In the parallel steering coordination control strategy for path tracking,it is difficult to match the current driver steering model using the fixed parameters with the actual driver,and the designed steering coordinat...In the parallel steering coordination control strategy for path tracking,it is difficult to match the current driver steering model using the fixed parameters with the actual driver,and the designed steering coordination control strategy under a single objective and simple conditions is difficult to adapt to the multi-dimensional state variables’input.In this paper,we propose a deep reinforcement learning algorithm-based multi-objective parallel human-machine steering coordination strategy for path tracking considering driver misoperation and external disturbance.Firstly,the driver steering mathematical model is constructed based on the driver preview characteristics and steering delay response,and the driver characteristic parameters are fitted after collecting the actual driver driving data.Secondly,considering that the vehicle is susceptible to the influence of external disturbances during the driving process,the Tube MPC(Tube Model Predictive Control)based path tracking steering controller is designed based on the vehicle system dynamics error model.After verifying that the driver steering model meets the driver steering operation characteristics,DQN(Deep Q-network),DDPG(Deep Deterministic Policy Gradient)and TD3(Twin Delayed Deep Deterministic Policy Gradient)deep reinforcement learning algorithms are utilized to design a multi-objective parallel steering coordination strategy which satisfies the multi-dimensional state variables’input of the vehicle.Finally,the tracking accuracy,lateral safety,human-machine conflict and driver steering load evaluation index are designed in different driver operation states and different road environments,and the performance of the parallel steering coordination control strategies with different deep reinforcement learning algorithms and fuzzy algorithms are compared by simulations and hardware in the loop experiments.The results show that the parallel steering collaborative strategy based on a deep reinforcement learning algorithm can more effectively assist the driver in tracking the target path under lateral wind interference and driver misoperation,and the TD3-based coordination control strategy has better overall performance.展开更多
Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc...Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.展开更多
Model predictive control(MPC)is a model-based optimal control strategy widely used in robot systems.In this work,the MPC controller tuning problem for the path tracking of the wheeled mobile robot is studied and a nov...Model predictive control(MPC)is a model-based optimal control strategy widely used in robot systems.In this work,the MPC controller tuning problem for the path tracking of the wheeled mobile robot is studied and a novel self-tuning approach is developed.First,two novel path tracking performance indices,i.e.,steadystate time ratio and steady-state distance ratio are proposed to more accurately reflect the control performance.Second,the mapping relationship between the proposed indices and the MPC parameters is established based on machine learning technique,and then a novel controller structure which can automatically tune the control parameters online is further designed.Finally,experimental verification with an actual wheeled mobile robot is conducted,which shows that the proposed method could outperform the existing method via achieving significant improvement in the rapidity,accuracy and adaptability of the robot path tracking.展开更多
In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering th...In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering the constraints of vehicle physical limits,in which a forward-backward integration scheme was introduced to generate a time-optimal speed profile subject to the tire-road friction limit.Moreover,this scheme was further extended along one moving prediction window.In the MPC controller,the prediction model was an 8-degree-of-freedom(DOF)vehicle model,while the plant was a 14-DOF vehicle model.For lateral control,a sequence of optimal wheel steering angles was generated from the MPC controller;for longitudinal control,the total wheel torque was generated from the PID speed controller embedded in the MPC framework.The proposed controller was implemented in MATLAB considering arbitrary curves of continuously varying curvature as the reference trajectory.The simulation test results show that the tracking errors are small for vehicle lateral and longitudinal positions and the tracking performances for trajectory and speed are good using the proposed controller.Additionally,the case of extended implementation in one moving prediction window requires shorter travel time than the case implemented along the entire path.展开更多
Based on rational behavior model of three layers, a tracking control system is designed for straight line tracking which is commonly used in underwater survey missions. An intelligent PID control law implemented as pl...Based on rational behavior model of three layers, a tracking control system is designed for straight line tracking which is commonly used in underwater survey missions. An intelligent PID control law implemented as planning level during the control system using transverse deviation is came up with. Continuous tracking of path expressed by a point sequence can be realized by the law. Firstly, a path tracking control system based on rational behavior model of three layers is designed, mainly satisfying the needs of underactuated AUV. Since there is no need to perform spatially coupled maneuvers, the 3D path tracking control is decoupled into planar 2D path tracking and depth or height tracking separately. Secondly, planar path tracking controller is introduced. For the reason that more attention is paid to comparing with vertical position control, transverse deviation in analytical form is derived. According to the Lyapunov direct theory, control law is designed using discrete PID algorithm whose parameters obey adaptive fuzzy adjustment. Reference heading angle is given as an output of the guidance controller conducted by lateral deviation together with its derivative. For the purpose of improving control quality and facilitating parameter modifying, data normalize modules based on Sigmoid function are applied to input-output data manipulation. Lastly, a sequence of experiments was carried out successfully, including tests in Longfeng lake and at the Yellow sea. In most challenging sea conditions, tracking errors of straight line are below 2 m in general. The results show that AUV is able to compensate the disturbance brought by sea current. The provided test results demonstrate that the designed guidance controller guarantees stably and accurately straight route tracking. Besides, the proposed control system is accessible for continuous comb-shaped path tracking in region searching.展开更多
