This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administratio...This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administration.The analysis reveals systematic improvements in both track and intensity forecasts over the decade,with distinct error characteristics observed across various forecast parameters.Track forecast errors have steadily decreased,particularly for longer lead times,while error magnitudes have increased with longer forecast lead times.Intensity forecasts show similar progressive enhancements,with maximum sustained wind speed errors decreasing by 0.26 m/s per year for 120 h forecasts.The study also identifies several key patterns in forecast performance:typhoon-grade or stronger TCs exhibit smaller track errors than week or weaker systems;intensity forecasts systematically overestimate weaker TCs while underestimating stronger systems;and spatial error distributions show greater track inaccuracies near landmasses and regional intensity biases.These findings highlight both the significant advances in TC forecasting capability achieved through improved modeling and observational systems,and the remaining challenges in predicting TC changes and landfall behavior,providing valuable benchmarks for future forecast system development.展开更多
To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba...To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.展开更多
As one of the major high-speed railway ballastless track structures in China,CRTSIII slab ballastless track has been laid for more than 6500 km.However,there are no detailed studies on its track irregularity deteriora...As one of the major high-speed railway ballastless track structures in China,CRTSIII slab ballastless track has been laid for more than 6500 km.However,there are no detailed studies on its track irregularity deterioration throughout extended service periods,which may threaten the safety and stability of high-speed vehicles(HSV).In this study,a long-term tracking detection of CRTSIII slab ballastless track irregularities has been conducted,revealing its annual evolution law.An HSV-track coupled dynamics model was established to investigate the HSV dynamic responses under annual evolution of track irregularities.Considering the potential deterioration of track irregularities to extremely bad condition,the recommended classified limits for irregularity are proposed by analyzing the limit-exceeding probability of the safety and stability indexes of HSV.The results show that:taking 10 m wavelength as a demarcation,longer-wavelength irregularities exhibit larger amplitudes,faster evolution rates and a linear increasing trend,primarily affecting the stability of HSV.Conversely,shorter-wavelength irregularities exhibit smaller amplitudes and an insignificant evolution trend,predominantly affecting the safety of HSV.Furthermore,the periodic irregularity induced by the arching of 32 m simply-supported beam bridge should be paid closer attention to,as their evolution rate significantly surpasses that of irregularities at other wavelengths.展开更多
A novel efficient track initiation method is proposed for the harsh underwater target tracking environment(heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method(TSEPM). T...A novel efficient track initiation method is proposed for the harsh underwater target tracking environment(heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method(TSEPM). Track initiation demands that the method should determine the existence and initial state of a target quickly and correctly.Heavy clutter and large measurement errors certainly pose additional difficulties and challenges, which deteriorate and complicate the track initiation in the harsh underwater target tracking environment. There are three primary shortcomings for the current track initiation methods to initialize a target:(a) they cannot eliminate the turbulences of clutter effectively;(b) there may be a high false alarm probability and low detection probability of a track;(c) they cannot estimate the initial state for a new confirmed track correctly. Based on the multiple hypotheses tracking principle and modified logic-based track initiation method, in order to increase the detection probability of a track,track splitting creates a large number of tracks which include the true track originated from the target. And in order to decrease the false alarm probability, based on the evaluation mechanism, track pruning and track merging are proposed to reduce the false tracks. TSEPM method can deal with the track initiation problems derived from heavy clutter and large measurement errors, determine the target’s existence and estimate its initial state with the least squares method. What’s more, our method is fully automatic and does not require any kind manual input for initializing and tuning any parameter. Simulation results indicate that our new method improves significantly the performance of the track initiation in the harsh underwater target tracking environment.展开更多
