The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Xizang,China.However,the genetic type of this deposit has been controve...The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Xizang,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the oreforming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEMCL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a‘core-rim’structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.展开更多
This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples w...This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples were taken from a depth of 0 to 20 cm using a hand auger on both banks of five tributaries of the Congo River (Djoué, Mfilou, Mfoa, Tsiémé, Djiri) that flow through the city of Brazzaville. 90 sampling points were defined, with 3 points 250 m apart on the banks and located, for each river, at three sites: upstream, midstream and downstream. Finally, 15 composite samples representative of the study area were taken. The average pH values of the water varied between 6.5 and 7.5. These pH values show that the soils studied are neutral. Total carbon content varied between 0.7% (Djiri) and 1.6% (Djoué). Total nitrogen content ranged from 0.08% (Djiri) to 0.12% (Djoué). TMEs contents varied from 0.5 to 1.8 mg/kg for Sb, from 0.5 to 2.5 mg/kg for As, from 0.1 to 0.18 mg/kg for Cd, from 4.2 to 11.3 mg/kg for Cr, from 0.07 to 0.27 mg/kg for Hg, from 0.7 to 2.4 mg/kg for Ni, from 0 to 158 mg/kg for Pb and from 16 to 105 mg/kg for Zn. The lowest TMEs levels were observed in the soils of the Djiri river, while the highest levels were observed in the soils of the Djoué and Tsiémé rivers. The ANOVA and Bonferroni test did not show significant differences in the means of the parameters measured (p > 0.05). The TMEs levels were below the accepted standards (NF U44-041), with the exception of Pb, which had high levels downstream of the Djoué. According to the pollution index values calculated using soil TME content, the soils on the banks of the Djoué river are considered polluted, while those on the banks of the Tsiémé river are moderately polluted, those on the banks of the Mfoa and Mfilou rivers are slightly polluted, and the soils on the banks of Djiri river are unpolluted.展开更多
Quartz trace elements are extensively employed in studying magmatic evolution,fluid evolution,and metal enrichment.The Bianjiadayuan Ag-Pb-Zn-Sn deposit is a typical magmatichydrothermal system in northeastern China,h...Quartz trace elements are extensively employed in studying magmatic evolution,fluid evolution,and metal enrichment.The Bianjiadayuan Ag-Pb-Zn-Sn deposit is a typical magmatichydrothermal system in northeastern China,however,studies on its complex magmatic-hydrothermal evolution are limited.This study investigates the quartz from the Bianjiadayuan deposit to gain insight into the physicochemical evolution of mineralization using cathodoluminescence(CL)textures and laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)of quartz.Five types quartz(Q1 to Q5)were identified.From Q1 in quartz porphyry to Q5 in Ag-Pb-Zn veins,the CL intensity and Ti content gradually decreases,and Ge,Ge/Ti,and Al/Ti ratios increase,indicating a temperature decline from magmatic to hydrothermal stages.The Sb content shows an opposite trend to Ti content,correlating positively with Ge content in quartz,suggesting that Sb content could also be temperature-dependent.These trace elements in quartz indicate cooling is critical for Ag mineralization.Furthermore,quartz phenocryst(Q1)from the quartz porphyry shows low Al/Ti(mostly<4)and Ge/Ti ratios(<0.04),suggesting a low degree of magmatic evolution.The Sb content in Q5 from Ag-Pb-Zn-quartz veins(>1 ppm,mostly tens of ppm)is notably higher compared to quartz in other lithologies including Sn-bearing quartz veins(<1 ppm),suggesting that Sb contents can serve as an effective indicator of Ag mineralization.展开更多
[Objectives]To investigate the content and distribution of inorganic elements in Astragalus membranaceus sourced from various regions in Gansu Province.[Methods]28 batches of A.membranaceus samples were collected and ...[Objectives]To investigate the content and distribution of inorganic elements in Astragalus membranaceus sourced from various regions in Gansu Province.[Methods]28 batches of A.membranaceus samples were collected and subsequently digested using the Multiwave 7000 super microwave digestion system.The contents of aluminum(Al),barium(Ba),beryllium(Be),cobalt(Co),chromium(Cr),iron(Fe),gallium(Ga),magnesium(Mg),manganese(Mn),nickel(Ni),antimony(Sb),tin(Sn),strontium(Sr),titanium(Ti),thallium(Tl),vanadium(V),and zinc(Zn)were quantified utilizing a PerkinElmer 2000 inductively coupled plasma mass spectrometer.Principal component analysis was performed utilizing SPSS 25.0 to identify the distinctive characteristic elements of A.membranaceus.Additionally,systematic cluster analysis was conducted using these characteristic elements as variables to investigate the relationship between the primary inorganic elements and the geographical origin of A.membranaceus.[Results]17 inorganic elements were identified in A.membranaceus specimens collected from Gansu Province,with characteristic elements including Ba,Co,Fe,Ga,Mn,Zn,and Sn.The contents of inorganic elements in various sources of A.membranaceus exhibited significant variability and demonstrated distinct clustering characteristics.[Conclusions]A.membranaceus,originating from Gansu Province,exhibits a high content of inorganic elements.However,variations in ecological environments can lead to differences in the specific inorganic elements that are enriched.This study aims to provide a reference for the further development and application of A.membranaceus.展开更多
The measurement of trace elements in Antarctic snow is crucial for understanding historical atmospheric geochemical changes and circulation patterns.However,studies on their spatial distributions remain limited,partic...The measurement of trace elements in Antarctic snow is crucial for understanding historical atmospheric geochemical changes and circulation patterns.However,studies on their spatial distributions remain limited,particularly those evaluating multiple metals across several snowpits,making interpretation challenging.This study investigates the distributions and sources of trace elements-including Cd,Ba,Pb,U,Bi,V,Mn,Fe,Cu,Zn,and As-across four snowpits in the Lambert Glacier Basin,East Antarctica.The trace elements exhibit site-,element-,and season-dependent variations,with higher concentrations observed at inland sites.In contrast,δ^(18)O and ion concentrations decrease with increasing distance from the coast and elevation,underscoring the influence of marine emissions.Crustal sources primarily contributed to Ba,U,V,Mn,and Fe,while non-crustal sources predominantly contributed to Cd,Bi,Zn,Pb,Cu,and As.Positive matrix factorization(PMF)analysis indicates that trace element concentrations in Pits 2 and 3 are influenced by both crustal and non-crustal sources,while Pit 4 reflects a mixed-source influence.Pit 1(coastal site)also indicates the mixed sources with influence of a highly dynamic marine climate and environment.The PMF results reveal similarities in emission sources and atmospheric transport patterns across the snowpits,facilitating a more comprehensive interpretation of longer ice core records.Overall,this study provides valuable insights into trace element distributions and enhances our understanding of past environmental and climatic conditions.展开更多
