INSULIN secretion was traditionally measured with biochemical and immunological methods such as enzyme linked immunosorbant assay and radioimmunoassay. However, these methods can only tell the amount of insulin secret...INSULIN secretion was traditionally measured with biochemical and immunological methods such as enzyme linked immunosorbant assay and radioimmunoassay. However, these methods can only tell the amount of insulin secreted; they give no information about the secretion process or mechanism of exocytosis. In recent years, an imaging technique known as total internal reflection fluorescence (TIRF) microscopy has been employed to study insulin secretion.展开更多
A spectrometric setup to perform total internal reflection fluorescence (TIRF) and synchronous TIRF measurements at solid/liquid interfaces is presented. The combination of TIRF and synchronous fluorescence was propo...A spectrometric setup to perform total internal reflection fluorescence (TIRF) and synchronous TIRF measurements at solid/liquid interfaces is presented. The combination of TIRF and synchronous fluorescence was proposed to analyze simultaneously different components at interfaces. The TIRF excitation, emission and synchronous spectra of a watersoluble porphyrin were obtained from water/glass interface using this setup without the existence of a surfactant.展开更多
Total internal reflection fluorescence spectroscopy (TIRF) and synchronous scanning technique were combined to study the adsorption behavior of the meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS) at the glass-water...Total internal reflection fluorescence spectroscopy (TIRF) and synchronous scanning technique were combined to study the adsorption behavior of the meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS) at the glass-water interface without any surfactant. The pH dependence of synchronous fluorescence signal at the interface was analyzed. Both unprotonated (TPPS4-) and diprotonated (H2TPPS2-) forms of TPPS were observed at the interface. But the interface favored the adsorption of. The apparent estimated pKa2 value shifted from 5.00 in the bulk solution to 2.7 at the interface. STIRF provides a good technique to study multi-component systems at the interface.展开更多
Fluorescence microscopy has evolved from a purely biological tool to a powerful chemical instrument for imaging and kinetics research into nanocatalysis.And the demand for high signal-to-noise ratio and temporal–spat...Fluorescence microscopy has evolved from a purely biological tool to a powerful chemical instrument for imaging and kinetics research into nanocatalysis.And the demand for high signal-to-noise ratio and temporal–spatial resolution detection has encouraged rapid growth in total internal reflection fluorescence microscopy(TIRFM).By producing an evanescent wave on the glass–water interface,excitation can be limited to a thin plane to ensure the measured accuracy of kinetics and image contrast of TIRFM.Thus,this unique physical principle of TIRFM makes it suitable for chemical research.This review outlines applications of TIRFM in the field of chemistry,including imaging and kinetics research.Hence,this review could provide guidance for beginners employing TIRFM to solve current challenges creatively in chemistry.展开更多
TIRF microscopy has provided a means to view mobile granules within 100 nm in size in two dimensions.However quantitative analysis of the position and motion of those granules requires an appropriate tracking method.I...TIRF microscopy has provided a means to view mobile granules within 100 nm in size in two dimensions.However quantitative analysis of the position and motion of those granules requires an appropriate tracking method.In this paper,we present a new tracking algorithm combined with the unique features of TIRF.Firstly a fluorescence correction procedure was processed to solve the problem of fluorescence bleaching over time.Mobile granules were then segmented from a time-lapse image stack by an adaptive background subtraction method.Kalman filter was introduced to estimate and track the granules that allowed reducing searching range and hence greater reliability in tracking process.After the tracked granules were located in x-y plane,the z-position was indirectly inferred from the changes in their intensities.In the experiments the algorithm was applied in tracking GLUT4 vesicles in living adipose cells.The results indicate that the algorithm has achieved robust estimation and tracking of the vesicles in three dimensions.展开更多
