To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba...To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.展开更多
The condensation tracking algorithm uses a prior transition probability as the proposal distribution, which does not make full use of the current observation. In order to overcome this shortcoming, a new face tracking...The condensation tracking algorithm uses a prior transition probability as the proposal distribution, which does not make full use of the current observation. In order to overcome this shortcoming, a new face tracking algorithm based on particle filter with mean shift importance sampling is proposed. First, the coarse location of the face target is attained by the efficient mean shift tracker, and then the result is used to construct the proposal distribution for particle propagation. Because the particles obtained with this method can cluster around the true state region, particle efficiency is improved greatly. The experimental results show that the performance of the proposed algorithm is better than that of the standard condensation tracking algorithm.展开更多
In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weake...In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weaken weight is proposed in the paper firstly.Combining with the object center weight based on the kernel function,the problem of interference of the similar color background can be solved.And then,a model updating strategy is presented to improve the tracking robustness on the influence of occlusion,illumination,deformation and so on.With the test on the sequence of Tiger,the proposed approach provides better performance than the original mean shift tracking algorithm.展开更多
To solve the mismatch between the candidate model and the reference model caused by the time change of the tracked head, a novel mean shift algorithm based on a fusion model is provided. A fusion model is employed to ...To solve the mismatch between the candidate model and the reference model caused by the time change of the tracked head, a novel mean shift algorithm based on a fusion model is provided. A fusion model is employed to describe the tracked head by sampling the models of the fore-head and the back-head under different situations. Thus the fusion head reference model is represented by the color distribution estimated from both the fore- head and the back-head. The proposed tracking system is efficient and it is easy to realize the goal of continual tracking of the head by using the fusion model. The results show that the new tracker is robust up to a 360°rotation of the head on a cluttered background and the tracking precision is improved.展开更多
The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrati...The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem.展开更多
The generic Meanshift is susceptible to interference of background pixels with the target pixels in the kernel of the reference model, which compromises the tracking performance. In this paper, we enhance the target c...The generic Meanshift is susceptible to interference of background pixels with the target pixels in the kernel of the reference model, which compromises the tracking performance. In this paper, we enhance the target color feature by attenuating the background color within the kernel through enlarging the pixel weightings which map to the pixels on the target. This way, the background pixel interference is largely suppressed in the color histogram in the course of constructing the target reference model. In addition, the proposed method also reduces the number of Meanshift iterations, which speeds up the algorithmic convergence. The two tests validate the proposed approach with improved tracking robustness on real-world video sequences.展开更多
Directed at the problem of occlusion in target tracking,a new improved algorithm based on the Meanshift algorithm and Kalman filter is proposed.The algorithm effectively combines the Meanshift algorithm with the Kalma...Directed at the problem of occlusion in target tracking,a new improved algorithm based on the Meanshift algorithm and Kalman filter is proposed.The algorithm effectively combines the Meanshift algorithm with the Kalman filtering algorithm to determine the position of the target centroid and subsequently adjust the current search window adaptively according to the target centroid position and the previous frame search window boundary.The derived search window is more closely matched to the location of the target,which improves the accuracy and reliability of tracking.The environmental influence and other influencing factors on the algorithm are also reduced.Through comparison and analysis of the experiments,the modified algorithm demonstrates good stability and adaptability,and can effectively solve the problem of large area occlusion and similar interference.展开更多
In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sampl...In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain.展开更多
In order to solve the model update problem in mean-shift based tracker, a novel mechanism is proposed. Kalman filter is employed to update object model by filtering object kernel-histogram using previous model and cur...In order to solve the model update problem in mean-shift based tracker, a novel mechanism is proposed. Kalman filter is employed to update object model by filtering object kernel-histogram using previous model and current candidate. A self-tuning method is used for adaptively adjust all the parameters of the filters under the analysis of the filtering residuals. In addition, hypothesis testing servers as the criterion for determining whether to accept filtering result. Therefore, the tracker has the ability to handle occlusion so as to avoid over-update. The experimental results show that our method can not only keep up with the object appearance and scale changes but also be robust to occlusion.展开更多