Halogenated aromatic disinfection byproducts(DBPs)are gradually receiving attention due to their high detection frequency and usually higher toxicity than regulated DBPs.In this study,we established a solid phase extr...Halogenated aromatic disinfection byproducts(DBPs)are gradually receiving attention due to their high detection frequency and usually higher toxicity than regulated DBPs.In this study,we established a solid phase extraction(SPE)-LC-MS/MS method to simultaneously trace analyze 59 halogenated aromatic DBPs.The limits of detection and limits of quantification of halogenated aromatic DBPs ranged from 0.03 to 135.23 ng/L and from 0.1 to 450.76 ng/L,respectively.The range of recoveries and relative standard deviation(RSD)in river water were between 72.41%to 119.54%and 1.86%to 16.03%,respectively.Therefore,this method can be used to accurately analyze trace levels of halogenated aromatic DBPs in drinking water.The occurrence and transformation of halogenated aromatic DBPs were explored based on this method.In the chlorinated simulated source water and chlorinated river water,20 and 45 halogenated aromatic DBPs were determined,respectively.The active halogen species(HOCl,HOBr,and HOI)first reacted with natural organic matter(NOM)to form halogenated aromatic DBPs.Then,chlorine further reacted with the halogenated aromatic DBPs to convert them into small-molecule halogenated aliphatic DBPs through oxidation,electrophilic substitution,and hydrolysis reaction,etc.In the chlorinated simulated source water,chlorinated river water,and tap water,the toxicity contribution of bromoacetic acids(Br-HAAs)accounted for themajority(>71.16%).Given that halogenated aromatic DBPs are intermediate products of halogenated aliphatic DBPs,controlling the formation of halogenated aromatic DBPs is beneficial in decreasing the formation of halogenated aliphatic DBPs,thereby diminishing the toxicity of drinking water.展开更多
Traditional Chinese medicine(TCM)has played a significant role in the prevention and treatment of chronic heart failure(CHF).To study TCM diagnosis of CHF,a total of 278 Chinese clinical research articles on the study...Traditional Chinese medicine(TCM)has played a significant role in the prevention and treatment of chronic heart failure(CHF).To study TCM diagnosis of CHF,a total of 278 Chinese clinical research articles on the study of CHF syndromes in recent 40 years retrieved from Web of Science,Scopus,Pub Med,Embase,CNKI,Wanfang Data,Cq VIP,and Sino Med.According to cumulative frequency analysis,network analysis,and hierarchical cluster analysis,the study found the distribution of CHF syndromes was syndrome of qi deficiency with blood stasis,syndrome of qi and yin deficiency,syndrome of yang deficiency with water flooding,syndrome of heart blood stasis obstruction,syndrome of turbid phlegm,and syndrome of collapse due to primordial yang deficiency.The syndrome elements on location of illness were heart,kidney,lung,and spleen.The syndrome elements on nature of illness were qi deficiency,blood stasis,yang deficiency,yin deficiency,water retention,and turbid phlegm.These findings can provide reference to the research on diagnosis and treatment of CHF,and contribute to the study on syndrome standardization and objective research of TCM diagnosis.展开更多
Detrital U-bearing minerals(e.g.,zircon,apatite)U-Pb ages with specific trace-element geochemistry,are frequently used in provenance analyses.In this study,we focus on the Yarlung River drainage in South Xizang,charac...Detrital U-bearing minerals(e.g.,zircon,apatite)U-Pb ages with specific trace-element geochemistry,are frequently used in provenance analyses.In this study,we focus on the Yarlung River drainage in South Xizang,characterized by two distinct lithologic units:The Gangdese batholith to the north(mainly granitoids)and the Tethyan Himalaya(mainly sedimentary rocks)to the south,which plays a crucial role in the erosion of the Tibetan Plateau.To constrain the provenance of the Yarlung River Basin,we performed trace-element and U-Pb age analyses of detrital apatite from the river sands of the Yarlung River and its tributaries.Our findings indicate that the detrital apatite U-Pb age patterns of the north tributaries exhibit main peaks at approximately 40 and 60 Ma,consistent with the corresponding U-Pb age patterns of detrital zircon published.Further,their trace element casts fall mainly in the Type I granite region,also indicating the Gangdese arc-dominated source.However,those of the south tributaries(∼60–20 Ma)exhibit a different age distribution from the detrital zircon U-Pb groups(∼110–150,∼500,and 1100 Ma),suggesting that the detailed apatite U-Pb signals can provide excellent constraints on the provenance of igneous and metamorphic rock sources but less so for sedimentary rock sources.Combined with previous detrital zircon data in the study area,our detrital apatite information can highlight young metamorphic events from a complex background(i.e.,Niyang and Nianchu rivers),which offers additional constraints on the provenance of the Yarlung River Basin.Generally,a combination of geochemistry and geochronology of multi-detrital heavy minerals,such as zircon and apatite,can provide powerful tools for provenance analysis.展开更多
[Objective] This study aimed to investigate the trace elements in Rehman- nia glutinosa Libosch. by using principal component analysis and clustering analysis. [Method] Principal component analysis and clustering anal...[Objective] This study aimed to investigate the trace elements in Rehman- nia glutinosa Libosch. by using principal component analysis and clustering analysis. [Method] Principal component analysis and clustering analysis of R. glutinosa medicinal materials from different sources were conducted with contents of six trace elements as indices. [Result] The principal component analysis could comprehen- sively evaluate the quality of R. glutinosa samples with objective results which was consistent with the results of clustering analysis. [Conclusion] Principal component analysis and clustering analysis methods can be used for the quality evaluation of Chinese medicinal materials with multiple indices.展开更多
To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM_(2.5)concentrations,15 trace elements(Al,K,Ca,Ti,V,Cr,Mn,Fe,Ni,Cu,Zn,As...To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM_(2.5)concentrations,15 trace elements(Al,K,Ca,Ti,V,Cr,Mn,Fe,Ni,Cu,Zn,As,Sn,Ba,Pb)in PM_(2.5)were monitored from December 2020 to November 2021 in a representative city,Xiamen.The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K,Fe,Al,Ca and Zn.Based on Positive Matrix Factorization analysis,source appointment revealed that the major sources of trace elements in Xiamen were traffic,dust,biomass and firework combustion,industrial manufacture and shipping emission.According to health risk assessment combined with the source appointment results,it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals(Cr,Ni,As,Pb)exceeded the threshold(10^(-6)).Traffic-related source had almost half amount of contribution to the health risk induced by PM_(2.5)-bound trace elements.During the dust transport period or Spring Festival period,the health risks exceeded an acceptable threshold even an order of magnitude higher,suggesting that the serious health risks still existed in low PM_(2.5)environment at certain times.Health risk assessment reminded that the health risk reduction in PM_(2.5)at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.展开更多
The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these i...The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these issues,based on Rock-Eval pyrolysis,kerogen macerals,H/C and O/C ratios,GC-MS,major and trace elements,the Dongying Formation Member(Mbr)3(E_(3)d_(3)),the Shahejie Formation mbrs 1 and 2(E_(2)s_(1+2)),and the Shahejie Mbr 3(E_(2)s_(3))source rocks in the western Bozhong Sag were studied.The above methods were used to reveal their geochemical properties,OM origins and depositional environments,all of which indicate that E_(2)s_(1+2)and E_(2)s_(3)are excellent source rocks,and that E_(3)d_(3)is of the second good quality.E_(3)d_(3)source rocks were formed under a warm and humid climate,mainly belong to fluvial/delta facies,the E_(3)d_(3)sediments formed under weakly oxidizing and freshwater conditions.Comparatively,the depositional environments of E_(2)s_(1+2)source rocks were arid and cold climate,representing saline or freshwater lacustrine facies,and the sediments of E_(2)s_(1+2)belong to anoxic or suboxic settings with large evaporation and salinity.During the period of E_(2)s_(3),the climate became warm and humid,indicating the freshwater lacustrine facies,and E_(2)s_(3)was characterized by freshwater and abundant algae.Moreover,compared with other intervals,the OM origin of E_(3)d_(3)source rocks has noticeable terrestrial input.The OM origin of the E_(2)s_(1+2)and E_(2)s_(3)are mainly plankton and bacteria.Tectonic subsidence and climate change have affected the changes of the depositional environment in the western Bozhong Sag,thus controlling the distribution of the source rocks,the geochemical characteristics in the three intervals of lacustrine source rocks have distinct differences.Overall,these factors are effective to evaluate the paleoenvironmental characteristics of source rocks by biomarkers,major and trace elements.The established models may have positive implications for research of lacustrine source rocks in offshore areas with few drillings.展开更多