In order to diminish the impacts of extemal disturbance such as parking speed fluctuation and model un- certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based ...In order to diminish the impacts of extemal disturbance such as parking speed fluctuation and model un- certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based on pre- view back propagation (BP) neural network PID controller. The forward BP neural network can adjust the parameters of PID controller in real time. The preview time is optimized by considering path curvature, change in curvature and road boundaries. A fuzzy controller considering barriers and different road conditions is built to select the starting po- sition. In addition, a kind of path planning technology satisfying the requirement of obstacle avoidance is introduced. In order to solve the problem of discontinuous curvature, cubic B spline curve is used for curve fitting. The simulation results and real vehicle tests validate the effectiveness of the proposed path planning and tracking methods.展开更多
To resolve the path tracking problem of autonomous ground vehicles,an analysis of existing path tracking methods was carried out and an important conclusion was got.The vehicle-road model is crucial for path following...To resolve the path tracking problem of autonomous ground vehicles,an analysis of existing path tracking methods was carried out and an important conclusion was got.The vehicle-road model is crucial for path following.Based on the conclusion,a new vehicle-road model named "ribbon model" was constructed with consideration of road width and vehicle geometry structure.A new vehicle-road evaluation algorithm was proposed based on this model,and a new path tracking controller including a steering controller and a speed controller was designed.The difficulties of preview distance selection and parameters tuning with speed in the pure following controller are avoided in this controller.To verify the performance of the novel method,simulation and real vehicle experiments were carried out.Experimental results show that the path tracking controller can keep the vehicle in the road running as fast as possible,so it can adjust the control strategy,such as safety,amenity,and rapidity criteria autonomously according to the road situation.This is important for the controller to adapt to different kinds of environments,and can improve the performance of autonomous ground vehicles significantly.展开更多
It is a striking fact that the path tracking accuracy of autonomous vehicles based on active front wheel steering is poor under high-speed and large-curvature conditions.In this study,an adaptive path tracking control...It is a striking fact that the path tracking accuracy of autonomous vehicles based on active front wheel steering is poor under high-speed and large-curvature conditions.In this study,an adaptive path tracking control strategy that coordinates active front wheel steering and direct yaw moment is proposed based on model predictive control algorithm.The recursive least square method with a forgetting factor is used to identify the rear tire cornering stiffness and update the path tracking system prediction model.To adaptively adjust the priorities of path tracking accuracy and vehicle stability,an adaptive strategy based on fuzzy rules is applied to change the weight coefficients in the cost function.An adaptive control strategy for coordinating active front steering and direct yaw moment is proposed to improve the path tracking accuracy under high-speed and large-curvature conditions.To ensure vehicle stability,the sideslip angle,yaw rate and zero moment methods are used to construct optimization constraints based on the model predictive control frame.It is verified through simulation experiments that the proposed adaptive coordinated control strategy can improve the path tracking accuracy and ensure vehicle stability under high-speed and largecurvature conditions.展开更多
This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking s...This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV)model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing the frequency domain characteristics of the derivative of desired heading angle,a finite frequency H_∞index is proposed to attenuate the effects of the derivative of desired heading angle on path tracking error.Thirdly,sufficient conditions are derived to guarantee robust H_∞performance of the path tracking system,and the calculation of observer and controller gains is converted into solving a convex optimization problem.Finally,simulation examples verify the advantages of the control method proposed in this paper.展开更多
A fuzzy robust path tracking strategy of an active pelagic trawl system with ship and winch regulation is proposed.First,nonlinear mathematic model of the pelagic trawl system was derived using Lagrange equation and f...A fuzzy robust path tracking strategy of an active pelagic trawl system with ship and winch regulation is proposed.First,nonlinear mathematic model of the pelagic trawl system was derived using Lagrange equation and further simplified as a low order model for the convenience of controller design.Then,an active path tracking strategy of pelagic trawl system was investigated to improve the catching efficiency of the target fish near the sea bottom.By means of the active tracking control,the pelagic trawl net can be positioned dynamically to follow a specified trajectory via the coordinated winch and ship regulation.In addition,considering the system nonlinearities,modeling uncertainties and the unknown exogenous disturbance of the trawl system model,a nonlinear robust H2 /H∞ controller based on Takagi-Sugeno(T-S) fuzzy model was presented,and the simulation comparison with linear robust H2 /H∞ controller and PID method was conducted for the validation of the nonlinear fuzzy robust controller.The nonlinear simulation results show that the average tracking error is 0.4 m for the fuzzy robust H2 /H∞ control and 125.8 m for the vertical and horizontal displacement,respectively,which is much smaller than linear H2 /H∞ controller and the PID controller.The investigation results illustrate that the fuzzy robust controller is effective for the active path tracking control of the pelagic trawl system.展开更多
