag laws. Moreover, the scheme is analytical and is simple to implement in practice. The well-known fractional order chaotic L/i system is used to illustrate the validity of this theoretic method.展开更多
A pair of multichannel recursive least squares (RLS) adaptive lattice algorithms based on the order recursive of lattice filters and the superior numerical properties of Givens algorithms is derived in this paper. The...A pair of multichannel recursive least squares (RLS) adaptive lattice algorithms based on the order recursive of lattice filters and the superior numerical properties of Givens algorithms is derived in this paper. The derivation of the first algorithm is based on QR decomposition of the input data matrix directly, and the Givens rotations approach is used to compute the QR decomposition. Using first a prerotation of the input data matrix and then a repetition of the single channel Givens lattice algorithm, the second algorithm can be obtained. Both algorithms have superior numerical properties, particularly the robustness to wordlength limitations. The parameter vector to be estimated can be extracted directly from internal variables in the present algorithms without a backsolve operation with an extra triangular array. The results of computer simulation of the parameter identification of a two-channel system are presented to confirm efficiently the derivation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62303197,62273214)the Natural Science Foundation of Shandong Province(ZR2024MFO18).
文摘Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in accuracy and efficiency.To address these challenges,we propose an adaptive multi-learning cooperation search algorithm(AMLCSA)for efficient identification of unknown parameters in PV models.AMLCSA is a novel algorithm inspired by teamwork behaviors in modern enterprises.It enhances the original cooperation search algorithm in two key aspects:(i)an adaptive multi-learning strategy that dynamically adjusts search ranges using adaptive weights,allowing better individuals to focus on local exploitation while guiding poorer individuals toward global exploration;and(ii)a chaotic grouping reflection strategy that introduces chaotic sequences to enhance population diversity and improve search performance.The effectiveness of AMLCSA is demonstrated on single-diode,double-diode,and three PV-module models.Simulation results show that AMLCSA offers significant advantages in convergence,accuracy,and stability compared to existing state-of-the-art algorithms.
文摘This paper investigates the problem of seeking minimum of API (Auxiliary Performance Index) in parameters of Data Model instead of parameters of Adaptive Filter in order to avoid the phenomenon of over parameterization. This problem was stated by Semushin in [2]. The solution to the problem can be considered as the development of API approach to parameter identification in stochastic dynamic systems.
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(No.51766011)the Aeronautical Science Foundation of China(No.2014ZB56002)
文摘The precise control of turbofan engines thrust is an important guarantee for an aircraft to obtain good flight performance and a challenge due to complex nonlinear dynamics of engines and time-varying parameters. The main difficulties lie in the following two aspects. Firstly, it is hard to obtain an accurate kinetic model for the turbofan engine. Secondly, some model parameters often change in different flight conditions and states and even fluctuate sharply in some cases. These variable parameters bring huge challenge for the turbofan engine control. To solve the turbofan engine control problem, this paper presents a non-affine parameter-dependent Linear Parameter Varying(LPV) model-based adaptive control approach. In this approach, polynomial-based LPV modeling method is firstly employed to obtain the basis matrices, and then the Radial Basis Function Neural Networks(RBFNN) is introduced for the online estimation of the non-affine model parameters to improve the simulation performance. LPV model-based Linear Matrix Inequality(LMI) control method is applied to derive the control law. A robust control term is introduced to fix the estimation error of the nonlinear time-varying model parameters for better control performance. Finally, the Lyapunov stability analysis is performed to ensure the asymptotical convergence of the closed loop system. The simulation results show that the states of the engine can change smoothly and the thrust of the engine can accurately follow the desired trajectory, indicating that the proposed control approach is effective. The contribution of this work lies in the combination of linear system control and nonlinear system control methods to design an effective controller for the turbofan engine and to provide a new way for turbofan engine control research.
基金supported by the National Natural Science Foundation of China (No.50609028)
文摘Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock.