Coal seams can enrich a variety of harmful trace elements under specific geological conditions.The spatial distribution of harmful trace elements in coal is extremely uneven,and the distribution characteristics of eac...Coal seams can enrich a variety of harmful trace elements under specific geological conditions.The spatial distribution of harmful trace elements in coal is extremely uneven,and the distribution characteristics of each element content are different.The harmful elements released in the process of coal mining and utilization will cause serious harm to the environment and the human body.It is of great resource significance to study the geochemistry of coal that affects the enrichment and distribution characteristics of harmful trace elements.Based on the domestic and foreign literature on coal geochemistry in Guizhou published by previous investigators,this study counted 1097 sample data from 23 major coal-producing counties in Guizhou Province,systematically summarized the relevant research results of harmful trace elements in the coal of Guizhou,and revealed the overall distribution and enrichment characteristics of harmful trace elements in the coal of Guizhou.The results show that the average contents of Cd,Pb,Se,Cu,Mo,U,V,As,Hg,and Cr in coal of Guizhou are higher than those in Chinese coal and world coal.A variety of harmful trace elements in the coal of Guizhou have high background values,especially in Liupanshui,Xingyi and Qianbei coalfield.The enrichment of various harmful trace elements in the Late Permian coal in Guizhou is mainly related to the combined action of various geological and geochemical factors.The supply of terrigenous debris and sedimentary environment may be the basic background of the enrichment of harmful elements in western Guizhou,while low-temperature hydrothermal activity and volcanic ash deposition may be the main reasons for the enrichment of harmful elements in southwestern Guizhou.展开更多
The relationship between trace elements in coal and organic functional groups of coal, also some of aromatic structure, was investigated by using curve fitting of infrared spectra. Cluster analysis was also performed ...The relationship between trace elements in coal and organic functional groups of coal, also some of aromatic structure, was investigated by using curve fitting of infrared spectra. Cluster analysis was also performed according to the degree of affinity of organic groups to the trace elements. The results show that there is a possibility that trace elements, especially LREE, were bound to peripheral organic functional groups of middle rank coal macromolecule. The most possible functional group that binds trace element is the hydroxyl, and to the less degree, the asymmetric -CH3 and 〉CH2 stretching, -CH3 stretching, etc. The degree of affinity of trace elements to different functional groups varies. The tendency obeys the natural structural changing law of trace elements-- the periodic law. The deviation of some trace elements from this regular trend is attributed to the deviation of intrinsic "confusion degree" (conventional molar entropy) of the matter system of coal basin, which is affected by the inner and outer factors during the evolution.展开更多
Major elements, trace elements and Sr isotopic compositions of apatite from the granite in the Chengchao skarn-type Fe deposit of Edong ore district of Middle-Lower Yangtze River metallogenic belt were measured using ...Major elements, trace elements and Sr isotopic compositions of apatite from the granite in the Chengchao skarn-type Fe deposit of Edong ore district of Middle-Lower Yangtze River metallogenic belt were measured using EMPA (electron microprobe), LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) and LA-MC (multicollector)-ICP-MS methods in order to reveal the petroge- netic and metallogenic significance of the skarn-type iron deposits. The results show that the apatite in Chengchao granite is fluorapatite, which displays slight variation in major elements. The REE distribution pattern of the apatite is similar to that of the whole rocks, with strong negative Eu anomaly and low Sr/Y ratio. The concentration of Mn in apatite is low (140 ppm-591 ppm) and the Sr isotopic composition shows a limited variation from 0.706 9 to 0.708 2. The high oxygen fugacity of the Chengchao granite, implied by the low Mn content in apatite, is possibly attributed to contamination of the gypsum from sedimentary rock strata, which has long been thought to be an important factor that controls the Fe mineralization in the Middle-Lower Yangtze River metallogenic bell This study also proves that the Eu/Eu* value and Sr/Y ra- tio in apatite can be effectively used to identify the adakitie affinity. The in situ Sr isotope analysis of apatite is in consistent with the bulk rock analysis, which indicates that the apatite Sr isotope can represent the ini- tial Sr isotopic compositions of the magma. The Sr isotope and negative Eu anomaly in apatite imply that the Chengchao granite is likely sourced from crust-mantle mixed materials.展开更多
Trace elements in atmospheric particulate matter play a significant role in air quality,human health,and biogeochemical cycles.In this study,the trace elements(Ca,Al,K,Fe,Na,Mg,Zn,Pb,Mn,Ti,Cu,Cr,Sr,Ni)in PM2.5samples ...Trace elements in atmospheric particulate matter play a significant role in air quality,human health,and biogeochemical cycles.In this study,the trace elements(Ca,Al,K,Fe,Na,Mg,Zn,Pb,Mn,Ti,Cu,Cr,Sr,Ni)in PM2.5samples collected at the summit of Mt.Lushan were analyzed to quantify their abundance,source,transport,and health risks.During the whole sampling period,the major trace elements was Ca,Al,and K.While the trace metals with the lowest concentrations were Sr,Ni,Rb,and Cd.The trace elements were influenced by air mass transport routes,exhibiting an increasing trend of crustal elements in the northwesterly airmass and anthropogenic elements(Zn,Mn,Cu,and Ni)in the easterly air masses.Construction dust,coal+biomass burning,vehicle emission,urban nitrate-rich+urban waste incineration emissions,and soil dust+industry emissions were common sources of PM2.5on Mt.Lushan.Different air mass transport routes had various source contribution patterns.These results indicate that trace elements at Mt.Lushan are influenced by regional anthropogenic emissions and monsoon-dominated trace element transport.The total resulting cancer risk value that these elements posed were below the acceptable risk value of 1×10^(-6),while the non-carcinogenic risk value(1.72)was higher than the safety level,suggesting that non-carcinogenic effects due to these trace elements inhalation were likely to occur.Vehicle emission and coal+biomass burning were the common dominant sources of non-cancer risks posed by trace elements at Mt.Lushan.展开更多
The Xingluokeng deposit is the largest gran-ite-related tungsten deposit within the Wuyi metallogenic belt in South China.The Xingluokeng intrusion primarily consists of porphyritic biotite granite,biotite granite,and...The Xingluokeng deposit is the largest gran-ite-related tungsten deposit within the Wuyi metallogenic belt in South China.The Xingluokeng intrusion primarily consists of porphyritic biotite granite,biotite granite,andfine-grained granite.The deposit is represented by veinlet-disseminated mineralization with K-feldspathization and biotitization,alongside quartz-vein mineralization with gre-isenization and sericitization.This study investigates in-situ analyses of quartz compositions from both the intrusion and hydrothermal veinlets and veins.Trace element correlations indicate that trivalent Al^(3+)and Fe^(3+)replace Si^(4+)within the quartz lattice,with monovalent cations(such as Li^(+),Na^(+),and K^(+))primarily serving as charge compensators.Low Ge/Al ratios(<0.013)of quartz from granites suggest a mag-matic origin.The low Al/Ti and Ge/Ti ratios,accompanied by high Ti contents in quartz,suggest that the porphyritic biotite granite and biotite granite are characterized by rela-tively low levels of differentiation and high crystallization temperatures.In contrast,thefine-grained granite exhibits a higher degree of fractionation,lower crystallization tem-peratures,and a closer association with tungsten miner-alization.Ti contents in quartz from quartz veins indicate Qz-Ⅰformed at temperatures above 400°C,while Qz-Ⅱto Qz-Ⅴformed at temperatures below 350°C.Variations in different generations of quartz,as indicated by Al content and(Al+Fe)/(Li+Na+K)ratio,suggest that Qz-Ⅰprecipi-tated from a less acidicfluid with a stable pH,whereas Qz-Ⅱto Qz-Ⅴoriginated from a more acidicfluid with notable pH variations.Consequently,alkaline alteration and acidic alteration supplied the essential Ca and Fe for the precipita-tion of scheelite and wolframite,respectively,highlighting a critical mechanism in tungsten mineralization at the Xin-gluokeng deposit.展开更多
