This study was designed to explore the possibility of using ascitic mouse sarcoma cell line (S180) to validate the mouse tumor cell attachment assay for developmental toxicants, and to test the inhibitory effects of v...This study was designed to explore the possibility of using ascitic mouse sarcoma cell line (S180) to validate the mouse tumor cell attachment assay for developmental toxicants, and to test the inhibitory effects of various developmental toxicants. The results showed that 2 of 3 developmental toxicants under consideration, sodium pentobarbital and ethanol, significantly inhibited S180cells attachment to Concanavalin A-coaed surfaces. Inhibition was dependent on concentration, and the IC50 (the concentration tha reduced attachment by 50% ), of these 2 chemicals was 1.2×10-3mol/L and 1 .0 mol/L, respectively. Anoher developmental toxiant, hydmiortisone, did not show inhibitory activity. Two non-developmental toxicants, sodium chloride and glycine were also tested and these did not decrease attachment rates. The main results reported here were generally sindlar to those obtained with ascitic mouse ovdrian tumor cells as a model. Therefore, this study added further evidence to the conclusion that cell specificity does not lindt attachment inhibition to Con A-coated surfaces, so S180 cell may serve as an altemative cell model, especially when other cell lines are unavailable. Furthermore, after optimal validation, it can be suggested that an S180 cell attachment assay may be a candidate for a series of assays to detect developmental toxicants.展开更多
The luminous intensity of dark variant (S1) separated from photobacterium phosph oreum (A2) was 1/10 000 less than that of wild type. Ethidium bromide (EB) (0.6 mg/L), Mytomycin C (MC, 0.05 mg/L), 2 amino fluorene ...The luminous intensity of dark variant (S1) separated from photobacterium phosph oreum (A2) was 1/10 000 less than that of wild type. Ethidium bromide (EB) (0.6 mg/L), Mytomycin C (MC, 0.05 mg/L), 2 amino fluorene (2 AF, 1.0 mg/L) all cou ld strongly induce reversion mutation for S1 within 24 h and increase reversion ratio significantly. The results of experiments indicated that these revertants had stable genetic characteristic and the mutation may take place at gene levels . The mutagenesis to S1 caused by EB, MC and 2 AF was detected and it may be us ed as a new rapid, simple and sensitive method for gene toxicant monitoring.展开更多
Isolated ovarian tissues from the common carp, Cyprinus carpio were incubated in vitro to obtain a discrete effect of four common toxicants of industrial origin, namely phenol, sulfide, mercuric chloride and cadmium c...Isolated ovarian tissues from the common carp, Cyprinus carpio were incubated in vitro to obtain a discrete effect of four common toxicants of industrial origin, namely phenol, sulfide, mercuric chloride and cadmium chloride, on gonadotropin-induced alteration of nonesterified and esterified cholesterol and steroidogenic enzymes, △5-3β-HSD and 17β-HSD activity. Stage II ovarian tissue containing 30-40% mature oocytes were shown to be most responsive to gonadotropins in depleting only nonesterified cholesterol moiety and stimulating the activity of both. Safe doses of above mentioned toxicants when added separately to stage II ovarian tissue with oLH (1 μg/incubation) gonadotropin-induced depletion of nonesterified cholesterol and gonadotropin-induced stimulation of the activity of both enzymes was significantly inhibited. Esterified cholesterol remained almost unaltered. Findings clearly indicate the impairment of gonadotropin induced fish ovarian steroidogenesis by the four toxicants separately.展开更多
This paper established a modified Leslie-Gower and Holling-type IV stochastic predator-prey model with Lévy noise and impulsive toxicant input. We study the stability in distribution of solutions by inequality te...This paper established a modified Leslie-Gower and Holling-type IV stochastic predator-prey model with Lévy noise and impulsive toxicant input. We study the stability in distribution of solutions by inequality techniques and ergodic method. By comparison method and It<span style="white-space:nowrap;">ô</span>’s formula, we obtain the sufficient conditions for the survival of each species. Some numerical simulations are introduced to show the theoretical results.展开更多
Male infertility is a major public health issue predominantly caused by defects in germ cell development. In the past, studies on the genetic regulation of spermatogenesis as well as on negative environmental impacts ...Male infertility is a major public health issue predominantly caused by defects in germ cell development. In the past, studies on the genetic regulation of spermatogenesis as well as on negative environmental impacts have been hampered by the fact that human germ cell development is intractable to direct analysis in vivo. Compared with model organisms including mice, there are fundamental differences in the molecular processes of human germ cell development. Therefore, an in vitro model mimicking human sperm formation would be an extremely valuable research tool. In the recent past, both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have been reported to harbour the potential to differentiate into primordial germ cells and gametes. We here discuss the possibility to use human amniotic fluid stem (AFS) ceils as a biological model. Since their discovery in 2003, AFS cells have been characterized to differentiate into cells of all three germ layers, to be genomically stable, to have a high proliferative potential and to be non-tumourigenic. In addition, AFS cells are not subject of ethical concerns. In contrast to iPS cells, AFSs cells do not need ectopic induction of pluripotency, which is often associated with only imperfectly cleared epigenetic memory of the source cells. Since AFS cells can be derived from amniocentesis with disease-causing mutations and can be transfected with high efficiency, they could be used in probing gene functions for spermatogenesis and in screening for male reproductive toxicity.展开更多