The particle path tracking method is proposed and used in two-dimensional(2D) and three-dimensional(3D) numerical simulations of continuously rotating detonation engines(CRDEs). This method is used to analyze th...The particle path tracking method is proposed and used in two-dimensional(2D) and three-dimensional(3D) numerical simulations of continuously rotating detonation engines(CRDEs). This method is used to analyze the combustion and expansion processes of the fresh particles, and the thermodynamic cycle process of CRDE. In a 3D CRDE flow field, as the radius of the annulus increases, the no-injection area proportion increases, the non-detonation proportion decreases, and the detonation height decreases. The flow field parameters on the 3D mid annulus are different from in the 2D flow field under the same chamber size. The non-detonation proportion in the 3D flow field is less than in the 2D flow field. In the 2D and 3D CRDE, the paths of the flow particles have only a small fluctuation in the circumferential direction. The numerical thermodynamic cycle processes are qualitatively consistent with the three ideal cycle models, and they are right in between the ideal F–J cycle and ideal ZND cycle. The net mechanical work and thermal efficiency are slightly smaller in the 2D simulation than in the 3D simulation. In the 3D CRDE, as the radius of the annulus increases, the net mechanical work is almost constant, and the thermal efficiency increases. The numerical thermal efficiencies are larger than F–J cycle, and much smaller than ZND cycle.展开更多
A novel path tracking controller for parallel parking based on active disturbance rejection control (ADRC) was presented in this paper. A second order ADRC controller was used to solve the path tracking robustness, ...A novel path tracking controller for parallel parking based on active disturbance rejection control (ADRC) was presented in this paper. A second order ADRC controller was used to solve the path tracking robustness, which can estimate and compensate model uncertainty caused by steering kinematics and disturbances caused by parking speed and steering system delay. Collision-free path planning technology was adopted to generate the reference path. The simulation results validate that the performance of the proposed path tracking controller is better than the conventional PID controller. The actual vehicle tests show that the proposed path tracking controller is effective and robust to model uncertainty and disturbances.展开更多
Under ultra-high-speed and harsh conditions,conventional control methods struggle to ensure the path tracking accuracy and driving stability of unmanned vehicles during the turning process.Therefore,this study propose...Under ultra-high-speed and harsh conditions,conventional control methods struggle to ensure the path tracking accuracy and driving stability of unmanned vehicles during the turning process.Therefore,this study proposes a cascade control to solve this problem.Based on the new vehicle error model that considers vehicle tire sideslip and road curvature,the feedforward-parametric adaptive linear quadratic regulator(LQR)and proportional integral control-based speed-keeping controllers are used to compose the path-tracking cascade optimization controller for unmanned vehicles.To improve the adaptability of the unmanned vehicle path-tracking control under harsh driving conditions,the LQR controller parameters are automatically adjusted using a back-propagation neural network,in which the initial weights and thresholds are optimized using the improved grey wolf optimization algorithm according to the driving conditions.The speed-keeping controller reduces the impact on the curve-tracking accuracy under nonlinear vehicle speed variations.Finally,a joint model of MATLAB/Simulink and CarSim was established,and simulations show that the proposed control method can achieve stable entry and exit curves at ultra-high speeds for unmanned vehicles.Under strong wind and ice road conditions,the method exhibits a higher tracking accuracy and is more adaptive and robust to external interference in driving and variable curvature roads than methods such as the feedforward-LQR,preview and pure pursuit controls.展开更多
To improve intelligent vehicle drive performance and avoid vehicle side-slip during target path tracking,a linearized four-wheel vehicle model is adopted as a predictive control model,and an intelligent ve-hicle targe...To improve intelligent vehicle drive performance and avoid vehicle side-slip during target path tracking,a linearized four-wheel vehicle model is adopted as a predictive control model,and an intelligent ve-hicle target path tracking method based on a competitive cooperative game is proposed.The design variables are divided into different strategic spaces owned by each player by calculating the affecting factors of the design variables with objective functions and fuzzy clustering.Based on the competitive cooperative game model,each game player takes its payoff as a mono-objective to optimize its own strategic space and obtain the best strategy to deal with others.The best strategies were combined into the game strategy set.Considering the front wheel angle and side slip angle increment constraint,tire side-slip angle,and tire side slip deflection dynamics,it took the path tracking state model was used as the objective,function and the calculation was validated by competitive cooperative game theory.The results demonstrated the effectiveness of the proposed algorithm.The experimental results show that this method can track an intelligent vehicle quickly and steadily and has good real-time per-formance.展开更多
The continuous development of smart agriculture puts forward the requirement of high accuracy slope path tracking for the agricultural wheel-legged robot.Compared to flat terrain,path tracking control on sloped terrai...The continuous development of smart agriculture puts forward the requirement of high accuracy slope path tracking for the agricultural wheel-legged robot.Compared to flat terrain,path tracking control on sloped terrain faces the obstacle of motion instability of the wheel-legged robot induced by the slope gravitational force component,which causes instantaneous steering center to offset.To address this problem,this study proposed a slope path tracking control algorithm by combining the methods of virtual sensing radar and two-level neural network.Firstly,the kinematic and dynamic models of the wheel-legged robot are deduced,from which the crucial factors affecting control accuracy of slope path tracking are recognized.Secondly,this study constructs the slope path tracking control algorithm,in which the virtual sensing radar is utilized to realize route perception,and the two-level neural network is employed to provide drive motors’speeds to adapt to path tracking on different slopes.Furthermore,the corresponding compensation methods of the identified impacting factors are embedded in the proposed algorithm,including the lateral tracking deviation factor,heading angle deviation factor,slope change factor,and slip rate factor.Finally,the co-simulation model of slope path tracking control is constructed,including the multi-body dynamic model of the wheel-legged robot in RecurDyn and the proposed slope path tracking algorithm complied by Python.Subsequently,the simulation tests of the wheel-legged robot are carried out under various slope angles and velocities.The results reveal that the proposed algorithm’s effectiveness and accuracy are superior,with tracking errors reduced by more than 47.2%compared to an optimized pure pursuit algorithm.展开更多