In order to improve the shift quality, a linear quadratic optimal tracking control algorithm for automatic transmission shift process is proposed. The dynamic equations of the shift process are derived using a Lagrang...In order to improve the shift quality, a linear quadratic optimal tracking control algorithm for automatic transmission shift process is proposed. The dynamic equations of the shift process are derived using a Lagrange method. And a powertrain model is built in the Matlab/Simulink and veri- fied by the measurements. Considering the shift jerk and friction loss during the shift process, the tracking trajectories of the turbine speed and output shaft speed are defined. Furthermore, the linear quadratic optimal tracking control performance index is proposed. Based on the Pontryagin' s mini- mum principle, the optimal control law of the shift process is presented. Finally, the simulation study of the 1 - 2 upshift process under different load conditions is carried out with the powertrain model. The simulation results demonstrate that the shift jerk and friction loss can be significantly re- duced by applying the proposed optimal tracking control method.展开更多
A tracking algorithm based on improved Camshift and UKF is proposed in this paper to deal with the problems which exist in traditional Camshift algorithm, such as artificial orientation and tracking failure under colo...A tracking algorithm based on improved Camshift and UKF is proposed in this paper to deal with the problems which exist in traditional Camshift algorithm, such as artificial orientation and tracking failure under color interference as well as object’s changed illumination occlusion. Meanwhile, in order to solve the sheltered problem, the UKF is combined with improved Camshift algorithm to predict the position of the target effectively. Experiment results show that the proposed algorithm can avoid the interference of the background color and solve the sheltered problem of the object, so that achieving a precise and timely tracking of moving objects. Also it has better robustness to color noises and occlusion when the object’s scale changes and deformation occurs.展开更多
The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical m...The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical modeling of the electrohydraulic lifting system and the rubber hose was accomplished according to an electrohydraulic lifting test rig built in the laboratory.Then,valve compensation strategy,including spool opening compensation (SOC) and dead zone compensation (DZC),was designed based on the flow-pressure characteristic of a closed-centered proportional valve.Comparative experiments on point-to-point trajectory tracking between a proportional controller with the proposed compensations and a traditional PI controller were conducted.Experiment results show that the maximal absolute values of the tracking error are reduced from 0.039 m to 0.019 m for the slow point-to-point motion trajectory and from 0.085 m to 0.054 m for the fast point-to-point motion trajectory with the proposed compensations.Moreover,tracking error of the proposed controller was analyzed and corresponding suggestions to reduce the tracking error were put forward.展开更多
Focusing on the failure under the condition of target blocking, the similarity between target color and background color for the Camshift algorithm, an improved algorithm based on Camshift algorithm is proposed. Gauss...Focusing on the failure under the condition of target blocking, the similarity between target color and background color for the Camshift algorithm, an improved algorithm based on Camshift algorithm is proposed. Gaussian mixture model is used to determine the tracking area fast and accurately because it is not sensitive to the external conditions such as light and shadow. Kalman predictor is used to predict the blocked target effectively. The video is processed in the MATLAB environment. The moving target can be tracked and its position can be predicted accurately with the proposed improved algorithm. The results verify the feasibility and effectiveness of the algorithm.展开更多
Mean shift,an iterative procedure that shifts each data point to the average of data points in its neighborhood,has been applied to object tracker.However,the traditional mean shift tracker by isotropic kernel often l...Mean shift,an iterative procedure that shifts each data point to the average of data points in its neighborhood,has been applied to object tracker.However,the traditional mean shift tracker by isotropic kernel often loses the object with the changing object structure in video sequences,especially when the object structure varies fast.This paper proposes a non-rigid object tracker by anisotropic kernel mean shift in which the shape,scale,and orientation of the kernels adapt to the changing object structure.The experimental results show that the new tracker is self-adaptive and approximately twice faster than the traditional tracker,which ensures the robustness and real time of tracking.展开更多