Biomass-derived N-doped carbon(BNC)is an important environmental material and widely used in the fields of water purification and soil remediation.However,the toxicant in the commonly used synthesis process of BNC mat...Biomass-derived N-doped carbon(BNC)is an important environmental material and widely used in the fields of water purification and soil remediation.However,the toxicant in the commonly used synthesis process of BNC materials have been largely ignored.Herein,we firstly report the presence of a highly toxic by-product(KCN)in the activation process of BNC materials consequential of the carbothermal reduction reaction.Because this carbothermal reduction reaction also regulates the N-doping and pore development of BNC materials,the KCN content directly relates with the properties of BNC material properties.Accordingly,a high KCN content(-611 mg)can occur in the production process of per g BNC material with high specific surface area(-3600 m^2/g).Because the application performance of BNC material is determined by the surface area and available N doping,therefore,production of a BNC material with high performance entails high risk.Undoubtedly,this study proves a completely new risk recognition on a familiar synthesis process of biomass-based material.And,strict protective device should be taken in fabrication process of biomass-derived carbon material.展开更多
We study a model for the long-term behavior of a single-species population with some degree of pollution tolerance in a polluted environment. The model consists of three ordinary differential equations: one for the p...We study a model for the long-term behavior of a single-species population with some degree of pollution tolerance in a polluted environment. The model consists of three ordinary differential equations: one for the population density, one for the amount of toxicant inside the living organisms, and one for the amount of toxicant in the environment. We derive sufficient conditions for the persistence and the extinction of the population depending on the exogenous input rate of the toxicant into the environment and the level of pollution tolerance of the organisms. Numerical simulations are carried out to illustrate our main results.展开更多
The influence of toxicants on the competition of n populations for time variablenutriellt input rate and time variable washout rate in a chemostat model is investigated.After proving some qualitative properties of the...The influence of toxicants on the competition of n populations for time variablenutriellt input rate and time variable washout rate in a chemostat model is investigated.After proving some qualitative properties of the solutions, the threshold between persistence and extinction of the populations has been obtained.展开更多
Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to i...Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.展开更多
Remarkable antibacterial activity of BPA analogues especially for tetrabromobi-sphenol A against Staphylococcus aureus 25923(Sa25923)and methicillin-resistant Staphylococcus aureus(MRSA)has been reported in our previo...Remarkable antibacterial activity of BPA analogues especially for tetrabromobi-sphenol A against Staphylococcus aureus 25923(Sa25923)and methicillin-resistant Staphylococcus aureus(MRSA)has been reported in our previous studies.However,the toxic effects of the compounds as environmental contaminants on the endocrine system limited their applications in the field of medicine and health.Given the abuse of antibiotics has led to the emergence of multiple super-resistant bacteria,we considered that structural modifications based on the BPA structure will be available for molecular designing of potential antimicrobial agents without drug resistance.In this study,to further improve the antibacterial activity and reduce the biological toxicity,we performed the computational models to evaluate the binding affinities of BPA analogues to the potential target DltA protein in the biosynthesis of cell wall.A series of synthesized achiral analogues ofα,α,α′-tris(4-hydroxyphenyl)-1-ethyl-4-isopropylbenzene(α,α,α′-TEIB)exhibited low minimum inhibitory concentration against Sa25923 and MRSA(2 or 1μg mL−1).Especially,the analogue A4 did not induce the drug-resistant mutants for all tested Gram-positive bacterial strains and exhibited relatively lower cytotoxicity in HepG2 cells.The developed classification model based on the light gradient boosting algorithm showed the superior performances on the internal robustness and generalization ability for the ligand-based virtual screening of bisphenol and polyphenol antimicrobial substances.Collectively,our findings suggest that the molecular structure ofα,α,α′-TEIB is promising as a scaffold,which is expected to achieve a breakthrough in the development of antibiotics which can prevent the invasion of MRSA and other super bacteria.展开更多
With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, we study the global existence of positive periodic solutions of a 'food-limited' population model with toxicants and...With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, we study the global existence of positive periodic solutions of a 'food-limited' population model with toxicants and time delays. Some new results are obtained.展开更多