基金supported by the National Natural Science Foundation of China (Nos. 61305017, 61304264)the Natural Science Foundation of Jiangsu Province (No. BK20130154)
文摘The probability hypothesis density(PHD) filter has been recognized as a promising technique for tracking an unknown number of targets. The performance of the PHD filter, however, is sensitive to the available knowledge on model parameters such as the measurement noise variance and those associated with the changes in the maneuvering target trajectories. If these parameters are unknown in advance, the tracking performance may degrade greatly. To address this aspect, this paper proposes to incorporate the adaptive parameter estimation(APE) method in the PHD filter so that the model parameters, which may be static and/or time-varying, can be estimated jointly with target states. The resulting APE-PHD algorithm is implemented using the particle filter(PF), which leads to the PF-APE-PHD filter. Simulations show that the newly proposed algorithm can correctly identify the unknown measurement noise variances, and it is capable of tracking multiple maneuvering targets with abrupt changing parameters in a more robust manner, compared to the multi-model approaches.
基金supported by the US National Science Foundation (ECS0601475)the National Natural Science Foundation of China (60904042)
文摘An adaptive actuator failure compensation control scheme is developed using an indirect adaptive control method,by calculating the controller parameters from adaptive estimates of system parameters and actuator failure parameters.A key technical issue is how to deal with the actuator failure uncertainties such as failure pattern,time and values.A complete parametrization covering all possible failures is used to solve this issue for adaptive parameter estimation.A simultaneous mapping from the estimated system/failure parameters to the controller parameters is employed to make the control system capable of ensuring the desired system performance under failures,which is verified by simulation results.
文摘Climate change adaptation strategies provide a cushion for smallholder farmers,especially in subSaharan Africa against the risks posed by climate hazards such as droughts and floods.However,the decision-making process in climate adaptation is complex.To better understand the dynamics of the process,we strive to answer this question:what are the potential trade-offs and synergies related to decision-making and implementation of climate adaptation strategies among smallholder farmers in sub-Saharan Africa region?A systematic literature review methodology was used through the Preferred Reporting Items for Systematic Review and Meta-Analysis(PRISMA)statement with the four-stage inclusion/exclusion criteria to identify the literature from selected databases(Scopus and Google Scholar).The climate adaptation strategies are organized into five broad categories(crop management,risk management,soil/land management,water management,and livestock management strategies).Evidence suggests that potential trade-offs may arise concerning added costs,additional labor requirements,and competition among objectives or available resources.The synergies,on the other hand,arise from implementing two or more adaptation strategies concurrently in respect of increased productivity,resilience,yield stability,sustainability,and environmental protection.Trade-offs and synergies may also differ among the various adaptation strategies with minimum/zero tillage,comparatively,presenting more tradeoffs.The development and promotion of low-cost adaptation strategies and complementary climate adaptation options that minimize the trade-offs and maximize the synergies are suggested.Skills and knowledge on proper implementation of climate change adaptation strategies are encouraged,especially at the local farm level.
文摘The paper discusses lag synchronization of Lorenz chaotic system with three uncertain parameters. Based on adaptive technique, the lag synchronization of Lorenz chaotic system is achieved by designing a novel nonlinear controller. Furthermore, the parameters identification is realized simultaneously. A sufficient condition is given and proved theoreticcally by Lyapunov stability theory and LaSalle’s invariance principle. Finally, the numerical simulations are provided to show the effectiveness and feasibility of the proposed method.
基金National Key R&D Program of China(2018YFA0702200)National Natural Science Foundation of China(61627809,62173080)Liaoning Revitalization Talents Program(XLYC1801005)。
文摘This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.
基金This work was supported by the National Natural Science Foundation of China(No.60375001)the High School Doctoral Foundation of China(NO.20030532004).
文摘Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.
基金Supported by National Natural Science Foundation of China (No. 60074008, 60274007).
文摘Based on Lyapunov stability theory, a novel adaptive controller is designed for a class of chaotic systems .The parameters identification and synchronization of chaotic systems can be carried out simultaneously. The controller and the updating law of parameters identification are directly constructed by analytic formula. Simulation results with Chen’s system and R?ssler system show the effectiveness of the proposed controller.
基金Supported by National Key R&D Program of China(Grant No.2019YFE0121300)。
文摘Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.