In this paper, we propose multiple CAMShift Algorithm based on Kalman filter and weighted search windows that extracts skin color area and tracks several human body parts for real-time human tracking system. The CAMSh...In this paper, we propose multiple CAMShift Algorithm based on Kalman filter and weighted search windows that extracts skin color area and tracks several human body parts for real-time human tracking system. The CAMShift Algorithm we propose searches the skin color region by detecting the skin color area from background model. Kalman filter stabilizes the floated search area of CAMShift Algorithm. Each occlusion areas are avoided by using weighted window of non-search areas and main-search area. And shadows are eliminated from background model and intensity of shadow. The proposed modified Camshaft algorithm can estimate human pose in real-time and achieves 96.82% accuracy even in the case of occlusions.展开更多
This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors ...This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors which exist in our smartphones such as accelerometer, gyroscope, magnetometer etc. to track the position for painting in virtual reality, like Google Tilt Brush, but cost effectively. Research studies till date on estimating position and localization and tracking have been thoroughly reviewed to find the appropriate algorithm which will provide accurate result with minimum drift error. Sensor fusion, Inertial Measurement Unit (IMU), MEMS inertial sensor, Kalman filter based global translational localization systems are studied. It is observed, prevailing approaches consist issues such as stability, random bias drift, noisy acceleration output, position estimation error, robustness or accuracy, cost effectiveness etc. Moreover, issues with motions that do not follow laws of physics, bandwidth, restrictive nature of assumptions, scale optimization for large space are noticed as well. Advantages of such smartphone sensor based position estimation approaches include, less memory demand, very fast operation, making them well suited for real time problems and embedded systems. Being independent of the size of the system, they can work effectively for high dimensional systems as well. Through study of these approaches it is observed, extended Kalman filter gives the highest accuracy with reduced requirement of excess hardware during tracking. It renders better and faster result when used in accelerometer sensor. With the aid of various software, error accuracy can be increased further as well.展开更多
目的:对两个非综合征型唇腭裂家系中筛查到的IFT172(intraflagellar transport 172)基因突变进行功能分析,进一步明确IFT172在唇腭裂中的致病机制。方法:对前期工作中鉴定的IFT172突变进行保守性分析和蛋白质结构预测。构建野生型和突...目的:对两个非综合征型唇腭裂家系中筛查到的IFT172(intraflagellar transport 172)基因突变进行功能分析,进一步明确IFT172在唇腭裂中的致病机制。方法:对前期工作中鉴定的IFT172突变进行保守性分析和蛋白质结构预测。构建野生型和突变体质粒,转染人胚胎腭板间充质细胞(human embryonic palatal mesenchyme, HEPM),进行转录组测序并对差异表达基因进行分析。结果:IFT172基因中的两个错义突变位点,c.4163A>G(p.Y1388C)和c.1507A>G(p.R503G),在物种间均高度保守,两个突变均导致蛋白质空间构象改变。转录组测序结果显示,差异表达基因富集于坏死性凋亡、调控细胞多能性等信号通路。结论:IFT172基因错义突变可能通过改变蛋白质构象,影响细胞凋亡和细胞多能性并参与唇腭裂的发生。展开更多
Tracking moving target from image or video sequence is a hot research topic in computer vision. An algorithm based on LogGabor wavelet and Mean-shift has been proposed for moving target tracking under fixed camera set...Tracking moving target from image or video sequence is a hot research topic in computer vision. An algorithm based on LogGabor wavelet and Mean-shift has been proposed for moving target tracking under fixed camera setting and complicated environment. Phase coherency of LogGabor wavelet facilitates to extract the edge of moving target and check noise. According to the edge detection,the starting location of Mean-shift can be estimated using the target center coordinate. Eventually,a real-time moving target can be extracted by doing iterative matching pursuit,and experimental results proved the effectiveness of the method proposed.展开更多
基金supported by the confidential research grant No.a8317。
文摘To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.
基金The National Natural Science Foundation of China(No60672094)
文摘The condensation tracking algorithm uses a prior transition probability as the proposal distribution, which does not make full use of the current observation. In order to overcome this shortcoming, a new face tracking algorithm based on particle filter with mean shift importance sampling is proposed. First, the coarse location of the face target is attained by the efficient mean shift tracker, and then the result is used to construct the proposal distribution for particle propagation. Because the particles obtained with this method can cluster around the true state region, particle efficiency is improved greatly. The experimental results show that the performance of the proposed algorithm is better than that of the standard condensation tracking algorithm.
基金National Natural Science Foundation of China(No.61201412)
文摘In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weaken weight is proposed in the paper firstly.Combining with the object center weight based on the kernel function,the problem of interference of the similar color background can be solved.And then,a model updating strategy is presented to improve the tracking robustness on the influence of occlusion,illumination,deformation and so on.With the test on the sequence of Tiger,the proposed approach provides better performance than the original mean shift tracking algorithm.