Neuronal toxic pollutants in environment possess hazards to human health. It is essential to determine the causative neuronal toxicants in environmental samples. In the present study, viability of primary cultured cer...Neuronal toxic pollutants in environment possess hazards to human health. It is essential to determine the causative neuronal toxicants in environmental samples. In the present study, viability of primary cultured cerebellar granule neurons (CGNs), combined with sample extraction, chemical fractionation and identification, was applied for screening acid-resistant neuronal toxic substances in environmental samples. River sediments and agricultural soils along the river near a brominated flame retardant (BFR) manufacturing plant in South China were collected to screen the key neuronal toxicants. The results indicated that the manufacturing plant was a source of neuronal toxicity risks. In the sediment and soil near the plant, one of the causative toxicants was identified as tris-(2,3-dibromopropyl) isocyanurate (TBC) using HPLC-MS/MS. In addition, an unknown chemical possibly causing significant neuronal toxicity was isolated from all the soil samples in the region.展开更多
The zebrafish has emerged as a powerful model organism in life science owing to its remarkable biological characteristics and wide-ranging applications.This review provides a comprehensive overview of the recent advan...The zebrafish has emerged as a powerful model organism in life science owing to its remarkable biological characteristics and wide-ranging applications.This review provides a comprehensive overview of the recent advancements in research on zebrafish within the field of environmental toxicology,highlighting specific studies where this species was used to investigate various pollutants to elucidate their impacts and underlying mechanisms.The findings of these studies underscore the significant potential of zebrafish as a model to gain crucial insights into the ecological consequences of environmental contamination and toxicity pathways.By incorporating cutting-edge technologies such as artificial intelligence(Al),high-throughput screening,and omics approaches,the use of zebrafish as a model organism is poised to significantly accelerate toxicological investigations,promote environmental conservation efforts,contribute to safeguarding human health,and advance sustainable development objectives.展开更多
The spectrum user’s librarys containing 1533 familiar toxicants have been built; A method with high separability and sensitivity has been found,The RT and the detection limit of 210 familiar abuse drugs has been conf...The spectrum user’s librarys containing 1533 familiar toxicants have been built; A method with high separability and sensitivity has been found,The RT and the detection limit of 210 familiar abuse drugs has been confirmed; the processing methods to analyse spectrum data automatically have been found; It is simple,quick,sensitive and reliable,and can take place of manual operation,It is very useful to screen the familiar toxicants in unkown sample.展开更多
Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic ...Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined.With innovations in high-throughput gene sequencing analysis,many aberrantly expressed non-coding RNAs(ncRNAs)in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models.Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes,leading to neuroprotection or deterioration,thus ncRNAs can serve as therapeutic targets in acute ischemic stroke.Moreover,distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.In particular,ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke.In this review,we consolidate the latest progress of research into the roles of ncRNAs(microRNAs,long ncRNAs,and circular RNAs)in the pathological processes of acute ischemic stroke–induced brain damage,as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.展开更多
Persistent toxic substances(PTS)represent a paramount environmental issue in the 21st century.Understanding the concentrations and forms of PTS in the environment is crucial for accurately assessing their environmenta...Persistent toxic substances(PTS)represent a paramount environmental issue in the 21st century.Understanding the concentrations and forms of PTS in the environment is crucial for accurately assessing their environmental health impacts.This article presents a concise overview of the components of PTS,pertinent environmental regulations,and conventional detection methodologies.Additionally,we offer an in-depth review of the principles,development,and practical applications of surface-enhanced Raman scattering(SERS)in environmental monitoring,emphasizing the advancements in detecting trace amounts of PTS in complex environmental matrices.Recent progress in enhancing SERS sensitivity,improving selectivity,and practical implementations are detailed,showcasing innovative materials and methods.Integrating SERS with advanced algorithms are highlighted as pivotal areas for future research.展开更多