Animals exhibit remarkable mobility and adaptability to their environments.Leveraging these advantages,various types of robots have been developed.To achieve path tracking control for the underwater hexapod robot,a pa...Animals exhibit remarkable mobility and adaptability to their environments.Leveraging these advantages,various types of robots have been developed.To achieve path tracking control for the underwater hexapod robot,a path tracking control system has been designed.Within this system,a Line-of-Sight(LOS)guidance system is utilized to generate the desired heading angle during the path tracking process.A heading tracking controller and a speed tracking controller are designed based on the super-twisting sliding mode method.Fuzzy logic is employed to establish the nonlinear relationship between the output of the upper-level controller,which includes force/torque,and the input parameters of the Central Pattern Generator(CPG)network.Finally,the effectiveness of the proposed method is verified through simulation and experimentation.The results demonstrate that the robot exhibits good tracking accuracy,as well as stability and coordination in motion.The designed path tracking system enables the underwater hexapod robot to rapidly and accurately track the desired path.展开更多
As an important part in sortie/recovery process,the dispatch of carrier aircraft not only affects the sortie/recovery efficiency and safety,but also has severe influence on the carrier's combat efficiency and the ...As an important part in sortie/recovery process,the dispatch of carrier aircraft not only affects the sortie/recovery efficiency and safety,but also has severe influence on the carrier's combat efficiency and the comprehensive support capability.Path planning is the key to improve the efficiency and safety during the dispatch process.The main purpose of this paper is to propose a comprehensive investigation of techniques and research progress for the carrier aircraft's dispatch path planning on the deck.Three different dispatch modes of carrier aircraft and the corresponding modeling technologies are investigated,and the aircraft's dispatch path planning techniques and algorithms have been classified into different classes.Moreover,their assumptions and drawbacks have been discussed for single aircraft and multiple aircraft.To make the research work more comprehensive,the corresponding tracking control methodologies are also discussed.Finally,due to the similarity of path planning problem between the carrier aircraft's dispatch and those in other fields,this paper provides an exploratory prospect of the knowledge or method learned from other fields.展开更多
In order to investigate how model fidelity in the formulation of model predictive control(MPC)algorithm affects the path tracking performance,a bicycle model and an 8 degrees of freedom(DOF)vehicle model,as well as a ...In order to investigate how model fidelity in the formulation of model predictive control(MPC)algorithm affects the path tracking performance,a bicycle model and an 8 degrees of freedom(DOF)vehicle model,as well as a 14-DOF vehicle model were employed to implement the MPC-based path tracking controller considering the constraints of input limit and output admissibility by using a lower fidelity vehicle model to control a higher fidelity vehicle model.In the MPC controller,the nonlinear vehicle model was linearized and discretized for state prediction and vehicle heading angle,lateral position and longitudinal position were chosen as objectives in the cost function.The wheel step steering and sine wave steering responses between the developed vehicle models and the Carsim model were compared for validation before implementing the model predictive path tracking control.The simulation results of trajectory tracking considering an 8-shaped curved reference path were presented and compared when the prediction model and the plant were changed.The results show that the trajectory tracking errors are small and the tracking performances of the proposed controller considering different complexity vehicle models are good in the curved road environment.Additionally,the MPC-based controller formulated with a high-fidelity model performs better than that with a low-fidelity model in the trajectory tracking.展开更多
A tracking algorithm for multiple-maneuvering targets based on joint probabilistic data association(JPDA)is proposed to improve the accuracy for tracking algorithm of traditional multiple maneuvering targets.The int...A tracking algorithm for multiple-maneuvering targets based on joint probabilistic data association(JPDA)is proposed to improve the accuracy for tracking algorithm of traditional multiple maneuvering targets.The interconnection probability of the two targets is calculated,the weighted value is processed and the target tracks are obtained.The simulation results show that JPDA algorithm achieves higher tracking accuracy and provides a basis for more targets tracking.展开更多
Due to errors in vehicle dynamics modeling,uncertainty in model parameters,and disturbances from curvature,the performance of the path tracking controller is poor or even unstable under high-speed and large-curvature ...Due to errors in vehicle dynamics modeling,uncertainty in model parameters,and disturbances from curvature,the performance of the path tracking controller is poor or even unstable under high-speed and large-curvature conditions.Therefore,a path tracking robust control strategy based on force-driven H_(∞)and MPC is proposed.To fully exploit the nonlinear dynamics characteristics of tires,a force-driven state space model of a path tracking system based on a linear time-varying tire model is established;the H_(∞)and MPC methods are used to design a robust controller.Considering disturbance and system state constraints,the robust control constraint model based on LMI is established.Finally,the proposed controller is validated through joint simulations using CarSim and MATLAB.The results show that the maximum lateral deviation is reduced by 17.07%,and the maximum course angle deviation is reduced by 13.04%under large curvature disturbance conditions.The maximum lateral deviation is reduced by 27.85%,and the maximum course angle deviation is reduced by 31.17%under conditions of uncertain road adhesion coefficients.Based on the controller’s performance,the proposed controller effectively mitigates modeling errors,parameter uncertainties,and curvature disturbances.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.U22A20246,52372382)Hefei Municipal Natural Science Foundation(Grant No.2022008)+1 种基金the Open Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures(Grant No.KF2023-06)S&T Program of Hebei(Grant No.225676162GH).