Deep-sea mining has emerged as a critical solution to address global resource shortages;however,the mechanical interaction between tracked mining vehicles(TMVs)and soft seabed sediments presents fundamental engineerin...Deep-sea mining has emerged as a critical solution to address global resource shortages;however,the mechanical interaction between tracked mining vehicles(TMVs)and soft seabed sediments presents fundamental engineering challenges.This study establishes a multiscale modelling framework coupling the discrete element method(DEM)with multi-body dynamics(MBD)to investigate track-seabed dynamic interactions across three operational modes:flat terrain,slope climbing,and ditch surmounting.The simulation framework,validated against laboratory experiments,systematically evaluates the influence of grouser geometry(involute,triangular,and pin-type)and traveling speed(0.2–1.0 m/s)on traction performance,slip rate,and ground pressure distribution.Results reveal rate-dependent traction mechanisms governed by soil microstructural responses:higher speeds enhance peak traction but exacerbate slip instability on complex terrain.Critical operational thresholds are established—0.7 m/s for flat terrain,≤0.5 m/s for slopes and ditches—with distinct grouser optimization strategies:involute grousers achieve 35%–40%slip reduction on slopes through progressive soil engagement,while triangular grousers provide optimal impact resistance during ditch crossing with 30%–35%performance improvement.These findings provide quantitative design criteria and operational guidelines for optimizing TMV structural parameters and control strategies,offering a robust theoretical foundation for enhancing the performance,safety,and reliability of deep-sea mining equipment in complex submarine environments.展开更多
Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable track...Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.展开更多
Rolling noise is an important source of railway noise and depends also on the dynamic behaviour of a railway track.This is characterized by the point or transfer mobility and the track decay rate,which depend on a num...Rolling noise is an important source of railway noise and depends also on the dynamic behaviour of a railway track.This is characterized by the point or transfer mobility and the track decay rate,which depend on a number of track parameters.One possible reason for deviations between simulated and measured results for the dynamic track behaviour is the uncertainty of the value of some track parameters used as input for the simulation.This in turn results in an uncertainty in the simulation results.In this contribution,it is proposed to use the general transformation method to assess a uncertainty band for the results.Most relevant input parameters for determining the point input mobility and the track decay rate for a ballasted track are analysed with regard to the uncertainties and for the value of each an interval is determined.Then,the general transformation method is applied to four different simulation methods,working both in the frequency and time domains.For one example track,the resulting uncertainty bands are compared to one dataset with measurements for the point mobility and the track decay rate.In addition,a sensitivity analysis is performed to determine the parameters that significantly influence the overall result.While all four simulation methods produce broad uncertainty bands for the results,none did match the measured results for the point mobility and the track decay rate over the entire frequency range considered.Besides the large influence of the uncertain pad stiffness,it turned out that the rail wear is also a significant source of uncertainty of the results.Overall,it is demonstrated that the proposed approach allows assessing the influence of uncertain input parameters in detail.展开更多
Purpose–MxV Rail conducted multiple single tie push tests(STPTs)between 2020 and 2023 to assess the changes in lateral tie resistance from tonnage accumulation,dynamic track stabilizers(DTS),tie type and ballast cond...Purpose–MxV Rail conducted multiple single tie push tests(STPTs)between 2020 and 2023 to assess the changes in lateral tie resistance from tonnage accumulation,dynamic track stabilizers(DTS),tie type and ballast condition.High lateral tie resistance is necessary for preventing lateral misalignments and track buckles.Therefore,understanding how various factors affect the lateral tie resistance will aid in the development of track buckling risk assessments and ballast maintenance best practices.Design/methodology/approach–The test involved tamping a section of track that consisted of both concrete and wood ties and then increasing the lateral tie resistance,using either tonnage during speed restrictions or a DTS.The STPTs and top-of-rail(TOR)elevation measurements were taken at multiple stages,including immediately after tamping and then after different tonnage increments or DTS.The results from this test were then added to a compiled measurement from previous tests,and the results from all the tests were used to develop general guidelines for ballast maintenance best practices and trade-off considerations.Findings–The results showed multiple factors affect the lateral track strength and therefore the susceptibility to misalignments and track buckles.The disturbance from ballast tamping can reduce the lateral track strength by 20–80%(∼45%median)and can be compacted from either tonnage(25–50%regain in strength after 0.1 m gross ton or MGT)or DTS(33–78%regain in strength).The amount of ballast(shoulder width and crib height),tie type and ballast characteristics all have a meaningful role in lateral track strength.Originality/value–This paper is based on the testing programs conducted by authors at MxV Rail.展开更多
Reconstructing the trajectories of charged particles in high-energy physics experiments is a complex task,particularly for long-lived particles.At the future Super Tau-Charm Facility(STCF),such particles are expected ...Reconstructing the trajectories of charged particles in high-energy physics experiments is a complex task,particularly for long-lived particles.At the future Super Tau-Charm Facility(STCF),such particles are expected to appear in several key benchmark physics processes.A Common Tracking Software was used to reconstruct the trajectories of long-lived particles,revealing that the track-finding performance of the widely used combinatorial Kalman filter is limited by its seeding algorithm.This limitation can be mitigated by guiding the combinatorial Kalman filter using initial tracks provided by the Hough transform.The track-finding performance of the combined Hough transform and combinatorial Kalman filter was evaluated using the process J∕ψ→Λ(→pπ−)Λ(→pπ+)at STCF.展开更多