Background Hexafluoropropylene oxide dimer acid(GenX),a substitute for per-and polyfluoroalkyl substances,has been widely detected in various environmental matrices and foods recently,attracting great attention.Howeve...Background Hexafluoropropylene oxide dimer acid(GenX),a substitute for per-and polyfluoroalkyl substances,has been widely detected in various environmental matrices and foods recently,attracting great attention.However,a systematic characterization of its reproductive toxicity is still missing.This study aims to explore the male reproductive toxicity caused by GenX exposure and the potential cellular and molecular regulatory mechanisms behind it.Results Normally developing mice were exposed to GenX,and testicular tissue was subsequently analyzed and validated using single-cell RNA sequencing.Our results revealed that GenX induced severe testicular damage,disrupted the balance between undifferentiated and differentiated spermatogonial stem cells,and led to strong variation in the cellular dynamics of spermatogenesis.Furthermore,GenX exposure caused global upregulation of testicular somatic cellular inflammatory responses,increased abnormal macrophage differentiation,and attenuated fibroblast adhesion,disorganizing the somatic-germline interactions.Conclusions In conclusion,this study revealed complex cellular dynamics and transcriptome changes in mouse testis after GenX exposure,providing a valuable resource for understanding its reproductive toxicity.展开更多
This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main cr...This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main criterion to assess the quality and effectiveness of the proposed solutions,as this test was performed to measure the strength of the stabilized clay by varying binders’dosages and curing times.Moreover,the direct shear test(DST)was used to investigate the Mohr-Coulomb parameters of the treated soil.Microstructure observations of the natural and treated soil were conducted using scanning electron microscope(SEM),energy-dispersive spectroscopy(EDS),and FTIR.Furthermore,toxicity characteristic leaching procedure(TCLP)tests were performed on the treated soil to investigate the leachability of metals.According to the results,using 2.5%of sewage sludge activated by NaOH and Na_(2)SiO_(3)increases the UCS values from 176 kPa to 1.46 MPa after 7 d and 56 d of curing,respectively.The results of the DST indicate that sewage sludge as a precursor increases cohesion and enhances frictional resistance,thereby improving the Mohr-Coulomb parameters of the stabilized soil.The SEM micrographs show that alkali-activated sewage sludge increases the integrity and reduces the cavity volumes in the stabilized soil.Moreover,TCLP tests revealed that the solubility of metals in the treated soil alkaliactivated by sewage sludge significantly decreased.This study suggests that using sewage sludge can replace cement and lime in ground improvement,improve the circular economy,and reduce the carbon footprint of construction projects.展开更多
Soil naturally contains various heavy metals,however,their concentrations have reached toxic levels due to excessive agrochemical use and industrial activities.Heavy metals are persistent and non-biodegradable,causing...Soil naturally contains various heavy metals,however,their concentrations have reached toxic levels due to excessive agrochemical use and industrial activities.Heavy metals are persistent and non-biodegradable,causing environmental disruption and posing significant health hazards.Microbial-mediated remediation is a promising strategy to prevent heavy metal leaching and mobilization,facilitating their extraction and detoxification.Nickel(Ni),being a prevalent heavy metal pollutant,requires specific attention in remediation efforts.Plants have evolved defense mechanisms to cope with environmental stresses,including heavy metal toxicity,but such stress significantly reduces crop productivity.Beneficial microorganisms play a crucial role in enhancing plant yield and mitigating abiotic stress.The impact of heavy metal abiotic stress on plants’growth and productivity requires thorough investigation.Bioremediation using Nickel nanoparticles(Ni NPs)offers an effective approach to mitigating environmental pollution.Microorganisms contribute to nanoparticle bioremediation by immobilizing metals or inducing the synthesis of remediating microbial enzymes.Understanding the interactions between microorganisms,contaminants,and nanoparticles(NPs)is essential for advancing bioremediation strategies.This review focuses on the role of Bacillus subtilis in the bioremediation of nickel nanoparticles to mitigate environmental pollution and associated health risks.Furthermore,sustainable approaches are necessary to minimize metal contamination in seeds.The current review discusses bacterial inoculation in enhancing heavy metal tolerance,plant signal transduction pathways,and the transition from molecular to genomic research in metal stress adaptation.Moreover,the inoculation of advantageous bacteria is crucial for preserving plants under severe mental stress.Different researchers develop a complex,vibrant relationship with plants through a series of events known as plant-microbe interactions.It increases metal stress resistance through the creation of phytohormones.In general,the defensive responses of plants to heavy metal stress,mediated by microbial inoculation require further in-depth research.Further studies should explore the detoxification mechanism of nickel through bioremediation to develop more effective and sustainable remediation strategies.展开更多
Owing to their low toxicity and remarkable stability, perovskites based on antimony and bismuth have garnered significant interest in recent years. However, A_(3)B_(2)X_(9) perovskite materials derived from antimony a...Owing to their low toxicity and remarkable stability, perovskites based on antimony and bismuth have garnered significant interest in recent years. However, A_(3)B_(2)X_(9) perovskite materials derived from antimony and bismuth face several challenges, including excessively wide band gaps, elevated defect densities, and suboptimal film quality, all of which hinder advancements in device efficiency. While extensive studies have been undertaken to investigate the effects of modulating the A-site and X-site elements in lead-free A_(3)B_(2)X_(9) perovskites, there remains a notable scarcity of reports addressing the impact of modifications to the B-site element. In this study, we investigated the alloying of antimony and bismuth within the 2D Cs_(3)B_(2)I_(6)Br_(3) perovskite. By systematically varying the ratios of two elements, we found that the incorporation of both antimony and bismuth at the B-site significantly enhances the quality of the perovskite films. Our findings indicate that a 1 : 1 ratio of antimony to bismuth produces the densest films, the highest photoluminescence intensity, and superior photovoltaic performance. Ultimately,the devices fabricated using this optimal ratio achieved an open-circuit voltage(VOC) of 1.01 V and a power conversion efficiency(PCE) of 0.645%.展开更多