The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. I...The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. In the present study, we investigated the distribution pattern of 18trace elements(including biophile and chalcophile elements) as well as the estimated risks associated with exposure to these elements. The results of the study indicated that Fe was the most abundant element, with a mean concentration of 22,131 mg/kg while Br had the lowest mean concentration of 48 mg/kg. The high occurrence of Fe and Ti suggested a possible occurrence of ilmenite(Fe TiO_(3)) in the oil sands. Source apportionment using positive matrix factorization showed that the possible sources of detected elements in the oil sands were geogenic, metal production, and crustal. The contamination factor, geo-accumulation index, modified degree of contamination, pollution load index, and Nemerow pollution index indicated that the oil sands are heavily polluted by the elements. Health risk assessment showed that children were relatively more susceptible to the potentially toxic elements in the oil sands principally via ingestion exposure route(HQ > 1E-04). Cancer risks from inhalation are unlikely due to CR < 1E-06 but ingestion and dermal contact pose severe risks(CR > 1E-04). The high concentrations of the elements pose serious threats due to the potential for atmospheric transport, bioaccessibility, and bioavailability.展开更多
This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by mu...This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by multi-variate analysis based on geochemical data.The outcomes of this study are expected to help farmers in soil manage-ment and selecting suitable crops for the region.Twenty-five soil samples were collected,mainly from the arable land of the Porali Plain.After drying and coning-quarter-ing,soil samples were analyzed for major and trace ele-ments using the XRF technique;sieving and hydrometric methods were employed for granulometric analysis.Esti-mated data were analyzed using Excel,SPSS,and Surfer software to calculate various indices,correlation matrix,and spatial distribution.The granulometric analysis showed that 76%of the samples belonged to loam types of soil,12%to sand type,and 8%to silt type.Weathering indices:CIA,CIW,PIA,PWI,WIP,CIX,and ICV were calculated to infer the level of alteration.These indices reflect mod-erate to intense weathering;supported by K_(2)O/AI_(2)O_(3),Rb/K_(2)O,Rb/Ti,and Rb/Sr ratios.Assessment of the geo-ac-cumulation and Nemerow Pollution indices pinpoint rela-tively high concentrations of Pb,Ni,and Cr concentration in the soils.The correlation matrix and Principal Compo-nent Analysis show that the soil in this study area is mainly derived from the weathering of igneous rocks of Bela Ophiolite(Cretaceous age)and Jurassic sedimentary rocks of Mor Range having SEDEX/MVT type mineralization.Weathering may result in the undesirable accumulation of certain trace elements which adversely affects crops.展开更多
The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the ...The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the Jurassic-Cretaceous quartz diorite porphyry,while the genesis of this deposit is unclear.This study focused on geological and mineralogical characteristics,in-situ trace elements and S-Pb isotopes of three generations of pyrite of the Huxu deposit to clarify the distribution of trace elements in pyrite,ore-forming fluid and material sources,and genetic types of the deposit.The mineralization stage of the deposit can be divided into quartz-pyrite stage(S1),quartz-pyrite-hematite stage(S2),quartz-polymetallic sulfide stage(S3)and quartz-hematite stage(S4),with the corresponding pyrite being divided into three generations(Py1-Py3).in-situ trace element data of pyrite show that Au in pyrite mainly exists in the form of solid solution(Au^(+)),and the content is relatively low at all stages(0.18 ppm for Py1,0.32 ppm for Py2,0.68 ppm for Py3),while Pb and Zn mainly exist as sulfide inclusions in the pyrite.S-Pb isotopes show that the sulfur and ore-forming material of this deposit are mainly sourced from magma.The mineral association,mineral textures and trace elements in different stages of pyrite indicate that fluid boiling and fluid mixing are the key factors of native gold precipitation in S2 and S4,respectively,while water-rock interaction controlled the precipitation of Pb-Zn sulfides.These integrating with geological characteristics suggests that the deposit should be an intermediate sulfidation epithermal deposit.展开更多
The questions about the androgen control and the involvement of trace elements in prostatic reproductive function still remain unanswered. One valuable way to elucidate the situation is to compare the values for the p...The questions about the androgen control and the involvement of trace elements in prostatic reproductive function still remain unanswered. One valuable way to elucidate the situation is to compare the values for the prostatic mass fractions of trace elements in pre-and post-pubertal boys. The effect of age on the mass fraction of 54 trace elements in intact prostate of 50 apparently healthy 0-30 years old males was investigated by neutron activation analysis and inductively coupled plasma mass spectrometry. Mean values (M ± SΕΜ) for mass fraction (milligram per kilogram, on dry-weight basis) of trace elements were: Ag 0.062 ± 0.008, Al 80 ± 18, Au 0.0092 ± 0.0024, B 5.9 ± 3.5, Be 0.0034 ± 0.0009, Bi 0.018 ± 0.010, Br 26 ± 3, Cd 0.26 ± 0.05, Ce 0.049 ± 0.012, Co 0.035 ± 0.004, Cr 0.49 ± 0.07, Cs 0.036 ± 0.005, Dy 0.0072 ± 0.0018, Er 0.0040 ± 0.0011, Fe 100 ± 10, Gd 0.0065 ± 0.0018, Hg 0.031 ± 0.004, Ho 0.0013 ± 0.0004, La 0.034 ± 0.007, Li 0.064 ± 0.009, Mn 1.69 ± 0.15, Mo 0.54 ± 0.13, Nb 0.013 ± 0.004, Nd 0.025 ± 0.006, Ni 4.1 ± 0.6, Pb 1.3 ± 0.2, Pr 0.0058 ± 0.0015, Rb 14.5 ± 0.8, Sb 0.051 ± 0.006, Sc 0.013 ± 0.002, Se 0.54 ± 0.03, Sm 0.0055 ± 0.0015, Sn 0.22 ± 0.05, Tb 0.0012 ± 0.0004, Th 0.0076 ± 0.0020, Ti 2.8 ± 0.5, Tl 0.0032 ± 0.0009, Tm 0.00064 ± 0.00017, U 0.0025 ± 0.0004, Y 0.036 ± 0.010, Yb 0.0037 ± 0.0012, Zn 281 ± 32, and Zr 0.16 ± 0.04. The upper limit of mean mass fraction of As, Eu, Ga, Hf, Ir, Lu, Pd, Pt, Re, and Ta were: As ≤ 0.069, Eu ≤ 0.0012, Ga ≤ 0.071, Hf ≤ 0.049, Ir ≤ 0.00054, Lu ≤ 0.00063, Pd ≤ 0.014, Pt ≤ 0.0029, Re ≤ 0.0048, and Ta ≤ 0.010. This work revealed that there is a significant tendency for the mass fractions of Cd, Se and Zn in the prostate tissue of healthy individuals to increase with age from the time of birth up to 30 years. It was also shown that high levels of Al, Au, B, Br, Cr, Ga, Li, and Ni mass fraction in prostate tissue do not indicate a direct involvement of these elements in the reproductive function of prostate.展开更多
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2901903)the Geological Comprehensive Research Project of China’s Metallurgical Geology Bureau(Grant No.[2022]CMGBDZYJ005),the National Natural Science Foundation of China(Grant No.42002097)the Geological Investigation Project(Grant Nos.DD20230031,DD20221690,DD20230049,DD20230337).
文摘The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Xizang,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the oreforming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEMCL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a‘core-rim’structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.