文摘In the parallel steering coordination control strategy for path tracking,it is difficult to match the current driver steering model using the fixed parameters with the actual driver,and the designed steering coordination control strategy under a single objective and simple conditions is difficult to adapt to the multi-dimensional state variables’input.In this paper,we propose a deep reinforcement learning algorithm-based multi-objective parallel human-machine steering coordination strategy for path tracking considering driver misoperation and external disturbance.Firstly,the driver steering mathematical model is constructed based on the driver preview characteristics and steering delay response,and the driver characteristic parameters are fitted after collecting the actual driver driving data.Secondly,considering that the vehicle is susceptible to the influence of external disturbances during the driving process,the Tube MPC(Tube Model Predictive Control)based path tracking steering controller is designed based on the vehicle system dynamics error model.After verifying that the driver steering model meets the driver steering operation characteristics,DQN(Deep Q-network),DDPG(Deep Deterministic Policy Gradient)and TD3(Twin Delayed Deep Deterministic Policy Gradient)deep reinforcement learning algorithms are utilized to design a multi-objective parallel steering coordination strategy which satisfies the multi-dimensional state variables’input of the vehicle.Finally,the tracking accuracy,lateral safety,human-machine conflict and driver steering load evaluation index are designed in different driver operation states and different road environments,and the performance of the parallel steering coordination control strategies with different deep reinforcement learning algorithms and fuzzy algorithms are compared by simulations and hardware in the loop experiments.The results show that the parallel steering collaborative strategy based on a deep reinforcement learning algorithm can more effectively assist the driver in tracking the target path under lateral wind interference and driver misoperation,and the TD3-based coordination control strategy has better overall performance.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2501800)National Natural Science Foundation of China (Grant No.52172384)+1 种基金Science and Technology Innovation Program of Hunan Province of China (Grant No.2021RC3048)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle of China (Grant No.72275004)。
文摘Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.
基金the National Natural Science Foundation of China(No.61903291)the Key Research and Development Program of Shaanxi Province(No.2022NY-094)。
文摘Model predictive control(MPC)is a model-based optimal control strategy widely used in robot systems.In this work,the MPC controller tuning problem for the path tracking of the wheeled mobile robot is studied and a novel self-tuning approach is developed.First,two novel path tracking performance indices,i.e.,steadystate time ratio and steady-state distance ratio are proposed to more accurately reflect the control performance.Second,the mapping relationship between the proposed indices and the MPC parameters is established based on machine learning technique,and then a novel controller structure which can automatically tune the control parameters online is further designed.Finally,experimental verification with an actual wheeled mobile robot is conducted,which shows that the proposed method could outperform the existing method via achieving significant improvement in the rapidity,accuracy and adaptability of the robot path tracking.
基金Project(20180608005600843855-19)supported by the International Graduate Exchange Program of Beijing Institute of Technology,China。
文摘In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering the constraints of vehicle physical limits,in which a forward-backward integration scheme was introduced to generate a time-optimal speed profile subject to the tire-road friction limit.Moreover,this scheme was further extended along one moving prediction window.In the MPC controller,the prediction model was an 8-degree-of-freedom(DOF)vehicle model,while the plant was a 14-DOF vehicle model.For lateral control,a sequence of optimal wheel steering angles was generated from the MPC controller;for longitudinal control,the total wheel torque was generated from the PID speed controller embedded in the MPC framework.The proposed controller was implemented in MATLAB considering arbitrary curves of continuously varying curvature as the reference trajectory.The simulation test results show that the tracking errors are small for vehicle lateral and longitudinal positions and the tracking performances for trajectory and speed are good using the proposed controller.Additionally,the case of extended implementation in one moving prediction window requires shorter travel time than the case implemented along the entire path.
基金Projects(51179035,51279221) supported by the National Natural Science Foundation of ChinaProject(2014M561333) supported by Postdoctoral Science Foundation of China
文摘Based on rational behavior model of three layers, a tracking control system is designed for straight line tracking which is commonly used in underwater survey missions. An intelligent PID control law implemented as planning level during the control system using transverse deviation is came up with. Continuous tracking of path expressed by a point sequence can be realized by the law. Firstly, a path tracking control system based on rational behavior model of three layers is designed, mainly satisfying the needs of underactuated AUV. Since there is no need to perform spatially coupled maneuvers, the 3D path tracking control is decoupled into planar 2D path tracking and depth or height tracking separately. Secondly, planar path tracking controller is introduced. For the reason that more attention is paid to comparing with vertical position control, transverse deviation in analytical form is derived. According to the Lyapunov direct theory, control law is designed using discrete PID algorithm whose parameters obey adaptive fuzzy adjustment. Reference heading angle is given as an output of the guidance controller conducted by lateral deviation together with its derivative. For the purpose of improving control quality and facilitating parameter modifying, data normalize modules based on Sigmoid function are applied to input-output data manipulation. Lastly, a sequence of experiments was carried out successfully, including tests in Longfeng lake and at the Yellow sea. In most challenging sea conditions, tracking errors of straight line are below 2 m in general. The results show that AUV is able to compensate the disturbance brought by sea current. The provided test results demonstrate that the designed guidance controller guarantees stably and accurately straight route tracking. Besides, the proposed control system is accessible for continuous comb-shaped path tracking in region searching.