文摘This study was designed to explore the possibility of using ascitic mouse sarcoma cell line (S180) to validate the mouse tumor cell attachment assay for developmental toxicants, and to test the inhibitory effects of various developmental toxicants. The results showed that 2 of 3 developmental toxicants under consideration, sodium pentobarbital and ethanol, significantly inhibited S180cells attachment to Concanavalin A-coaed surfaces. Inhibition was dependent on concentration, and the IC50 (the concentration tha reduced attachment by 50% ), of these 2 chemicals was 1.2×10-3mol/L and 1 .0 mol/L, respectively. Anoher developmental toxiant, hydmiortisone, did not show inhibitory activity. Two non-developmental toxicants, sodium chloride and glycine were also tested and these did not decrease attachment rates. The main results reported here were generally sindlar to those obtained with ascitic mouse ovdrian tumor cells as a model. Therefore, this study added further evidence to the conclusion that cell specificity does not lindt attachment inhibition to Con A-coated surfaces, so S180 cell may serve as an altemative cell model, especially when other cell lines are unavailable. Furthermore, after optimal validation, it can be suggested that an S180 cell attachment assay may be a candidate for a series of assays to detect developmental toxicants.
文摘The luminous intensity of dark variant (S1) separated from photobacterium phosph oreum (A2) was 1/10 000 less than that of wild type. Ethidium bromide (EB) (0.6 mg/L), Mytomycin C (MC, 0.05 mg/L), 2 amino fluorene (2 AF, 1.0 mg/L) all cou ld strongly induce reversion mutation for S1 within 24 h and increase reversion ratio significantly. The results of experiments indicated that these revertants had stable genetic characteristic and the mutation may take place at gene levels . The mutagenesis to S1 caused by EB, MC and 2 AF was detected and it may be us ed as a new rapid, simple and sensitive method for gene toxicant monitoring.
文摘Isolated ovarian tissues from the common carp, Cyprinus carpio were incubated in vitro to obtain a discrete effect of four common toxicants of industrial origin, namely phenol, sulfide, mercuric chloride and cadmium chloride, on gonadotropin-induced alteration of nonesterified and esterified cholesterol and steroidogenic enzymes, △5-3β-HSD and 17β-HSD activity. Stage II ovarian tissue containing 30-40% mature oocytes were shown to be most responsive to gonadotropins in depleting only nonesterified cholesterol moiety and stimulating the activity of both. Safe doses of above mentioned toxicants when added separately to stage II ovarian tissue with oLH (1 μg/incubation) gonadotropin-induced depletion of nonesterified cholesterol and gonadotropin-induced stimulation of the activity of both enzymes was significantly inhibited. Esterified cholesterol remained almost unaltered. Findings clearly indicate the impairment of gonadotropin induced fish ovarian steroidogenesis by the four toxicants separately.
文摘This paper established a modified Leslie-Gower and Holling-type IV stochastic predator-prey model with Lévy noise and impulsive toxicant input. We study the stability in distribution of solutions by inequality techniques and ergodic method. By comparison method and It<span style="white-space:nowrap;">ô</span>’s formula, we obtain the sufficient conditions for the survival of each species. Some numerical simulations are introduced to show the theoretical results.
文摘Male infertility is a major public health issue predominantly caused by defects in germ cell development. In the past, studies on the genetic regulation of spermatogenesis as well as on negative environmental impacts have been hampered by the fact that human germ cell development is intractable to direct analysis in vivo. Compared with model organisms including mice, there are fundamental differences in the molecular processes of human germ cell development. Therefore, an in vitro model mimicking human sperm formation would be an extremely valuable research tool. In the recent past, both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have been reported to harbour the potential to differentiate into primordial germ cells and gametes. We here discuss the possibility to use human amniotic fluid stem (AFS) ceils as a biological model. Since their discovery in 2003, AFS cells have been characterized to differentiate into cells of all three germ layers, to be genomically stable, to have a high proliferative potential and to be non-tumourigenic. In addition, AFS cells are not subject of ethical concerns. In contrast to iPS cells, AFSs cells do not need ectopic induction of pluripotency, which is often associated with only imperfectly cleared epigenetic memory of the source cells. Since AFS cells can be derived from amniocentesis with disease-causing mutations and can be transfected with high efficiency, they could be used in probing gene functions for spermatogenesis and in screening for male reproductive toxicity.