Cracking of early-age concrete can occur in the track beds of high-speed railways due to changes in material properties,environmental effects,and construction processes.This is a multi-field,time-varying issue involvi...Cracking of early-age concrete can occur in the track beds of high-speed railways due to changes in material properties,environmental effects,and construction processes.This is a multi-field,time-varying issue involving hydro-thermo-chemo-mechanical coupling.However,to date,research has not adequately described the early-age cracking mechanisms in track beds,and few risk control measures have been proposed.To solve this problem,we incorporated the hydration degree of concrete into multi-field coupling equations for early-age concrete,and set boundary conditions that account for environmental influences and various stress factors that typically cause early creep of concrete.A four-field coupled risk prediction model was built based on hydro-thermo-chemo-mechanical properties,and was used to calculate and analyze various time-varying behavior(including the risk and form of cracking)in the hydro,thermo,chemo,and mechanical fields of early-age concrete.Finally,we focused on material-related factors(maximum heat of hydration and peak heat release time),environmental factors(temperature difference between day and night,average daily cooling rate,and intensity of solar radiation),and construction technique factors(molding temperature,pouring time,and thermal insulation coefficient).The influence of these factors on the early-age cracking risk of the track bed was analyzed,and risk control measures against early cracking were proposed accordingly.展开更多
For a large-scale dynamic system,the efficiency of computation becomes a vital work sometimes in engineering practices.As a layered structural system,ballastless track and substructure occupy most part of the degrees ...For a large-scale dynamic system,the efficiency of computation becomes a vital work sometimes in engineering practices.As a layered structural system,ballastless track and substructure occupy most part of the degrees of freedom of the whole system.It is,therefore,rather important to optimize the structural models in dynamic equation formulations.In this work,a three-dimensional and coupled model for multi-rigid-body of train and finite elements of track and substructures is pre-sented by multi-scale assemble and matrix reassemble method.The matrix reassembling tactic is based on the multi-scale assemble method,through which the finite element matrix bandwidth is greatly narrowed,and the Cholesky factorization,iterative and multi-time-step solution have been introduced to efficiently obtain the train,track and substructure responses.The subgrade and its subsoil works as a typical substructural system,and comparisons with the previous model without matrix reassembling,SIMPACK and ABAQUS have been conducted to fully validate the efficiency and accuracy of this train-track-subgrade dynamic interaction model.展开更多
To improve the performance of composite pseudo-noise (PN) code clock recovery in a regenerative PN ranging system at a low symbol signal-to-noise ratio (SNR), a novel chip tracking loop (CTL) used for regenerati...To improve the performance of composite pseudo-noise (PN) code clock recovery in a regenerative PN ranging system at a low symbol signal-to-noise ratio (SNR), a novel chip tracking loop (CTL) used for regenerative PN ranging clock recovery is adopted. The CTL is a modified data transition tracking loop (DTTL). The difference between them is that the Q channel output of the CTL is directly multiplied by a clock component, while that of the DTTL is multiplied by the Ⅰ channel transition detector output. Under the condition of a quasi-squareware PN ranging code, the tracking ( mean square timing jitter) performance of the CTL is analyzed. The tracking performances of the CTL and the DTTL, are compared over a wide range of symbol SNRs. The result shows that the CTL and the DTTL have the same performance at a large symbol SNR, while at a low symbol SNR, the former offers a noticeable enhancement.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary obj...This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.展开更多
基金supported by the National Key R&D Program of China [grant number 2023YFC3008004]。
文摘This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administration.The analysis reveals systematic improvements in both track and intensity forecasts over the decade,with distinct error characteristics observed across various forecast parameters.Track forecast errors have steadily decreased,particularly for longer lead times,while error magnitudes have increased with longer forecast lead times.Intensity forecasts show similar progressive enhancements,with maximum sustained wind speed errors decreasing by 0.26 m/s per year for 120 h forecasts.The study also identifies several key patterns in forecast performance:typhoon-grade or stronger TCs exhibit smaller track errors than week or weaker systems;intensity forecasts systematically overestimate weaker TCs while underestimating stronger systems;and spatial error distributions show greater track inaccuracies near landmasses and regional intensity biases.These findings highlight both the significant advances in TC forecasting capability achieved through improved modeling and observational systems,and the remaining challenges in predicting TC changes and landfall behavior,providing valuable benchmarks for future forecast system development.