基金Supported by the National Natural Science Foundation of China(No.11072106,No.51005133 and No.51375009)
文摘In order to diminish the impacts of extemal disturbance such as parking speed fluctuation and model un- certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based on pre- view back propagation (BP) neural network PID controller. The forward BP neural network can adjust the parameters of PID controller in real time. The preview time is optimized by considering path curvature, change in curvature and road boundaries. A fuzzy controller considering barriers and different road conditions is built to select the starting po- sition. In addition, a kind of path planning technology satisfying the requirement of obstacle avoidance is introduced. In order to solve the problem of discontinuous curvature, cubic B spline curve is used for curve fitting. The simulation results and real vehicle tests validate the effectiveness of the proposed path planning and tracking methods.
基金Project(90820302)supported by the National Natural Science Foundation of China
文摘To resolve the path tracking problem of autonomous ground vehicles,an analysis of existing path tracking methods was carried out and an important conclusion was got.The vehicle-road model is crucial for path following.Based on the conclusion,a new vehicle-road model named "ribbon model" was constructed with consideration of road width and vehicle geometry structure.A new vehicle-road evaluation algorithm was proposed based on this model,and a new path tracking controller including a steering controller and a speed controller was designed.The difficulties of preview distance selection and parameters tuning with speed in the pure following controller are avoided in this controller.To verify the performance of the novel method,simulation and real vehicle experiments were carried out.Experimental results show that the path tracking controller can keep the vehicle in the road running as fast as possible,so it can adjust the control strategy,such as safety,amenity,and rapidity criteria autonomously according to the road situation.This is important for the controller to adapt to different kinds of environments,and can improve the performance of autonomous ground vehicles significantly.
基金Supported by the Foundation of Key Laboratory of Vehicle Advanced ManufacturingMeasuring and Control Technology(Beijing Jiaotong University)+1 种基金Ministry of Education,China(Grant No.014062522006)National Key Research Development Program of China(Grant No.2017YFB0103701)。
文摘It is a striking fact that the path tracking accuracy of autonomous vehicles based on active front wheel steering is poor under high-speed and large-curvature conditions.In this study,an adaptive path tracking control strategy that coordinates active front wheel steering and direct yaw moment is proposed based on model predictive control algorithm.The recursive least square method with a forgetting factor is used to identify the rear tire cornering stiffness and update the path tracking system prediction model.To adaptively adjust the priorities of path tracking accuracy and vehicle stability,an adaptive strategy based on fuzzy rules is applied to change the weight coefficients in the cost function.An adaptive control strategy for coordinating active front steering and direct yaw moment is proposed to improve the path tracking accuracy under high-speed and large-curvature conditions.To ensure vehicle stability,the sideslip angle,yaw rate and zero moment methods are used to construct optimization constraints based on the model predictive control frame.It is verified through simulation experiments that the proposed adaptive coordinated control strategy can improve the path tracking accuracy and ensure vehicle stability under high-speed and largecurvature conditions.
基金supported by the National Natural Science Foundation of China(62173029,62273033,U20A20225)the Fundamental Research Funds for the Central Universities,China(FRF-BD-19-002A)。
文摘This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV)model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing the frequency domain characteristics of the derivative of desired heading angle,a finite frequency H_∞index is proposed to attenuate the effects of the derivative of desired heading angle on path tracking error.Thirdly,sufficient conditions are derived to guarantee robust H_∞performance of the path tracking system,and the calculation of observer and controller gains is converted into solving a convex optimization problem.Finally,simulation examples verify the advantages of the control method proposed in this paper.
基金Project(2009AA045004)supported by the Hi-tech Research and Development Program of China
文摘A fuzzy robust path tracking strategy of an active pelagic trawl system with ship and winch regulation is proposed.First,nonlinear mathematic model of the pelagic trawl system was derived using Lagrange equation and further simplified as a low order model for the convenience of controller design.Then,an active path tracking strategy of pelagic trawl system was investigated to improve the catching efficiency of the target fish near the sea bottom.By means of the active tracking control,the pelagic trawl net can be positioned dynamically to follow a specified trajectory via the coordinated winch and ship regulation.In addition,considering the system nonlinearities,modeling uncertainties and the unknown exogenous disturbance of the trawl system model,a nonlinear robust H2 /H∞ controller based on Takagi-Sugeno(T-S) fuzzy model was presented,and the simulation comparison with linear robust H2 /H∞ controller and PID method was conducted for the validation of the nonlinear fuzzy robust controller.The nonlinear simulation results show that the average tracking error is 0.4 m for the fuzzy robust H2 /H∞ control and 125.8 m for the vertical and horizontal displacement,respectively,which is much smaller than linear H2 /H∞ controller and the PID controller.The investigation results illustrate that the fuzzy robust controller is effective for the active path tracking control of the pelagic trawl system.