基金the National Natural Science Foundation of China(No.21876030)。
文摘Biomass-derived N-doped carbon(BNC)is an important environmental material and widely used in the fields of water purification and soil remediation.However,the toxicant in the commonly used synthesis process of BNC materials have been largely ignored.Herein,we firstly report the presence of a highly toxic by-product(KCN)in the activation process of BNC materials consequential of the carbothermal reduction reaction.Because this carbothermal reduction reaction also regulates the N-doping and pore development of BNC materials,the KCN content directly relates with the properties of BNC material properties.Accordingly,a high KCN content(-611 mg)can occur in the production process of per g BNC material with high specific surface area(-3600 m^2/g).Because the application performance of BNC material is determined by the surface area and available N doping,therefore,production of a BNC material with high performance entails high risk.Undoubtedly,this study proves a completely new risk recognition on a familiar synthesis process of biomass-based material.And,strict protective device should be taken in fabrication process of biomass-derived carbon material.
基金Supported by National Natural Science Foundation of China(No.11201075)Natural Science Foundation of Fujian Province(No.2016J01015)Scholarship under Education Department of Fujian Province
文摘We study a model for the long-term behavior of a single-species population with some degree of pollution tolerance in a polluted environment. The model consists of three ordinary differential equations: one for the population density, one for the amount of toxicant inside the living organisms, and one for the amount of toxicant in the environment. We derive sufficient conditions for the persistence and the extinction of the population depending on the exogenous input rate of the toxicant into the environment and the level of pollution tolerance of the organisms. Numerical simulations are carried out to illustrate our main results.
文摘The influence of toxicants on the competition of n populations for time variablenutriellt input rate and time variable washout rate in a chemostat model is investigated.After proving some qualitative properties of the solutions, the threshold between persistence and extinction of the populations has been obtained.
文摘Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.
基金supported by grants from the National Key Research and Development Program of China(2020YFA0907500)the National Natural Science Foundation of China(22193051,21277062,21806058)+1 种基金the Excellent Discipline Cultivation Project by JHUN(2023XKZ029)the PLA Logistics Research Project of China(2023).
文摘Remarkable antibacterial activity of BPA analogues especially for tetrabromobi-sphenol A against Staphylococcus aureus 25923(Sa25923)and methicillin-resistant Staphylococcus aureus(MRSA)has been reported in our previous studies.However,the toxic effects of the compounds as environmental contaminants on the endocrine system limited their applications in the field of medicine and health.Given the abuse of antibiotics has led to the emergence of multiple super-resistant bacteria,we considered that structural modifications based on the BPA structure will be available for molecular designing of potential antimicrobial agents without drug resistance.In this study,to further improve the antibacterial activity and reduce the biological toxicity,we performed the computational models to evaluate the binding affinities of BPA analogues to the potential target DltA protein in the biosynthesis of cell wall.A series of synthesized achiral analogues ofα,α,α′-tris(4-hydroxyphenyl)-1-ethyl-4-isopropylbenzene(α,α,α′-TEIB)exhibited low minimum inhibitory concentration against Sa25923 and MRSA(2 or 1μg mL−1).Especially,the analogue A4 did not induce the drug-resistant mutants for all tested Gram-positive bacterial strains and exhibited relatively lower cytotoxicity in HepG2 cells.The developed classification model based on the light gradient boosting algorithm showed the superior performances on the internal robustness and generalization ability for the ligand-based virtual screening of bisphenol and polyphenol antimicrobial substances.Collectively,our findings suggest that the molecular structure ofα,α,α′-TEIB is promising as a scaffold,which is expected to achieve a breakthrough in the development of antibiotics which can prevent the invasion of MRSA and other super bacteria.
基金Supported by the National Natural Sciences Foundation of China (No.10171010) Key Project on Sciences and Technology of the Ministry of Education of China (No. Key 01061)the Natural Sciences Foundation for Young Scholar of Northeast Normal Unive
文摘With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, we study the global existence of positive periodic solutions of a 'food-limited' population model with toxicants and time delays. Some new results are obtained.
基金supported by the National Basic Research Program of China (973 Program 2009CB421605)the National Natural Science Foundation of China (20890111, 20921063 & 20931160427)the Ministry of Science and Technology of China (2008IM041300)
文摘Neuronal toxic pollutants in environment possess hazards to human health. It is essential to determine the causative neuronal toxicants in environmental samples. In the present study, viability of primary cultured cerebellar granule neurons (CGNs), combined with sample extraction, chemical fractionation and identification, was applied for screening acid-resistant neuronal toxic substances in environmental samples. River sediments and agricultural soils along the river near a brominated flame retardant (BFR) manufacturing plant in South China were collected to screen the key neuronal toxicants. The results indicated that the manufacturing plant was a source of neuronal toxicity risks. In the sediment and soil near the plant, one of the causative toxicants was identified as tris-(2,3-dibromopropyl) isocyanurate (TBC) using HPLC-MS/MS. In addition, an unknown chemical possibly causing significant neuronal toxicity was isolated from all the soil samples in the region.