基金supported by the confidential research grant No.a8317。
文摘To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.
基金Project(2022YFB2602900)supported by the National Key Research and Development Program of ChinaProject(K2022T002)supported by the Scientific Research Plan of China Railway。
文摘As one of the major high-speed railway ballastless track structures in China,CRTSIII slab ballastless track has been laid for more than 6500 km.However,there are no detailed studies on its track irregularity deterioration throughout extended service periods,which may threaten the safety and stability of high-speed vehicles(HSV).In this study,a long-term tracking detection of CRTSIII slab ballastless track irregularities has been conducted,revealing its annual evolution law.An HSV-track coupled dynamics model was established to investigate the HSV dynamic responses under annual evolution of track irregularities.Considering the potential deterioration of track irregularities to extremely bad condition,the recommended classified limits for irregularity are proposed by analyzing the limit-exceeding probability of the safety and stability indexes of HSV.The results show that:taking 10 m wavelength as a demarcation,longer-wavelength irregularities exhibit larger amplitudes,faster evolution rates and a linear increasing trend,primarily affecting the stability of HSV.Conversely,shorter-wavelength irregularities exhibit smaller amplitudes and an insignificant evolution trend,predominantly affecting the safety of HSV.Furthermore,the periodic irregularity induced by the arching of 32 m simply-supported beam bridge should be paid closer attention to,as their evolution rate significantly surpasses that of irregularities at other wavelengths.
基金financially supported by the Key Research Program of the Chinese Academy of Sciences(Grant No.KGFZD-125-014)the National Natural Science Foundation of China(Grant No.61273334)State Key Laboratory of Robotics Foundation(Grant No.2017-Z05)
文摘A novel efficient track initiation method is proposed for the harsh underwater target tracking environment(heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method(TSEPM). Track initiation demands that the method should determine the existence and initial state of a target quickly and correctly.Heavy clutter and large measurement errors certainly pose additional difficulties and challenges, which deteriorate and complicate the track initiation in the harsh underwater target tracking environment. There are three primary shortcomings for the current track initiation methods to initialize a target:(a) they cannot eliminate the turbulences of clutter effectively;(b) there may be a high false alarm probability and low detection probability of a track;(c) they cannot estimate the initial state for a new confirmed track correctly. Based on the multiple hypotheses tracking principle and modified logic-based track initiation method, in order to increase the detection probability of a track,track splitting creates a large number of tracks which include the true track originated from the target. And in order to decrease the false alarm probability, based on the evaluation mechanism, track pruning and track merging are proposed to reduce the false tracks. TSEPM method can deal with the track initiation problems derived from heavy clutter and large measurement errors, determine the target’s existence and estimate its initial state with the least squares method. What’s more, our method is fully automatic and does not require any kind manual input for initializing and tuning any parameter. Simulation results indicate that our new method improves significantly the performance of the track initiation in the harsh underwater target tracking environment.
基金financially supported by the National Key Research and Development Program of China-Young Scientist Project(No.2024YFC2815400)the National Natural Science Foundation of China(No.52588202).