文摘The particle path tracking method is proposed and used in two-dimensional(2D) and three-dimensional(3D) numerical simulations of continuously rotating detonation engines(CRDEs). This method is used to analyze the combustion and expansion processes of the fresh particles, and the thermodynamic cycle process of CRDE. In a 3D CRDE flow field, as the radius of the annulus increases, the no-injection area proportion increases, the non-detonation proportion decreases, and the detonation height decreases. The flow field parameters on the 3D mid annulus are different from in the 2D flow field under the same chamber size. The non-detonation proportion in the 3D flow field is less than in the 2D flow field. In the 2D and 3D CRDE, the paths of the flow particles have only a small fluctuation in the circumferential direction. The numerical thermodynamic cycle processes are qualitatively consistent with the three ideal cycle models, and they are right in between the ideal F–J cycle and ideal ZND cycle. The net mechanical work and thermal efficiency are slightly smaller in the 2D simulation than in the 3D simulation. In the 3D CRDE, as the radius of the annulus increases, the net mechanical work is almost constant, and the thermal efficiency increases. The numerical thermal efficiencies are larger than F–J cycle, and much smaller than ZND cycle.
基金Supported by the National Natural Science Foundation of China(11072106,51005133,51375009)
文摘A novel path tracking controller for parallel parking based on active disturbance rejection control (ADRC) was presented in this paper. A second order ADRC controller was used to solve the path tracking robustness, which can estimate and compensate model uncertainty caused by steering kinematics and disturbances caused by parking speed and steering system delay. Collision-free path planning technology was adopted to generate the reference path. The simulation results validate that the performance of the proposed path tracking controller is better than the conventional PID controller. The actual vehicle tests show that the proposed path tracking controller is effective and robust to model uncertainty and disturbances.
基金the Natural Science Foundation of Guangxi(No.2020GXNSFDA238011)the Open Fund Project of Guangxi Key Laboratory of Automation Detection Technology and Instrument(No.YQ21203)the Independent Research Project of Guangxi Key Laboratory of Auto Parts and Vehicle Technology(No.2020GKLACVTZZ02)。
文摘Under ultra-high-speed and harsh conditions,conventional control methods struggle to ensure the path tracking accuracy and driving stability of unmanned vehicles during the turning process.Therefore,this study proposes a cascade control to solve this problem.Based on the new vehicle error model that considers vehicle tire sideslip and road curvature,the feedforward-parametric adaptive linear quadratic regulator(LQR)and proportional integral control-based speed-keeping controllers are used to compose the path-tracking cascade optimization controller for unmanned vehicles.To improve the adaptability of the unmanned vehicle path-tracking control under harsh driving conditions,the LQR controller parameters are automatically adjusted using a back-propagation neural network,in which the initial weights and thresholds are optimized using the improved grey wolf optimization algorithm according to the driving conditions.The speed-keeping controller reduces the impact on the curve-tracking accuracy under nonlinear vehicle speed variations.Finally,a joint model of MATLAB/Simulink and CarSim was established,and simulations show that the proposed control method can achieve stable entry and exit curves at ultra-high speeds for unmanned vehicles.Under strong wind and ice road conditions,the method exhibits a higher tracking accuracy and is more adaptive and robust to external interference in driving and variable curvature roads than methods such as the feedforward-LQR,preview and pure pursuit controls.
基金supported by The Natural Science Foundation of China(Grant No.51275002).
文摘To improve intelligent vehicle drive performance and avoid vehicle side-slip during target path tracking,a linearized four-wheel vehicle model is adopted as a predictive control model,and an intelligent ve-hicle target path tracking method based on a competitive cooperative game is proposed.The design variables are divided into different strategic spaces owned by each player by calculating the affecting factors of the design variables with objective functions and fuzzy clustering.Based on the competitive cooperative game model,each game player takes its payoff as a mono-objective to optimize its own strategic space and obtain the best strategy to deal with others.The best strategies were combined into the game strategy set.Considering the front wheel angle and side slip angle increment constraint,tire side-slip angle,and tire side slip deflection dynamics,it took the path tracking state model was used as the objective,function and the calculation was validated by competitive cooperative game theory.The results demonstrated the effectiveness of the proposed algorithm.The experimental results show that this method can track an intelligent vehicle quickly and steadily and has good real-time per-formance.
基金supported by the National Key R&D Program of China(Grant No.2022YFD2202102)the Key Laboratory of Modern Agricultural Intelligent Equipment in South China,Ministry of Agriculture and Rural Affairs,China.
文摘The continuous development of smart agriculture puts forward the requirement of high accuracy slope path tracking for the agricultural wheel-legged robot.Compared to flat terrain,path tracking control on sloped terrain faces the obstacle of motion instability of the wheel-legged robot induced by the slope gravitational force component,which causes instantaneous steering center to offset.To address this problem,this study proposed a slope path tracking control algorithm by combining the methods of virtual sensing radar and two-level neural network.Firstly,the kinematic and dynamic models of the wheel-legged robot are deduced,from which the crucial factors affecting control accuracy of slope path tracking are recognized.Secondly,this study constructs the slope path tracking control algorithm,in which the virtual sensing radar is utilized to realize route perception,and the two-level neural network is employed to provide drive motors’speeds to adapt to path tracking on different slopes.Furthermore,the corresponding compensation methods of the identified impacting factors are embedded in the proposed algorithm,including the lateral tracking deviation factor,heading angle deviation factor,slope change factor,and slip rate factor.Finally,the co-simulation model of slope path tracking control is constructed,including the multi-body dynamic model of the wheel-legged robot in RecurDyn and the proposed slope path tracking algorithm complied by Python.Subsequently,the simulation tests of the wheel-legged robot are carried out under various slope angles and velocities.The results reveal that the proposed algorithm’s effectiveness and accuracy are superior,with tracking errors reduced by more than 47.2%compared to an optimized pure pursuit algorithm.