基金The National Natural Science Foundation of China(No.60672094,60673188,U0735004)the National High Technology Research and Development Program of China(863 Program)(No.2008AA01Z303)the National Basic Research Program of China (973 Program)(No.2009CB320804)
文摘To solve the mismatch between the candidate model and the reference model caused by the time change of the tracked head, a novel mean shift algorithm based on a fusion model is provided. A fusion model is employed to describe the tracked head by sampling the models of the fore-head and the back-head under different situations. Thus the fusion head reference model is represented by the color distribution estimated from both the fore- head and the back-head. The proposed tracking system is efficient and it is easy to realize the goal of continual tracking of the head by using the fusion model. The results show that the new tracker is robust up to a 360°rotation of the head on a cluttered background and the tracking precision is improved.
基金supported by the Fundamental Research Funds for the Central Universities Project(CDJZR10170010)
文摘The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem.
基金Supported by the Program for Technology Innovation Team of Ningbo Government (No. 2011B81002)the Ningbo University Science Research Foundation (No.xkl11075)
文摘The generic Meanshift is susceptible to interference of background pixels with the target pixels in the kernel of the reference model, which compromises the tracking performance. In this paper, we enhance the target color feature by attenuating the background color within the kernel through enlarging the pixel weightings which map to the pixels on the target. This way, the background pixel interference is largely suppressed in the color histogram in the course of constructing the target reference model. In addition, the proposed method also reduces the number of Meanshift iterations, which speeds up the algorithmic convergence. The two tests validate the proposed approach with improved tracking robustness on real-world video sequences.
基金Supported by the Scholarship of China Scholarship Council(CSC)(201606935043)
文摘Directed at the problem of occlusion in target tracking,a new improved algorithm based on the Meanshift algorithm and Kalman filter is proposed.The algorithm effectively combines the Meanshift algorithm with the Kalman filtering algorithm to determine the position of the target centroid and subsequently adjust the current search window adaptively according to the target centroid position and the previous frame search window boundary.The derived search window is more closely matched to the location of the target,which improves the accuracy and reliability of tracking.The environmental influence and other influencing factors on the algorithm are also reduced.Through comparison and analysis of the experiments,the modified algorithm demonstrates good stability and adaptability,and can effectively solve the problem of large area occlusion and similar interference.
文摘In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain.
文摘In order to solve the model update problem in mean-shift based tracker, a novel mechanism is proposed. Kalman filter is employed to update object model by filtering object kernel-histogram using previous model and current candidate. A self-tuning method is used for adaptively adjust all the parameters of the filters under the analysis of the filtering residuals. In addition, hypothesis testing servers as the criterion for determining whether to accept filtering result. Therefore, the tracker has the ability to handle occlusion so as to avoid over-update. The experimental results show that our method can not only keep up with the object appearance and scale changes but also be robust to occlusion.
基金Supported by the National Natural Science Foundation of China(51475043)
文摘In order to improve the shift quality, a linear quadratic optimal tracking control algorithm for automatic transmission shift process is proposed. The dynamic equations of the shift process are derived using a Lagrange method. And a powertrain model is built in the Matlab/Simulink and veri- fied by the measurements. Considering the shift jerk and friction loss during the shift process, the tracking trajectories of the turbine speed and output shaft speed are defined. Furthermore, the linear quadratic optimal tracking control performance index is proposed. Based on the Pontryagin' s mini- mum principle, the optimal control law of the shift process is presented. Finally, the simulation study of the 1 - 2 upshift process under different load conditions is carried out with the powertrain model. The simulation results demonstrate that the shift jerk and friction loss can be significantly re- duced by applying the proposed optimal tracking control method.
文摘A tracking algorithm based on improved Camshift and UKF is proposed in this paper to deal with the problems which exist in traditional Camshift algorithm, such as artificial orientation and tracking failure under color interference as well as object’s changed illumination occlusion. Meanwhile, in order to solve the sheltered problem, the UKF is combined with improved Camshift algorithm to predict the position of the target effectively. Experiment results show that the proposed algorithm can avoid the interference of the background color and solve the sheltered problem of the object, so that achieving a precise and timely tracking of moving objects. Also it has better robustness to color noises and occlusion when the object’s scale changes and deformation occurs.