文摘Deep-sea mining has emerged as a critical solution to address global resource shortages;however,the mechanical interaction between tracked mining vehicles(TMVs)and soft seabed sediments presents fundamental engineering challenges.This study establishes a multiscale modelling framework coupling the discrete element method(DEM)with multi-body dynamics(MBD)to investigate track-seabed dynamic interactions across three operational modes:flat terrain,slope climbing,and ditch surmounting.The simulation framework,validated against laboratory experiments,systematically evaluates the influence of grouser geometry(involute,triangular,and pin-type)and traveling speed(0.2–1.0 m/s)on traction performance,slip rate,and ground pressure distribution.Results reveal rate-dependent traction mechanisms governed by soil microstructural responses:higher speeds enhance peak traction but exacerbate slip instability on complex terrain.Critical operational thresholds are established—0.7 m/s for flat terrain,≤0.5 m/s for slopes and ditches—with distinct grouser optimization strategies:involute grousers achieve 35%–40%slip reduction on slopes through progressive soil engagement,while triangular grousers provide optimal impact resistance during ditch crossing with 30%–35%performance improvement.These findings provide quantitative design criteria and operational guidelines for optimizing TMV structural parameters and control strategies,offering a robust theoretical foundation for enhancing the performance,safety,and reliability of deep-sea mining equipment in complex submarine environments.
基金financial support provided by the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)+1 种基金the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.
文摘Rolling noise is an important source of railway noise and depends also on the dynamic behaviour of a railway track.This is characterized by the point or transfer mobility and the track decay rate,which depend on a number of track parameters.One possible reason for deviations between simulated and measured results for the dynamic track behaviour is the uncertainty of the value of some track parameters used as input for the simulation.This in turn results in an uncertainty in the simulation results.In this contribution,it is proposed to use the general transformation method to assess a uncertainty band for the results.Most relevant input parameters for determining the point input mobility and the track decay rate for a ballasted track are analysed with regard to the uncertainties and for the value of each an interval is determined.Then,the general transformation method is applied to four different simulation methods,working both in the frequency and time domains.For one example track,the resulting uncertainty bands are compared to one dataset with measurements for the point mobility and the track decay rate.In addition,a sensitivity analysis is performed to determine the parameters that significantly influence the overall result.While all four simulation methods produce broad uncertainty bands for the results,none did match the measured results for the point mobility and the track decay rate over the entire frequency range considered.Besides the large influence of the uncertain pad stiffness,it turned out that the rail wear is also a significant source of uncertainty of the results.Overall,it is demonstrated that the proposed approach allows assessing the influence of uncertain input parameters in detail.
文摘Purpose–MxV Rail conducted multiple single tie push tests(STPTs)between 2020 and 2023 to assess the changes in lateral tie resistance from tonnage accumulation,dynamic track stabilizers(DTS),tie type and ballast condition.High lateral tie resistance is necessary for preventing lateral misalignments and track buckles.Therefore,understanding how various factors affect the lateral tie resistance will aid in the development of track buckling risk assessments and ballast maintenance best practices.Design/methodology/approach–The test involved tamping a section of track that consisted of both concrete and wood ties and then increasing the lateral tie resistance,using either tonnage during speed restrictions or a DTS.The STPTs and top-of-rail(TOR)elevation measurements were taken at multiple stages,including immediately after tamping and then after different tonnage increments or DTS.The results from this test were then added to a compiled measurement from previous tests,and the results from all the tests were used to develop general guidelines for ballast maintenance best practices and trade-off considerations.Findings–The results showed multiple factors affect the lateral track strength and therefore the susceptibility to misalignments and track buckles.The disturbance from ballast tamping can reduce the lateral track strength by 20–80%(∼45%median)and can be compacted from either tonnage(25–50%regain in strength after 0.1 m gross ton or MGT)or DTS(33–78%regain in strength).The amount of ballast(shoulder width and crib height),tie type and ballast characteristics all have a meaningful role in lateral track strength.Originality/value–This paper is based on the testing programs conducted by authors at MxV Rail.