文摘This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples were taken from a depth of 0 to 20 cm using a hand auger on both banks of five tributaries of the Congo River (Djoué, Mfilou, Mfoa, Tsiémé, Djiri) that flow through the city of Brazzaville. 90 sampling points were defined, with 3 points 250 m apart on the banks and located, for each river, at three sites: upstream, midstream and downstream. Finally, 15 composite samples representative of the study area were taken. The average pH values of the water varied between 6.5 and 7.5. These pH values show that the soils studied are neutral. Total carbon content varied between 0.7% (Djiri) and 1.6% (Djoué). Total nitrogen content ranged from 0.08% (Djiri) to 0.12% (Djoué). TMEs contents varied from 0.5 to 1.8 mg/kg for Sb, from 0.5 to 2.5 mg/kg for As, from 0.1 to 0.18 mg/kg for Cd, from 4.2 to 11.3 mg/kg for Cr, from 0.07 to 0.27 mg/kg for Hg, from 0.7 to 2.4 mg/kg for Ni, from 0 to 158 mg/kg for Pb and from 16 to 105 mg/kg for Zn. The lowest TMEs levels were observed in the soils of the Djiri river, while the highest levels were observed in the soils of the Djoué and Tsiémé rivers. The ANOVA and Bonferroni test did not show significant differences in the means of the parameters measured (p > 0.05). The TMEs levels were below the accepted standards (NF U44-041), with the exception of Pb, which had high levels downstream of the Djoué. According to the pollution index values calculated using soil TME content, the soils on the banks of the Djoué river are considered polluted, while those on the banks of the Tsiémé river are moderately polluted, those on the banks of the Mfoa and Mfilou rivers are slightly polluted, and the soils on the banks of Djiri river are unpolluted.
基金supported by the National Natural Science Foundation of China(No.42222205)the National Key Research and Development Program of China(No.2017YFC0602403)the Fundamental Research Funds for the Central Universities,CHD(No.300102273301)。
文摘Quartz trace elements are extensively employed in studying magmatic evolution,fluid evolution,and metal enrichment.The Bianjiadayuan Ag-Pb-Zn-Sn deposit is a typical magmatichydrothermal system in northeastern China,however,studies on its complex magmatic-hydrothermal evolution are limited.This study investigates the quartz from the Bianjiadayuan deposit to gain insight into the physicochemical evolution of mineralization using cathodoluminescence(CL)textures and laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)of quartz.Five types quartz(Q1 to Q5)were identified.From Q1 in quartz porphyry to Q5 in Ag-Pb-Zn veins,the CL intensity and Ti content gradually decreases,and Ge,Ge/Ti,and Al/Ti ratios increase,indicating a temperature decline from magmatic to hydrothermal stages.The Sb content shows an opposite trend to Ti content,correlating positively with Ge content in quartz,suggesting that Sb content could also be temperature-dependent.These trace elements in quartz indicate cooling is critical for Ag mineralization.Furthermore,quartz phenocryst(Q1)from the quartz porphyry shows low Al/Ti(mostly<4)and Ge/Ti ratios(<0.04),suggesting a low degree of magmatic evolution.The Sb content in Q5 from Ag-Pb-Zn-quartz veins(>1 ppm,mostly tens of ppm)is notably higher compared to quartz in other lithologies including Sn-bearing quartz veins(<1 ppm),suggesting that Sb contents can serve as an effective indicator of Ag mineralization.
基金Supported by Project of NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine(2023GSMPA-KL06,2024GSMPA-KL16).
文摘[Objectives]To investigate the content and distribution of inorganic elements in Astragalus membranaceus sourced from various regions in Gansu Province.[Methods]28 batches of A.membranaceus samples were collected and subsequently digested using the Multiwave 7000 super microwave digestion system.The contents of aluminum(Al),barium(Ba),beryllium(Be),cobalt(Co),chromium(Cr),iron(Fe),gallium(Ga),magnesium(Mg),manganese(Mn),nickel(Ni),antimony(Sb),tin(Sn),strontium(Sr),titanium(Ti),thallium(Tl),vanadium(V),and zinc(Zn)were quantified utilizing a PerkinElmer 2000 inductively coupled plasma mass spectrometer.Principal component analysis was performed utilizing SPSS 25.0 to identify the distinctive characteristic elements of A.membranaceus.Additionally,systematic cluster analysis was conducted using these characteristic elements as variables to investigate the relationship between the primary inorganic elements and the geographical origin of A.membranaceus.[Results]17 inorganic elements were identified in A.membranaceus specimens collected from Gansu Province,with characteristic elements including Ba,Co,Fe,Ga,Mn,Zn,and Sn.The contents of inorganic elements in various sources of A.membranaceus exhibited significant variability and demonstrated distinct clustering characteristics.[Conclusions]A.membranaceus,originating from Gansu Province,exhibits a high content of inorganic elements.However,variations in ecological environments can lead to differences in the specific inorganic elements that are enriched.This study aims to provide a reference for the further development and application of A.membranaceus.
基金supported by the Korea Polar Research Institute grant(PE25100)the National Research Foundation of Korea grant funded by the Korean Government(NRF2022R1A2C3007047)supported by Korea Institute of Marine Science&Technology Promotion(KIMST)and by the Ministry of Oceans and Fisheries(RS-2023-00256677,PM23020).
文摘The measurement of trace elements in Antarctic snow is crucial for understanding historical atmospheric geochemical changes and circulation patterns.However,studies on their spatial distributions remain limited,particularly those evaluating multiple metals across several snowpits,making interpretation challenging.This study investigates the distributions and sources of trace elements-including Cd,Ba,Pb,U,Bi,V,Mn,Fe,Cu,Zn,and As-across four snowpits in the Lambert Glacier Basin,East Antarctica.The trace elements exhibit site-,element-,and season-dependent variations,with higher concentrations observed at inland sites.In contrast,δ^(18)O and ion concentrations decrease with increasing distance from the coast and elevation,underscoring the influence of marine emissions.Crustal sources primarily contributed to Ba,U,V,Mn,and Fe,while non-crustal sources predominantly contributed to Cd,Bi,Zn,Pb,Cu,and As.Positive matrix factorization(PMF)analysis indicates that trace element concentrations in Pits 2 and 3 are influenced by both crustal and non-crustal sources,while Pit 4 reflects a mixed-source influence.Pit 1(coastal site)also indicates the mixed sources with influence of a highly dynamic marine climate and environment.The PMF results reveal similarities in emission sources and atmospheric transport patterns across the snowpits,facilitating a more comprehensive interpretation of longer ice core records.Overall,this study provides valuable insights into trace element distributions and enhances our understanding of past environmental and climatic conditions.
基金supported by the National Natural Science Foundation of China(No.52300005)China Postdoctoral Science Foundation(No.2023TQ0098)+5 种基金Heilongjiang Postdoctoral Fund(No.LBH-Z23175)Heilongjiang Touyan Innovation Team Program(No.HIT-SE-01)the Crossover Fund of Medical Engineering Science of Harbin Institute of Technology(No.IR2021107)the National Natural Science Foundation of International(Regional)Cooperation and Exchange Project(No.51961125104)the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2022TS15)the Ecological and Environmental Protection Research Project of Heilongjiang Province(No.HST2022ST006).