基金supported by the National Natural Science Foundation of China No.E1102/52071108National Defense Science and Industry Bureau Stability Support Project No.JCKYS2020SXJQR-04Natural Science Foundation of Heilongjiang Province No.JJ2021JQ0075.
文摘Animals exhibit remarkable mobility and adaptability to their environments.Leveraging these advantages,various types of robots have been developed.To achieve path tracking control for the underwater hexapod robot,a path tracking control system has been designed.Within this system,a Line-of-Sight(LOS)guidance system is utilized to generate the desired heading angle during the path tracking process.A heading tracking controller and a speed tracking controller are designed based on the super-twisting sliding mode method.Fuzzy logic is employed to establish the nonlinear relationship between the output of the upper-level controller,which includes force/torque,and the input parameters of the Central Pattern Generator(CPG)network.Finally,the effectiveness of the proposed method is verified through simulation and experimentation.The results demonstrate that the robot exhibits good tracking accuracy,as well as stability and coordination in motion.The designed path tracking system enables the underwater hexapod robot to rapidly and accurately track the desired path.
基金the financial support of the National Key Research and Development Plan(No.2017YFB1301103)the National Natural Science Foundation of China(Nos.11922203,11772074,11761131005)the Fundamental Research Funds for the Central Universities(Nos.DUT19TD17,DUT19TB18)。
文摘As an important part in sortie/recovery process,the dispatch of carrier aircraft not only affects the sortie/recovery efficiency and safety,but also has severe influence on the carrier's combat efficiency and the comprehensive support capability.Path planning is the key to improve the efficiency and safety during the dispatch process.The main purpose of this paper is to propose a comprehensive investigation of techniques and research progress for the carrier aircraft's dispatch path planning on the deck.Three different dispatch modes of carrier aircraft and the corresponding modeling technologies are investigated,and the aircraft's dispatch path planning techniques and algorithms have been classified into different classes.Moreover,their assumptions and drawbacks have been discussed for single aircraft and multiple aircraft.To make the research work more comprehensive,the corresponding tracking control methodologies are also discussed.Finally,due to the similarity of path planning problem between the carrier aircraft's dispatch and those in other fields,this paper provides an exploratory prospect of the knowledge or method learned from other fields.
基金Supported by International Graduate Exchange Program of Beijing Institute of Technology。
文摘In order to investigate how model fidelity in the formulation of model predictive control(MPC)algorithm affects the path tracking performance,a bicycle model and an 8 degrees of freedom(DOF)vehicle model,as well as a 14-DOF vehicle model were employed to implement the MPC-based path tracking controller considering the constraints of input limit and output admissibility by using a lower fidelity vehicle model to control a higher fidelity vehicle model.In the MPC controller,the nonlinear vehicle model was linearized and discretized for state prediction and vehicle heading angle,lateral position and longitudinal position were chosen as objectives in the cost function.The wheel step steering and sine wave steering responses between the developed vehicle models and the Carsim model were compared for validation before implementing the model predictive path tracking control.The simulation results of trajectory tracking considering an 8-shaped curved reference path were presented and compared when the prediction model and the plant were changed.The results show that the trajectory tracking errors are small and the tracking performances of the proposed controller considering different complexity vehicle models are good in the curved road environment.Additionally,the MPC-based controller formulated with a high-fidelity model performs better than that with a low-fidelity model in the trajectory tracking.
文摘A tracking algorithm for multiple-maneuvering targets based on joint probabilistic data association(JPDA)is proposed to improve the accuracy for tracking algorithm of traditional multiple maneuvering targets.The interconnection probability of the two targets is calculated,the weighted value is processed and the target tracks are obtained.The simulation results show that JPDA algorithm achieves higher tracking accuracy and provides a basis for more targets tracking.
基金Supported by Qinghai University Youth Research Fund,China(Grant No.2023-QGY-15)。
文摘Due to errors in vehicle dynamics modeling,uncertainty in model parameters,and disturbances from curvature,the performance of the path tracking controller is poor or even unstable under high-speed and large-curvature conditions.Therefore,a path tracking robust control strategy based on force-driven H_(∞)and MPC is proposed.To fully exploit the nonlinear dynamics characteristics of tires,a force-driven state space model of a path tracking system based on a linear time-varying tire model is established;the H_(∞)and MPC methods are used to design a robust controller.Considering disturbance and system state constraints,the robust control constraint model based on LMI is established.Finally,the proposed controller is validated through joint simulations using CarSim and MATLAB.The results show that the maximum lateral deviation is reduced by 17.07%,and the maximum course angle deviation is reduced by 13.04%under large curvature disturbance conditions.The maximum lateral deviation is reduced by 27.85%,and the maximum course angle deviation is reduced by 31.17%under conditions of uncertain road adhesion coefficients.Based on the controller’s performance,the proposed controller effectively mitigates modeling errors,parameter uncertainties,and curvature disturbances.