基金supported by the Leading Goose R&D Program of Zhejiang(No.2024C03230)the Fundamental Research Funds for the Central Universities。
文摘The zebrafish has emerged as a powerful model organism in life science owing to its remarkable biological characteristics and wide-ranging applications.This review provides a comprehensive overview of the recent advancements in research on zebrafish within the field of environmental toxicology,highlighting specific studies where this species was used to investigate various pollutants to elucidate their impacts and underlying mechanisms.The findings of these studies underscore the significant potential of zebrafish as a model to gain crucial insights into the ecological consequences of environmental contamination and toxicity pathways.By incorporating cutting-edge technologies such as artificial intelligence(Al),high-throughput screening,and omics approaches,the use of zebrafish as a model organism is poised to significantly accelerate toxicological investigations,promote environmental conservation efforts,contribute to safeguarding human health,and advance sustainable development objectives.
文摘The spectrum user’s librarys containing 1533 familiar toxicants have been built; A method with high separability and sensitivity has been found,The RT and the detection limit of 210 familiar abuse drugs has been confirmed; the processing methods to analyse spectrum data automatically have been found; It is simple,quick,sensitive and reliable,and can take place of manual operation,It is very useful to screen the familiar toxicants in unkown sample.
基金supported by the National Natural Science Foundation of China,Nos.82301486(to SL)and 82071325(to FY)Medjaden Academy&Research Foundation for Young Scientists,No.MJR202310040(to SL)+2 种基金Nanjing Medical University Science and Technique Development,No.NMUB20220060(to SL)Medical Scientific Research Project of Jiangsu Commission of Health,No.ZDA2020019(to JZ)Health China Buchang Zhiyuan Public Welfare Project for Heart and Brain Health,No.HIGHER202102(to QD).
文摘Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined.With innovations in high-throughput gene sequencing analysis,many aberrantly expressed non-coding RNAs(ncRNAs)in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models.Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes,leading to neuroprotection or deterioration,thus ncRNAs can serve as therapeutic targets in acute ischemic stroke.Moreover,distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.In particular,ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke.In this review,we consolidate the latest progress of research into the roles of ncRNAs(microRNAs,long ncRNAs,and circular RNAs)in the pathological processes of acute ischemic stroke–induced brain damage,as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.
基金supported by the National Natural Science Foundation of China(Nos.42077299,and U21A20290)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0750400)the Ordos Key Research and Development Program(No.YF20240037).
文摘Persistent toxic substances(PTS)represent a paramount environmental issue in the 21st century.Understanding the concentrations and forms of PTS in the environment is crucial for accurately assessing their environmental health impacts.This article presents a concise overview of the components of PTS,pertinent environmental regulations,and conventional detection methodologies.Additionally,we offer an in-depth review of the principles,development,and practical applications of surface-enhanced Raman scattering(SERS)in environmental monitoring,emphasizing the advancements in detecting trace amounts of PTS in complex environmental matrices.Recent progress in enhancing SERS sensitivity,improving selectivity,and practical implementations are detailed,showcasing innovative materials and methods.Integrating SERS with advanced algorithms are highlighted as pivotal areas for future research.
基金supported by the Guangdong Provincial Key Area Research and Development Program[grant number 2022B0202090002]China Postdoctoral Science Foundation[grant number 2024M760977].
文摘Background Hexafluoropropylene oxide dimer acid(GenX),a substitute for per-and polyfluoroalkyl substances,has been widely detected in various environmental matrices and foods recently,attracting great attention.However,a systematic characterization of its reproductive toxicity is still missing.This study aims to explore the male reproductive toxicity caused by GenX exposure and the potential cellular and molecular regulatory mechanisms behind it.Results Normally developing mice were exposed to GenX,and testicular tissue was subsequently analyzed and validated using single-cell RNA sequencing.Our results revealed that GenX induced severe testicular damage,disrupted the balance between undifferentiated and differentiated spermatogonial stem cells,and led to strong variation in the cellular dynamics of spermatogenesis.Furthermore,GenX exposure caused global upregulation of testicular somatic cellular inflammatory responses,increased abnormal macrophage differentiation,and attenuated fibroblast adhesion,disorganizing the somatic-germline interactions.Conclusions In conclusion,this study revealed complex cellular dynamics and transcriptome changes in mouse testis after GenX exposure,providing a valuable resource for understanding its reproductive toxicity.