基金Project(2006CB705400)supported by the National Basic Research Program of China
文摘The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical modeling of the electrohydraulic lifting system and the rubber hose was accomplished according to an electrohydraulic lifting test rig built in the laboratory.Then,valve compensation strategy,including spool opening compensation (SOC) and dead zone compensation (DZC),was designed based on the flow-pressure characteristic of a closed-centered proportional valve.Comparative experiments on point-to-point trajectory tracking between a proportional controller with the proposed compensations and a traditional PI controller were conducted.Experiment results show that the maximal absolute values of the tracking error are reduced from 0.039 m to 0.019 m for the slow point-to-point motion trajectory and from 0.085 m to 0.054 m for the fast point-to-point motion trajectory with the proposed compensations.Moreover,tracking error of the proposed controller was analyzed and corresponding suggestions to reduce the tracking error were put forward.
文摘Focusing on the failure under the condition of target blocking, the similarity between target color and background color for the Camshift algorithm, an improved algorithm based on Camshift algorithm is proposed. Gaussian mixture model is used to determine the tracking area fast and accurately because it is not sensitive to the external conditions such as light and shadow. Kalman predictor is used to predict the blocked target effectively. The video is processed in the MATLAB environment. The moving target can be tracked and its position can be predicted accurately with the proposed improved algorithm. The results verify the feasibility and effectiveness of the algorithm.
基金Supported by National Natural Science Foundation of China(No.30300088).
文摘Mean shift,an iterative procedure that shifts each data point to the average of data points in its neighborhood,has been applied to object tracker.However,the traditional mean shift tracker by isotropic kernel often loses the object with the changing object structure in video sequences,especially when the object structure varies fast.This paper proposes a non-rigid object tracker by anisotropic kernel mean shift in which the shape,scale,and orientation of the kernels adapt to the changing object structure.The experimental results show that the new tracker is self-adaptive and approximately twice faster than the traditional tracker,which ensures the robustness and real time of tracking.
文摘In this paper, we propose multiple CAMShift Algorithm based on Kalman filter and weighted search windows that extracts skin color area and tracks several human body parts for real-time human tracking system. The CAMShift Algorithm we propose searches the skin color region by detecting the skin color area from background model. Kalman filter stabilizes the floated search area of CAMShift Algorithm. Each occlusion areas are avoided by using weighted window of non-search areas and main-search area. And shadows are eliminated from background model and intensity of shadow. The proposed modified Camshaft algorithm can estimate human pose in real-time and achieves 96.82% accuracy even in the case of occlusions.
文摘This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors which exist in our smartphones such as accelerometer, gyroscope, magnetometer etc. to track the position for painting in virtual reality, like Google Tilt Brush, but cost effectively. Research studies till date on estimating position and localization and tracking have been thoroughly reviewed to find the appropriate algorithm which will provide accurate result with minimum drift error. Sensor fusion, Inertial Measurement Unit (IMU), MEMS inertial sensor, Kalman filter based global translational localization systems are studied. It is observed, prevailing approaches consist issues such as stability, random bias drift, noisy acceleration output, position estimation error, robustness or accuracy, cost effectiveness etc. Moreover, issues with motions that do not follow laws of physics, bandwidth, restrictive nature of assumptions, scale optimization for large space are noticed as well. Advantages of such smartphone sensor based position estimation approaches include, less memory demand, very fast operation, making them well suited for real time problems and embedded systems. Being independent of the size of the system, they can work effectively for high dimensional systems as well. Through study of these approaches it is observed, extended Kalman filter gives the highest accuracy with reduced requirement of excess hardware during tracking. It renders better and faster result when used in accelerometer sensor. With the aid of various software, error accuracy can be increased further as well.
文摘Tracking moving target from image or video sequence is a hot research topic in computer vision. An algorithm based on LogGabor wavelet and Mean-shift has been proposed for moving target tracking under fixed camera setting and complicated environment. Phase coherency of LogGabor wavelet facilitates to extract the edge of moving target and check noise. According to the edge detection,the starting location of Mean-shift can be estimated using the target center coordinate. Eventually,a real-time moving target can be extracted by doing iterative matching pursuit,and experimental results proved the effectiveness of the method proposed.