期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Sensitive factors research for track-bridge interaction of Long-span X-style steel-box arch bridge on high-speed railway 被引量:9
1
作者 刘文硕 戴公连 何旭辉 《Journal of Central South University》 SCIE EI CAS 2013年第11期3314-3323,共10页
X-style arch bridge on high-speed railways(HSR)is one kind of complicated long-span structure,and the track-bridge interaction is essential to ensure the safety and smoothness of HSR.Taking an X-style steel-box arch b... X-style arch bridge on high-speed railways(HSR)is one kind of complicated long-span structure,and the track-bridge interaction is essential to ensure the safety and smoothness of HSR.Taking an X-style steel-box arch bridge with a main span of450 m on HSR under construction for example,a new integrative mechanic model of rail-stringer-cross beam-suspenderpier-foundation coupling system was established,adopting the nonlinear spring element simulating the longitudinal resistance between track and bridge.The transmission law of continuous welded rail(CWR)on the X-style arch bridge was researched,and comparative study was carried out to discuss the influence of several sensitive factors,such as the temperature load case,the longitudinal resistance model,the scheme of longitudinal restraint conditions,the introverted inclination of arch rib,the stiffness of pier and abutment and the location of the rail expansion device.Calculating results indicate that the longitudinal resistance has a significant impact upon the longitudinal forces of CWR on this kind of bridge,while the arch rib’s inclination has little effect.Besides,temperature variation of arch ribs and suspenders should be taken into account in the calculation.Selecting the restraint system without longitudinally-fixed bearing and setting the rail expansion devices on both ends are more reasonable. 展开更多
关键词 high-speed railway track-bridge interaction X-style steel-box arch bridge continuous welded rail
在线阅读 下载PDF
Influence of mortar gap on natural vibration frequencies of high-speed railway track-bridge system 被引量:4
2
作者 LIU Shao-hui JIANG Li-zhong +1 位作者 ZHOU Wang-bao FENG Yu-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2807-2819,共13页
Based on Hamilton’s principle, the differential equations of free vibration of track-bridge systems with mortar gap are derived. Hence, a method for calculating the natural frequencies of track-bridge systems is prop... Based on Hamilton’s principle, the differential equations of free vibration of track-bridge systems with mortar gap are derived. Hence, a method for calculating the natural frequencies of track-bridge systems is proposed. The influence of the flexural stiffness of the track-bridge system, the vertical and longitudinal stiffness of the mortar layer,gap position and gap length on the natural frequencies of a track-bridge system is discussed. The results show that the natural frequencies of the track-bridge system are more sensitive to the change of the flexural stiffness of the bridge layer. The change of the longitudinal stiffness of the mortar layer and gap position has no obvious effect on the trackbridge system’s natural frequencies, while the interlayer vertical stiffness has a larger impact. The gap length has a more significant effect on the 4th-5th order natural frequencies of the track-bridge system. The range of the natural frequencies that are affected by the gap widens as the gap length increases. 展开更多
关键词 shear deformation track-bridge system mortar gap vibration frequencies
在线阅读 下载PDF
Influence of the Randomness of Longitudinal Resistance of Ballast Bed on Track-Bridge Interaction
3
作者 Weiwu Dai Yunfei Zhang +1 位作者 Bowen Liu Kaize Xie 《Engineering(科研)》 2023年第11期729-741,共13页
To get the influence of the randomness of longitudinal resistance of ballast bed (LRBB) on track-bridge interaction, the statistical law of LRBB was studied with existing test data and the Shapiro-Wilk test. Based on ... To get the influence of the randomness of longitudinal resistance of ballast bed (LRBB) on track-bridge interaction, the statistical law of LRBB was studied with existing test data and the Shapiro-Wilk test. Based on the principle of track-bridge interaction, a rail-sleeper-bridge-pier integrated simulation model that could consider the randomness of LRBB was established. Taking a continuous beam bridge for the heavy-haul railway as an example, the effect of the randomness of LRBB on the mechanical behavior of continuous welded rail (CWR) on bridges under typical conditions was carefully examined with a random sampling method and the simulation model. The results show that the LRBB corresponding sleeper displacement of 2 mm obeys a normal distribution. When the randomness of LRBB is considered, the amplitudes of rail expansion force, rail bending force, rail braking force and rail broken gap all follow normal distribution. As the standard deviations of the four indexes are small, which indicates the randomness of LRBB has little effect on track-bridge interaction. The distributions of the four indexes make it possible to design CWR on bridges with the limit state method. 展开更多
关键词 Continuous Welded Rail track-bridge Interaction Longitudinal Resistance of Ballast Bed Normal Distribution
在线阅读 下载PDF
Effects of X-shaped Energy Dissipating Steel Dampers on the seismic response of high-speed railway track-bridge systems considering costs
4
作者 Liqiang JIANG Xiaozhi LIU +2 位作者 Yingqi YAN Lizhong JIANG Yi HU 《Frontiers of Structural and Civil Engineering》 2025年第4期663-679,共17页
The high-speed railway track-bridge system(HSRTBS)is susceptible to damage under the effects of earthquakes,thus threatening the safety of running trains.To improve the seismic performance of HSRTBS and reduce damage ... The high-speed railway track-bridge system(HSRTBS)is susceptible to damage under the effects of earthquakes,thus threatening the safety of running trains.To improve the seismic performance of HSRTBS and reduce damage to the system,a replaceable X-shaped Energy Dissipating Steel Damper(X-EDSD)is proposed,which contains the energy-dissipating component(EDC)to dissipate the earthquake energy.Cyclic tests were performed to obtain the hysteretic performance of the EDC and X-EDSD,and a test-validated numerical model was developed to conduct parametric analyses.The X-EDSD was simplified as a nonlinear spring element with hysteretic parameters and modeled into the numerical model of the HSRTBS for seismic dynamic analyses.The peak displacements of girder and rail decreased by approximately 48.1%and 47.7%,respectively.The peak deflections of the fasteners,cement asphalt mortar layer and sliding layer were reduced by 70.4%,70.8%,and 86.1%,respectively.A comprehensive consideration of the system response control-economic cost ratio coefficient R_(pe)is proposed,and the optimal thickness of 14.94 mm is obtained by applying cubic term coefficient fitting according to 5 groups of steel plate thickness data for the specific case study in this paper.The method can be used for cost-informed X-EDSD-selection for seismic mitigation of HSRTBS. 展开更多