文摘This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main criterion to assess the quality and effectiveness of the proposed solutions,as this test was performed to measure the strength of the stabilized clay by varying binders’dosages and curing times.Moreover,the direct shear test(DST)was used to investigate the Mohr-Coulomb parameters of the treated soil.Microstructure observations of the natural and treated soil were conducted using scanning electron microscope(SEM),energy-dispersive spectroscopy(EDS),and FTIR.Furthermore,toxicity characteristic leaching procedure(TCLP)tests were performed on the treated soil to investigate the leachability of metals.According to the results,using 2.5%of sewage sludge activated by NaOH and Na_(2)SiO_(3)increases the UCS values from 176 kPa to 1.46 MPa after 7 d and 56 d of curing,respectively.The results of the DST indicate that sewage sludge as a precursor increases cohesion and enhances frictional resistance,thereby improving the Mohr-Coulomb parameters of the stabilized soil.The SEM micrographs show that alkali-activated sewage sludge increases the integrity and reduces the cavity volumes in the stabilized soil.Moreover,TCLP tests revealed that the solubility of metals in the treated soil alkaliactivated by sewage sludge significantly decreased.This study suggests that using sewage sludge can replace cement and lime in ground improvement,improve the circular economy,and reduce the carbon footprint of construction projects.
基金supported by the project of Sanya Yazhou Bay Science and Technology City,Grant No.SKJC-2023-02-004Education Department of Hainan Province,Grant No.Hnky2024ZD-27Key R&D Project of Hainan Province(Science and Technology Commissioner):405314040001.
文摘Soil naturally contains various heavy metals,however,their concentrations have reached toxic levels due to excessive agrochemical use and industrial activities.Heavy metals are persistent and non-biodegradable,causing environmental disruption and posing significant health hazards.Microbial-mediated remediation is a promising strategy to prevent heavy metal leaching and mobilization,facilitating their extraction and detoxification.Nickel(Ni),being a prevalent heavy metal pollutant,requires specific attention in remediation efforts.Plants have evolved defense mechanisms to cope with environmental stresses,including heavy metal toxicity,but such stress significantly reduces crop productivity.Beneficial microorganisms play a crucial role in enhancing plant yield and mitigating abiotic stress.The impact of heavy metal abiotic stress on plants’growth and productivity requires thorough investigation.Bioremediation using Nickel nanoparticles(Ni NPs)offers an effective approach to mitigating environmental pollution.Microorganisms contribute to nanoparticle bioremediation by immobilizing metals or inducing the synthesis of remediating microbial enzymes.Understanding the interactions between microorganisms,contaminants,and nanoparticles(NPs)is essential for advancing bioremediation strategies.This review focuses on the role of Bacillus subtilis in the bioremediation of nickel nanoparticles to mitigate environmental pollution and associated health risks.Furthermore,sustainable approaches are necessary to minimize metal contamination in seeds.The current review discusses bacterial inoculation in enhancing heavy metal tolerance,plant signal transduction pathways,and the transition from molecular to genomic research in metal stress adaptation.Moreover,the inoculation of advantageous bacteria is crucial for preserving plants under severe mental stress.Different researchers develop a complex,vibrant relationship with plants through a series of events known as plant-microbe interactions.It increases metal stress resistance through the creation of phytohormones.In general,the defensive responses of plants to heavy metal stress,mediated by microbial inoculation require further in-depth research.Further studies should explore the detoxification mechanism of nickel through bioremediation to develop more effective and sustainable remediation strategies.
基金financially supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ22F040001)China Postdoctoral Science Foundation (Grant No. 2022M723281)Science and Technology Planning Project of Shaoxing City (Grant No. 2023B41006)。
文摘Owing to their low toxicity and remarkable stability, perovskites based on antimony and bismuth have garnered significant interest in recent years. However, A_(3)B_(2)X_(9) perovskite materials derived from antimony and bismuth face several challenges, including excessively wide band gaps, elevated defect densities, and suboptimal film quality, all of which hinder advancements in device efficiency. While extensive studies have been undertaken to investigate the effects of modulating the A-site and X-site elements in lead-free A_(3)B_(2)X_(9) perovskites, there remains a notable scarcity of reports addressing the impact of modifications to the B-site element. In this study, we investigated the alloying of antimony and bismuth within the 2D Cs_(3)B_(2)I_(6)Br_(3) perovskite. By systematically varying the ratios of two elements, we found that the incorporation of both antimony and bismuth at the B-site significantly enhances the quality of the perovskite films. Our findings indicate that a 1 : 1 ratio of antimony to bismuth produces the densest films, the highest photoluminescence intensity, and superior photovoltaic performance. Ultimately,the devices fabricated using this optimal ratio achieved an open-circuit voltage(VOC) of 1.01 V and a power conversion efficiency(PCE) of 0.645%.