基金supported by the National Natural Science Foundation of China(Nos.12375194,12341504,12375197,12025502)。
文摘Reconstructing the trajectories of charged particles in high-energy physics experiments is a complex task,particularly for long-lived particles.At the future Super Tau-Charm Facility(STCF),such particles are expected to appear in several key benchmark physics processes.A Common Tracking Software was used to reconstruct the trajectories of long-lived particles,revealing that the track-finding performance of the widely used combinatorial Kalman filter is limited by its seeding algorithm.This limitation can be mitigated by guiding the combinatorial Kalman filter using initial tracks provided by the Hough transform.The track-finding performance of the combined Hough transform and combinatorial Kalman filter was evaluated using the process J∕ψ→Λ(→pπ−)Λ(→pπ+)at STCF.
基金supported by the National Key R&D Program of China(No.2021YFF0502100)the National Natural Science Foundation of China(Nos.52278461 and 52308467).
文摘Cracking of early-age concrete can occur in the track beds of high-speed railways due to changes in material properties,environmental effects,and construction processes.This is a multi-field,time-varying issue involving hydro-thermo-chemo-mechanical coupling.However,to date,research has not adequately described the early-age cracking mechanisms in track beds,and few risk control measures have been proposed.To solve this problem,we incorporated the hydration degree of concrete into multi-field coupling equations for early-age concrete,and set boundary conditions that account for environmental influences and various stress factors that typically cause early creep of concrete.A four-field coupled risk prediction model was built based on hydro-thermo-chemo-mechanical properties,and was used to calculate and analyze various time-varying behavior(including the risk and form of cracking)in the hydro,thermo,chemo,and mechanical fields of early-age concrete.Finally,we focused on material-related factors(maximum heat of hydration and peak heat release time),environmental factors(temperature difference between day and night,average daily cooling rate,and intensity of solar radiation),and construction technique factors(molding temperature,pouring time,and thermal insulation coefficient).The influence of these factors on the early-age cracking risk of the track bed was analyzed,and risk control measures against early cracking were proposed accordingly.
基金supported by the National Natural Science Foundation of China(Grant Nos.52378468)Science and Technology Research and Development Program Project of China railway group limited(Major Special Project,No.2022-Major-14,2021-Special-08,2021-Major-02)+3 种基金Young Elite Scientists Sponsorship Program by CAST(2020-2022QNRC002)Central South University Innovation-Driven Research Programme(2023CXQD073)the National Natural Science Foundation of Hunan Province(Grant Nos.2022JJ20071 and 2021JJ30850)National Key R&D Program‘Transportation Infrastructure’‘Reveal the list and take command’project(2022YFB2603301).
文摘For a large-scale dynamic system,the efficiency of computation becomes a vital work sometimes in engineering practices.As a layered structural system,ballastless track and substructure occupy most part of the degrees of freedom of the whole system.It is,therefore,rather important to optimize the structural models in dynamic equation formulations.In this work,a three-dimensional and coupled model for multi-rigid-body of train and finite elements of track and substructures is pre-sented by multi-scale assemble and matrix reassemble method.The matrix reassembling tactic is based on the multi-scale assemble method,through which the finite element matrix bandwidth is greatly narrowed,and the Cholesky factorization,iterative and multi-time-step solution have been introduced to efficiently obtain the train,track and substructure responses.The subgrade and its subsoil works as a typical substructural system,and comparisons with the previous model without matrix reassembling,SIMPACK and ABAQUS have been conducted to fully validate the efficiency and accuracy of this train-track-subgrade dynamic interaction model.
文摘To improve the performance of composite pseudo-noise (PN) code clock recovery in a regenerative PN ranging system at a low symbol signal-to-noise ratio (SNR), a novel chip tracking loop (CTL) used for regenerative PN ranging clock recovery is adopted. The CTL is a modified data transition tracking loop (DTTL). The difference between them is that the Q channel output of the CTL is directly multiplied by a clock component, while that of the DTTL is multiplied by the Ⅰ channel transition detector output. Under the condition of a quasi-squareware PN ranging code, the tracking ( mean square timing jitter) performance of the CTL is analyzed. The tracking performances of the CTL and the DTTL, are compared over a wide range of symbol SNRs. The result shows that the CTL and the DTTL have the same performance at a large symbol SNR, while at a low symbol SNR, the former offers a noticeable enhancement.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
基金supported by the National Natural Science Foundation of China(Nos.12272104,U22B2013).
文摘This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.