关键词 X-shaped energy dissipating steel damper quasi-static test high-speed railway track-bridge system system response control-economic cost ratio coefficient
原文传递
Elastoplastic bridge deck response spectra of high-speed railway simply-supported girder bridge with CRTS Ⅱ track system 被引量:1
5
作者 LIU Bo-lun HE Chang +2 位作者 LAI Zhi-peng JIANG Li-zhong LI Dong-ping 《Journal of Central South University》 CSCD 2024年第11期4174-4186,共13页
The seismic damage to ancillary facilities on high-speed railway(HSR)bridges can affect the normal movement of trains.To propose the bridge deck acceleration response spectra of the typical HSR simply-supported girder... The seismic damage to ancillary facilities on high-speed railway(HSR)bridges can affect the normal movement of trains.To propose the bridge deck acceleration response spectra of the typical HSR simply-supported girder bridge for simplifying the seismic responses analysis of the facilities on bridges,the finite element models of the HSR multi-span simply-supported girder bridges with CRTSII track were established,and the numerical model was validated by tests.Besides,the effects of the span number,peak ground acceleration(PGA),pier height on the seismic acceleration and response spectra of the bridge deck were investigated.Afterward,the bridge acceleration amplification factor curves and bridge deck response spectra with different PGAs and pier heights were obtained.The formula for bridge deck acceleration amplification factor,with a 95%guarantee rate,was fitted.Moreover,the finite element models of the overhead contact lines(OCL)mounted on rigid base and bridges were established to validate the fitted formula.The results indicated that the maximum seismic acceleration response is in the midspan of the beam.The proposed formula for the bridge deck acceleration response spectra can be used to analyze the earthquake response of the OCL and other ancillary facilities on HSR simply-supported girder bridges.The bridge deck acceleration response spectra are conservative in terms of structural safety and can significantly improving the analysis efficiency. 展开更多
关键词 high-speed railway CRT SⅡtrack-bridge system bridge deck acceleration response spectra overhead contact line seismic amplification effect
在线阅读 下载PDF
Innovative approaches in high-speed railway bridge model simplification for enhanced computational efficiency
6
作者 ZHOU Wang-bao XIONG Li-jun +1 位作者 JIANG Li-zhong ZHONG Bu-fan 《Journal of Central South University》 CSCD 2024年第11期4203-4217,共15页
In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by p... In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by presenting a simplified bridge model(SBM)optimized for both computational efficiency and precise representation,a seminal contribution to the engineering design landscape.Central to this innovation is a novel model-updating methodology that synergistically melds artificial neural networks with an augmented particle swarm optimization.The neural networks adeptly map update parameters to seismic responses,while enhancements to the particle swarm algorithm’s inertial and learning weights lead to superior SBM parameter updates.Verification via a 4-span high-speed railway bridge revealed that the optimized SBM and TBSM exhibit a highly consistent structural natural period and seismic response,with errors controlled within 7%.Additionally,the computational efficiency improved by over 100%.Leveraging the peak displacement and shear force residuals from the seismic TBSM and SBM as optimization objectives,SBM parameters are adeptly revised.Furthermore,the incorporation of elastoplastic springs at the beam ends of the simplified model effectively captures the additional mass,stiffness,and constraint effects exerted by the track system on the bridge structure. 展开更多
关键词 high-speed railway bridge engineering track-bridge system model simplified bridge model artificial neural networks particle swarm optimization seismic analysis
在线阅读 下载PDF
Longitudinal force in continuously welded rail on long-span tied arch continuous bridge carrying multiple tracks 被引量:20
7
作者 闫斌 戴公连 +1 位作者 郭文华 徐庆元 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期2001-2006,共6页
Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete ... Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete composite section beam element to simulate concrete-filled steel tube(CFST) arch rib, using the beam element with rigid arm to simulate the prestressed concrete girder and using nonlinear bar element to simulate longitudinal constraint between track and bridge. Taking a(77+3×156.8+77) m tied arch continuous bridge with four tracks on the Harbin-Qiqihar Passenger Dedicated Line as an example, the arrangement of continuously welded rail(CWR) was explored. The longitudinal force in CWR on the tied arch continuous bridge, the pier top horizontal force and torque due to the unbalance load case, were analyzed under the action of temperature, vertical live load, train braking and wind load.Studies show that, it can significantly reduce track displacement to set the track expansion devices at main span arch springing on both sides; the track stress due to arch temperature variation can reach 40.8 MPa; the track stress, pier top horizontal force and torque are related to the number of loaded tracks and train running direction, and the bending force applied to unloaded track is close to the loaded track, while the braking force applied to unloaded track is 1/4 to 1/2 of the loaded track; the longitudinal force of track due to the wind load is up to 12.4 MPa, which should be considered. 展开更多
关键词 railroad bridge long-span bridge tied arch continuous beam continuously welded rail track-bridge interaction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部