文摘Halogenated aromatic disinfection byproducts(DBPs)are gradually receiving attention due to their high detection frequency and usually higher toxicity than regulated DBPs.In this study,we established a solid phase extraction(SPE)-LC-MS/MS method to simultaneously trace analyze 59 halogenated aromatic DBPs.The limits of detection and limits of quantification of halogenated aromatic DBPs ranged from 0.03 to 135.23 ng/L and from 0.1 to 450.76 ng/L,respectively.The range of recoveries and relative standard deviation(RSD)in river water were between 72.41%to 119.54%and 1.86%to 16.03%,respectively.Therefore,this method can be used to accurately analyze trace levels of halogenated aromatic DBPs in drinking water.The occurrence and transformation of halogenated aromatic DBPs were explored based on this method.In the chlorinated simulated source water and chlorinated river water,20 and 45 halogenated aromatic DBPs were determined,respectively.The active halogen species(HOCl,HOBr,and HOI)first reacted with natural organic matter(NOM)to form halogenated aromatic DBPs.Then,chlorine further reacted with the halogenated aromatic DBPs to convert them into small-molecule halogenated aliphatic DBPs through oxidation,electrophilic substitution,and hydrolysis reaction,etc.In the chlorinated simulated source water,chlorinated river water,and tap water,the toxicity contribution of bromoacetic acids(Br-HAAs)accounted for themajority(>71.16%).Given that halogenated aromatic DBPs are intermediate products of halogenated aliphatic DBPs,controlling the formation of halogenated aromatic DBPs is beneficial in decreasing the formation of halogenated aliphatic DBPs,thereby diminishing the toxicity of drinking water.
基金financed by the grants from the National Natural Science Foundation of China(No.81803996)Shanghai Key Laboratory of Health Identification and Assessment(No.21DZ2271000)。
文摘Traditional Chinese medicine(TCM)has played a significant role in the prevention and treatment of chronic heart failure(CHF).To study TCM diagnosis of CHF,a total of 278 Chinese clinical research articles on the study of CHF syndromes in recent 40 years retrieved from Web of Science,Scopus,Pub Med,Embase,CNKI,Wanfang Data,Cq VIP,and Sino Med.According to cumulative frequency analysis,network analysis,and hierarchical cluster analysis,the study found the distribution of CHF syndromes was syndrome of qi deficiency with blood stasis,syndrome of qi and yin deficiency,syndrome of yang deficiency with water flooding,syndrome of heart blood stasis obstruction,syndrome of turbid phlegm,and syndrome of collapse due to primordial yang deficiency.The syndrome elements on location of illness were heart,kidney,lung,and spleen.The syndrome elements on nature of illness were qi deficiency,blood stasis,yang deficiency,yin deficiency,water retention,and turbid phlegm.These findings can provide reference to the research on diagnosis and treatment of CHF,and contribute to the study on syndrome standardization and objective research of TCM diagnosis.
基金supported financially by the National Natural Science Foundation of China(No.42272111)the Second Tibetan Plateau Scientific Expedition Program(Nos.2019QZKK0204,2019QZKK0205).
文摘Detrital U-bearing minerals(e.g.,zircon,apatite)U-Pb ages with specific trace-element geochemistry,are frequently used in provenance analyses.In this study,we focus on the Yarlung River drainage in South Xizang,characterized by two distinct lithologic units:The Gangdese batholith to the north(mainly granitoids)and the Tethyan Himalaya(mainly sedimentary rocks)to the south,which plays a crucial role in the erosion of the Tibetan Plateau.To constrain the provenance of the Yarlung River Basin,we performed trace-element and U-Pb age analyses of detrital apatite from the river sands of the Yarlung River and its tributaries.Our findings indicate that the detrital apatite U-Pb age patterns of the north tributaries exhibit main peaks at approximately 40 and 60 Ma,consistent with the corresponding U-Pb age patterns of detrital zircon published.Further,their trace element casts fall mainly in the Type I granite region,also indicating the Gangdese arc-dominated source.However,those of the south tributaries(∼60–20 Ma)exhibit a different age distribution from the detrital zircon U-Pb groups(∼110–150,∼500,and 1100 Ma),suggesting that the detailed apatite U-Pb signals can provide excellent constraints on the provenance of igneous and metamorphic rock sources but less so for sedimentary rock sources.Combined with previous detrital zircon data in the study area,our detrital apatite information can highlight young metamorphic events from a complex background(i.e.,Niyang and Nianchu rivers),which offers additional constraints on the provenance of the Yarlung River Basin.Generally,a combination of geochemistry and geochronology of multi-detrital heavy minerals,such as zircon and apatite,can provide powerful tools for provenance analysis.
基金Supported by Fund of Sichuan Provincial Administration of traditional Chinese Medicine(2008-12)~~
文摘[Objective] This study aimed to investigate the trace elements in Rehman- nia glutinosa Libosch. by using principal component analysis and clustering analysis. [Method] Principal component analysis and clustering analysis of R. glutinosa medicinal materials from different sources were conducted with contents of six trace elements as indices. [Result] The principal component analysis could comprehen- sively evaluate the quality of R. glutinosa samples with objective results which was consistent with the results of clustering analysis. [Conclusion] Principal component analysis and clustering analysis methods can be used for the quality evaluation of Chinese medicinal materials with multiple indices.
基金supported by the National Natural Science Foundation of China(No.U22A20578)the Science and Technology Department of Fujian Province(No.2022L3025)+3 种基金the Center for Excellence in Regional Atmospheric Environment Project(No.E0L1B20201)the Chaozhou Science and Technology Plan Project(No.2018GY03)Xiamen Atmospheric Environment Observation and Research Station of Fujian ProvinceFujian Key Laboratory of Atmospheric Ozone Pollution Prevention(Institute of Urban Environment,Chinese Academy of Sciences)。
文摘To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM_(2.5)concentrations,15 trace elements(Al,K,Ca,Ti,V,Cr,Mn,Fe,Ni,Cu,Zn,As,Sn,Ba,Pb)in PM_(2.5)were monitored from December 2020 to November 2021 in a representative city,Xiamen.The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K,Fe,Al,Ca and Zn.Based on Positive Matrix Factorization analysis,source appointment revealed that the major sources of trace elements in Xiamen were traffic,dust,biomass and firework combustion,industrial manufacture and shipping emission.According to health risk assessment combined with the source appointment results,it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals(Cr,Ni,As,Pb)exceeded the threshold(10^(-6)).Traffic-related source had almost half amount of contribution to the health risk induced by PM_(2.5)-bound trace elements.During the dust transport period or Spring Festival period,the health risks exceeded an acceptable threshold even an order of magnitude higher,suggesting that the serious health risks still existed in low PM_(2.5)environment at certain times.Health risk assessment reminded that the health risk reduction in PM_(2.5)at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.
基金funded by the“Key Scientific Issues and Innovative Technology Research on Oil and Gas Resource Exploration in China Sea Risk Exploration Area”(Grant No.CCL2022RCPS2017XNN)from CNOOC Research Institute,Beijing.
文摘The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these issues,based on Rock-Eval pyrolysis,kerogen macerals,H/C and O/C ratios,GC-MS,major and trace elements,the Dongying Formation Member(Mbr)3(E_(3)d_(3)),the Shahejie Formation mbrs 1 and 2(E_(2)s_(1+2)),and the Shahejie Mbr 3(E_(2)s_(3))source rocks in the western Bozhong Sag were studied.The above methods were used to reveal their geochemical properties,OM origins and depositional environments,all of which indicate that E_(2)s_(1+2)and E_(2)s_(3)are excellent source rocks,and that E_(3)d_(3)is of the second good quality.E_(3)d_(3)source rocks were formed under a warm and humid climate,mainly belong to fluvial/delta facies,the E_(3)d_(3)sediments formed under weakly oxidizing and freshwater conditions.Comparatively,the depositional environments of E_(2)s_(1+2)source rocks were arid and cold climate,representing saline or freshwater lacustrine facies,and the sediments of E_(2)s_(1+2)belong to anoxic or suboxic settings with large evaporation and salinity.During the period of E_(2)s_(3),the climate became warm and humid,indicating the freshwater lacustrine facies,and E_(2)s_(3)was characterized by freshwater and abundant algae.Moreover,compared with other intervals,the OM origin of E_(3)d_(3)source rocks has noticeable terrestrial input.The OM origin of the E_(2)s_(1+2)and E_(2)s_(3)are mainly plankton and bacteria.Tectonic subsidence and climate change have affected the changes of the depositional environment in the western Bozhong Sag,thus controlling the distribution of the source rocks,the geochemical characteristics in the three intervals of lacustrine source rocks have distinct differences.Overall,these factors are effective to evaluate the paleoenvironmental characteristics of source rocks by biomarkers,major and trace elements.The established models may have positive implications for research of lacustrine source rocks in offshore areas with few drillings.