基金Project supported in part by National Natural Science Foundation of China (Grant Nos. 11047114 and 60974081)in part by the Key Project of Chinese Ministry of Education (Grant No. 210141)
文摘This paper studies the parameter identification problem of chaotic systems. Adaptive identification laws are pro- posed to estimate the parameters of uncertain chaotic systems. It proves that the asymptotical identification is ensured by a persistently exciting condition. Additionally, the method can be applied to identify the uncertain parameters with any number. Numerical simulations are given to validate the theoretical analysis.
基金Project (40174003) supported by the National Natural Science Foundation of China
文摘Approximate linear methods and nonlinear methods were adopted usually for solving models of nonlinear surveying and mapping parameters adjustment. But, these iterative algorithms need to compare harsh initial value. A kind of new algorithm-adaptive algorithm based on analyzing the general methods was put forward. The new algorithm has quick rate of convergence and low dependence for initial value, so it can avoid calculating complex second derivative of the target function. The results indicate that its performance is better than those of the others.
基金supported by the Changsha Major Science and Technology Plan Project,China(No.kq2207002)the Natural Science Foundation of Hunan Province(No.2023JJ40720)the Postgraduate Innovative Project of Central South University,China(No.2022XQLH058)。
文摘In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of multiple energy sources can be realized,while the swing braking energy can be recovered and used by means of hydraulic energy.Additionally,considering the system constraints and comprehensive optimization conditions of energy efficiency and dynamic characteristics,an improved multi-objective particle swarm optimization(IMOPSO)combined with an adaptive grid is proposed for parameter optimization of the SSEHS.Meanwhile,a parameter rule-based control strategy is designed,which can switch to a reasonable working mode according to the real-time state.Finally,a physical prototype of a 50-t excavator and its AMESim model is established.The semi-simulation and semi-experiment results demonstrate that compared with a conventional swing system,energy consumption under the 90°rotation condition could be reduced by about 51.4%in the SSEHS before parameter optimization,while the energy-saving efficiency is improved by another 13.2%after parameter optimization.This confirms the effectiveness of the SSEHS and the IMOPSO parameter optimization method proposed in this paper.The IMOPSO algorithm is universal and can be used for parameter matching and optimization of hybrid power systems.
基金Project supported by the Key Program of the National Natural Science of China(Grant No.11232009)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)
文摘In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance principle, a cri- teflon is established by constructing an effective control identification scheme and adjusting automatically the adaptive coupling strength. The proposed control law is applied to a complex community network which is periodically synchro- nized with different chaotic states. Numerical simulations are conducted to demonstrate the feasibility of the proposed method.
文摘This paper addresses the problem of adaptively estimating the consistent parameters for non Gaussian nonminimum MA processes with symmetric PDF using the fourth order cumulant of the underlying processes. The processes may be corrupted by additive noise.
基金Project supported by the Natural Science Foundation of Hebei Province,China (Grant No.A2010000343)
文摘This paper proposes a simple scheme for the lag synchronization and the parameter identification of fractional order chaotic systems based on the new stability theory. The lag synchronization is achieved and the unknown parameters are identified by using the adaptive lag laws. Moreover, the scheme is analytical and is simple to implement in practice. The well-known fractional order chaotic L/i system is used to illustrate the validity of this theoretic method.
基金Foundation of the Academy of Electronic Science,China
文摘A pair of multichannel recursive least squares (RLS) adaptive lattice algorithms based on the order recursive of lattice filters and the superior numerical properties of Givens algorithms is derived in this paper. The derivation of the first algorithm is based on QR decomposition of the input data matrix directly, and the Givens rotations approach is used to compute the QR decomposition. Using first a prerotation of the input data matrix and then a repetition of the single channel Givens lattice algorithm, the second algorithm can be obtained. Both algorithms have superior numerical properties, particularly the robustness to wordlength limitations. The parameter vector to be estimated can be extracted directly from internal variables in the present algorithms without a backsolve operation with an extra triangular array. The results of computer simulation of the parameter identification of a two-channel system are presented to confirm efficiently the derivation.