基金supported by National Natural Science Foundation of China(No.51964009)。
文摘Coal seams can enrich a variety of harmful trace elements under specific geological conditions.The spatial distribution of harmful trace elements in coal is extremely uneven,and the distribution characteristics of each element content are different.The harmful elements released in the process of coal mining and utilization will cause serious harm to the environment and the human body.It is of great resource significance to study the geochemistry of coal that affects the enrichment and distribution characteristics of harmful trace elements.Based on the domestic and foreign literature on coal geochemistry in Guizhou published by previous investigators,this study counted 1097 sample data from 23 major coal-producing counties in Guizhou Province,systematically summarized the relevant research results of harmful trace elements in the coal of Guizhou,and revealed the overall distribution and enrichment characteristics of harmful trace elements in the coal of Guizhou.The results show that the average contents of Cd,Pb,Se,Cu,Mo,U,V,As,Hg,and Cr in coal of Guizhou are higher than those in Chinese coal and world coal.A variety of harmful trace elements in the coal of Guizhou have high background values,especially in Liupanshui,Xingyi and Qianbei coalfield.The enrichment of various harmful trace elements in the Late Permian coal in Guizhou is mainly related to the combined action of various geological and geochemical factors.The supply of terrigenous debris and sedimentary environment may be the basic background of the enrichment of harmful elements in western Guizhou,while low-temperature hydrothermal activity and volcanic ash deposition may be the main reasons for the enrichment of harmful elements in southwestern Guizhou.
基金supported by the National Science Foundation of China(Nos.41172143 and 40872101)Developmental Plan of Basic Research on Natural Science of Shanxi Province(20012JM5005)Science Research Plan of Shanxi education department(12JK0483)
文摘The relationship between trace elements in coal and organic functional groups of coal, also some of aromatic structure, was investigated by using curve fitting of infrared spectra. Cluster analysis was also performed according to the degree of affinity of organic groups to the trace elements. The results show that there is a possibility that trace elements, especially LREE, were bound to peripheral organic functional groups of middle rank coal macromolecule. The most possible functional group that binds trace element is the hydroxyl, and to the less degree, the asymmetric -CH3 and 〉CH2 stretching, -CH3 stretching, etc. The degree of affinity of trace elements to different functional groups varies. The tendency obeys the natural structural changing law of trace elements-- the periodic law. The deviation of some trace elements from this regular trend is attributed to the deviation of intrinsic "confusion degree" (conventional molar entropy) of the matter system of coal basin, which is affected by the inner and outer factors during the evolution.
基金supported by the National Key R & D Program of China (No. 2016YFC0600206)the China Geological Survey (No. 12120114051801)
文摘Major elements, trace elements and Sr isotopic compositions of apatite from the granite in the Chengchao skarn-type Fe deposit of Edong ore district of Middle-Lower Yangtze River metallogenic belt were measured using EMPA (electron microprobe), LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) and LA-MC (multicollector)-ICP-MS methods in order to reveal the petroge- netic and metallogenic significance of the skarn-type iron deposits. The results show that the apatite in Chengchao granite is fluorapatite, which displays slight variation in major elements. The REE distribution pattern of the apatite is similar to that of the whole rocks, with strong negative Eu anomaly and low Sr/Y ratio. The concentration of Mn in apatite is low (140 ppm-591 ppm) and the Sr isotopic composition shows a limited variation from 0.706 9 to 0.708 2. The high oxygen fugacity of the Chengchao granite, implied by the low Mn content in apatite, is possibly attributed to contamination of the gypsum from sedimentary rock strata, which has long been thought to be an important factor that controls the Fe mineralization in the Middle-Lower Yangtze River metallogenic bell This study also proves that the Eu/Eu* value and Sr/Y ra- tio in apatite can be effectively used to identify the adakitie affinity. The in situ Sr isotope analysis of apatite is in consistent with the bulk rock analysis, which indicates that the apatite Sr isotope can represent the ini- tial Sr isotopic compositions of the magma. The Sr isotope and negative Eu anomaly in apatite imply that the Chengchao granite is likely sourced from crust-mantle mixed materials.
基金supported by the National Natural Science Foundation of China(No.42065007)supported by the Natural Science Foundation of Hebei Province(No.D2021501004)。
文摘Trace elements in atmospheric particulate matter play a significant role in air quality,human health,and biogeochemical cycles.In this study,the trace elements(Ca,Al,K,Fe,Na,Mg,Zn,Pb,Mn,Ti,Cu,Cr,Sr,Ni)in PM2.5samples collected at the summit of Mt.Lushan were analyzed to quantify their abundance,source,transport,and health risks.During the whole sampling period,the major trace elements was Ca,Al,and K.While the trace metals with the lowest concentrations were Sr,Ni,Rb,and Cd.The trace elements were influenced by air mass transport routes,exhibiting an increasing trend of crustal elements in the northwesterly airmass and anthropogenic elements(Zn,Mn,Cu,and Ni)in the easterly air masses.Construction dust,coal+biomass burning,vehicle emission,urban nitrate-rich+urban waste incineration emissions,and soil dust+industry emissions were common sources of PM2.5on Mt.Lushan.Different air mass transport routes had various source contribution patterns.These results indicate that trace elements at Mt.Lushan are influenced by regional anthropogenic emissions and monsoon-dominated trace element transport.The total resulting cancer risk value that these elements posed were below the acceptable risk value of 1×10^(-6),while the non-carcinogenic risk value(1.72)was higher than the safety level,suggesting that non-carcinogenic effects due to these trace elements inhalation were likely to occur.Vehicle emission and coal+biomass burning were the common dominant sources of non-cancer risks posed by trace elements at Mt.Lushan.
基金This study is financially supported by the National Science Fund for Distinguished Young Scholars(No.42025301)Guizhou Provincial 2020 Science and Technology Subsidies(No.GZ2020SIG).
文摘The Xingluokeng deposit is the largest gran-ite-related tungsten deposit within the Wuyi metallogenic belt in South China.The Xingluokeng intrusion primarily consists of porphyritic biotite granite,biotite granite,andfine-grained granite.The deposit is represented by veinlet-disseminated mineralization with K-feldspathization and biotitization,alongside quartz-vein mineralization with gre-isenization and sericitization.This study investigates in-situ analyses of quartz compositions from both the intrusion and hydrothermal veinlets and veins.Trace element correlations indicate that trivalent Al^(3+)and Fe^(3+)replace Si^(4+)within the quartz lattice,with monovalent cations(such as Li^(+),Na^(+),and K^(+))primarily serving as charge compensators.Low Ge/Al ratios(<0.013)of quartz from granites suggest a mag-matic origin.The low Al/Ti and Ge/Ti ratios,accompanied by high Ti contents in quartz,suggest that the porphyritic biotite granite and biotite granite are characterized by rela-tively low levels of differentiation and high crystallization temperatures.In contrast,thefine-grained granite exhibits a higher degree of fractionation,lower crystallization tem-peratures,and a closer association with tungsten miner-alization.Ti contents in quartz from quartz veins indicate Qz-Ⅰformed at temperatures above 400°C,while Qz-Ⅱto Qz-Ⅴformed at temperatures below 350°C.Variations in different generations of quartz,as indicated by Al content and(Al+Fe)/(Li+Na+K)ratio,suggest that Qz-Ⅰprecipi-tated from a less acidicfluid with a stable pH,whereas Qz-Ⅱto Qz-Ⅴoriginated from a more acidicfluid with notable pH variations.Consequently,alkaline alteration and acidic alteration supplied the essential Ca and Fe for the precipita-tion of scheelite and wolframite,respectively,highlighting a critical mechanism in tungsten mineralization at the Xin-gluokeng deposit.
文摘The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. In the present study, we investigated the distribution pattern of 18trace elements(including biophile and chalcophile elements) as well as the estimated risks associated with exposure to these elements. The results of the study indicated that Fe was the most abundant element, with a mean concentration of 22,131 mg/kg while Br had the lowest mean concentration of 48 mg/kg. The high occurrence of Fe and Ti suggested a possible occurrence of ilmenite(Fe TiO_(3)) in the oil sands. Source apportionment using positive matrix factorization showed that the possible sources of detected elements in the oil sands were geogenic, metal production, and crustal. The contamination factor, geo-accumulation index, modified degree of contamination, pollution load index, and Nemerow pollution index indicated that the oil sands are heavily polluted by the elements. Health risk assessment showed that children were relatively more susceptible to the potentially toxic elements in the oil sands principally via ingestion exposure route(HQ > 1E-04). Cancer risks from inhalation are unlikely due to CR < 1E-06 but ingestion and dermal contact pose severe risks(CR > 1E-04). The high concentrations of the elements pose serious threats due to the potential for atmospheric transport, bioaccessibility, and bioavailability.
基金supported by the Dean Faculty of Science,University of Karachi research grant.
文摘This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by multi-variate analysis based on geochemical data.The outcomes of this study are expected to help farmers in soil manage-ment and selecting suitable crops for the region.Twenty-five soil samples were collected,mainly from the arable land of the Porali Plain.After drying and coning-quarter-ing,soil samples were analyzed for major and trace ele-ments using the XRF technique;sieving and hydrometric methods were employed for granulometric analysis.Esti-mated data were analyzed using Excel,SPSS,and Surfer software to calculate various indices,correlation matrix,and spatial distribution.The granulometric analysis showed that 76%of the samples belonged to loam types of soil,12%to sand type,and 8%to silt type.Weathering indices:CIA,CIW,PIA,PWI,WIP,CIX,and ICV were calculated to infer the level of alteration.These indices reflect mod-erate to intense weathering;supported by K_(2)O/AI_(2)O_(3),Rb/K_(2)O,Rb/Ti,and Rb/Sr ratios.Assessment of the geo-ac-cumulation and Nemerow Pollution indices pinpoint rela-tively high concentrations of Pb,Ni,and Cr concentration in the soils.The correlation matrix and Principal Compo-nent Analysis show that the soil in this study area is mainly derived from the weathering of igneous rocks of Bela Ophiolite(Cretaceous age)and Jurassic sedimentary rocks of Mor Range having SEDEX/MVT type mineralization.Weathering may result in the undesirable accumulation of certain trace elements which adversely affects crops.
基金jointly supported by the foundation from Department of Science and Technology of Jiangxi Province(No.20232BAB213064)National Natural Science Foundation of China(No.42102088)foundation from the State Key Laboratory of Nuclear Resources and Environment(2022NRE33)。
文摘The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the Jurassic-Cretaceous quartz diorite porphyry,while the genesis of this deposit is unclear.This study focused on geological and mineralogical characteristics,in-situ trace elements and S-Pb isotopes of three generations of pyrite of the Huxu deposit to clarify the distribution of trace elements in pyrite,ore-forming fluid and material sources,and genetic types of the deposit.The mineralization stage of the deposit can be divided into quartz-pyrite stage(S1),quartz-pyrite-hematite stage(S2),quartz-polymetallic sulfide stage(S3)and quartz-hematite stage(S4),with the corresponding pyrite being divided into three generations(Py1-Py3).in-situ trace element data of pyrite show that Au in pyrite mainly exists in the form of solid solution(Au^(+)),and the content is relatively low at all stages(0.18 ppm for Py1,0.32 ppm for Py2,0.68 ppm for Py3),while Pb and Zn mainly exist as sulfide inclusions in the pyrite.S-Pb isotopes show that the sulfur and ore-forming material of this deposit are mainly sourced from magma.The mineral association,mineral textures and trace elements in different stages of pyrite indicate that fluid boiling and fluid mixing are the key factors of native gold precipitation in S2 and S4,respectively,while water-rock interaction controlled the precipitation of Pb-Zn sulfides.These integrating with geological characteristics suggests that the deposit should be an intermediate sulfidation epithermal deposit.
文摘The questions about the androgen control and the involvement of trace elements in prostatic reproductive function still remain unanswered. One valuable way to elucidate the situation is to compare the values for the prostatic mass fractions of trace elements in pre-and post-pubertal boys. The effect of age on the mass fraction of 54 trace elements in intact prostate of 50 apparently healthy 0-30 years old males was investigated by neutron activation analysis and inductively coupled plasma mass spectrometry. Mean values (M ± SΕΜ) for mass fraction (milligram per kilogram, on dry-weight basis) of trace elements were: Ag 0.062 ± 0.008, Al 80 ± 18, Au 0.0092 ± 0.0024, B 5.9 ± 3.5, Be 0.0034 ± 0.0009, Bi 0.018 ± 0.010, Br 26 ± 3, Cd 0.26 ± 0.05, Ce 0.049 ± 0.012, Co 0.035 ± 0.004, Cr 0.49 ± 0.07, Cs 0.036 ± 0.005, Dy 0.0072 ± 0.0018, Er 0.0040 ± 0.0011, Fe 100 ± 10, Gd 0.0065 ± 0.0018, Hg 0.031 ± 0.004, Ho 0.0013 ± 0.0004, La 0.034 ± 0.007, Li 0.064 ± 0.009, Mn 1.69 ± 0.15, Mo 0.54 ± 0.13, Nb 0.013 ± 0.004, Nd 0.025 ± 0.006, Ni 4.1 ± 0.6, Pb 1.3 ± 0.2, Pr 0.0058 ± 0.0015, Rb 14.5 ± 0.8, Sb 0.051 ± 0.006, Sc 0.013 ± 0.002, Se 0.54 ± 0.03, Sm 0.0055 ± 0.0015, Sn 0.22 ± 0.05, Tb 0.0012 ± 0.0004, Th 0.0076 ± 0.0020, Ti 2.8 ± 0.5, Tl 0.0032 ± 0.0009, Tm 0.00064 ± 0.00017, U 0.0025 ± 0.0004, Y 0.036 ± 0.010, Yb 0.0037 ± 0.0012, Zn 281 ± 32, and Zr 0.16 ± 0.04. The upper limit of mean mass fraction of As, Eu, Ga, Hf, Ir, Lu, Pd, Pt, Re, and Ta were: As ≤ 0.069, Eu ≤ 0.0012, Ga ≤ 0.071, Hf ≤ 0.049, Ir ≤ 0.00054, Lu ≤ 0.00063, Pd ≤ 0.014, Pt ≤ 0.0029, Re ≤ 0.0048, and Ta ≤ 0.010. This work revealed that there is a significant tendency for the mass fractions of Cd, Se and Zn in the prostate tissue of healthy individuals to increase with age from the time of birth up to 30 years. It was also shown that high levels of Al, Au, B, Br, Cr, Ga, Li, and Ni mass fraction in prostate tissue do not indicate a direct involvement of these elements in the reproductive function of prostate.