T4 polynucleotide kinase(T4 PNK) is a pivotal enzyme for DNA replication, recombination, and DNA damage repair. Herein, a robust single particle counting-based assay has been developed for the high-sensitive determina...T4 polynucleotide kinase(T4 PNK) is a pivotal enzyme for DNA replication, recombination, and DNA damage repair. Herein, a robust single particle counting-based assay has been developed for the high-sensitive determination of T4 PNK activity through only a simple one-step reaction. Taking benefit of the exceptional space-confined enzymatic property of T4 PNK towards DNA substrates on a single nanoparticle,the T4 PNK activity can be precisely determined by counting the fluorescence-positive nanoparticles in a digital manner with a total internal reflection fluorescent microscope(TIRFM). Due to the featured spatial-confined enzymatic property of T4 PNK and the single particle counting-based signal readout, T4PNK can be effectively differentiated from other interfering enzymes. This facile strategy has been also successfully applied to screen T4 PNK inhibitor and accurately determine T4 PNK activity in complex biological samples, paving a potential avenue for the digital analysis of biomarkers.展开更多
The molecular mechanisms by which dense core vesicles(DCVs) translocate,tether,dock and prime are poorly understood.In this study,Caenorhabditis elegans was used as a model organism to study the function of Rab protei...The molecular mechanisms by which dense core vesicles(DCVs) translocate,tether,dock and prime are poorly understood.In this study,Caenorhabditis elegans was used as a model organism to study the function of Rab proteins and their effectors in DCV exocytosis.RAB-27/AEX-6,but not RAB-3,was found to be required for peptide release from neurons.By analyzing the movement of DCVs approaching the plasma membrane using total internal reflection fluorescence microscopy,we demonstrated that RAB-27/AEX-6 is involved in the tethering of DCVs and that its effector rabphilin/RBF-1 is required for the initial tethering and subsequent stabilization by docking.展开更多
In eukaryotic cells,the smallest subunit of chromatin is the nucleosome,which consists of a segment of DNA wound on histone protein cores. Despite many years of effort,the process of nucleosome assembly and disassembl...In eukaryotic cells,the smallest subunit of chromatin is the nucleosome,which consists of a segment of DNA wound on histone protein cores. Despite many years of effort,the process of nucleosome assembly and disassembly is still not very clear. Here,we present a convenient method to investigate the process of nucleosome assembly at the single molecule level. We invented a novel system derived from the yeast nucleoplasmic extracts(YNPE),and demonstrated that the YNPE supports the nucleosome assembly under physiological condition. By combining the total internal reflection fluorescence microscopy with microfluidic flow-cell technique,the dynamic process of nucleosome assembly in YNPE was visualized at single-molecule level. Our system provides a novel in vitro single-molecule tool to investigate the dynamics of nucleosome assembly under physiological conditions.展开更多
MicroRNAs(miRNAs),especially exosomal miRNAs,are promising noninvasive biomarkers in early-stage cancer diagnosis and disease treatment monitoring.However,their precise and sensitive quantification remains challenging...MicroRNAs(miRNAs),especially exosomal miRNAs,are promising noninvasive biomarkers in early-stage cancer diagnosis and disease treatment monitoring.However,their precise and sensitive quantification remains challenging due to their small size and low abundance.Herein,we have developed a nanoparticle-confined DNA walker strategy for the specific detection of miRNA.In the existence of the target miRNA;the on-particle DNA walking reaction will be initiated,providing a fluorescence-positive nanoparticle.Otherwise,the nanoparticle would be fluorescence-negative.Utilizing the total internal reflection fluorescent microscope(TIRFM)to digitally count the fluorescence-positive nanoparticles,the proposed method possesses a detection limit of 0.2 pmol/L miRNA and can accurately distinguish the single-base mismatched target.This design combines the merits of the DNA walker for signal amplification and the TIRFM for highly sensitive detection,paving a new way for the digital counting-based analysis of exosomal miRNAs.展开更多
文摘INSULIN secretion was traditionally measured with biochemical and immunological methods such as enzyme linked immunosorbant assay and radioimmunoassay. However, these methods can only tell the amount of insulin secreted; they give no information about the secretion process or mechanism of exocytosis. In recent years, an imaging technique known as total internal reflection fluorescence (TIRF) microscopy has been employed to study insulin secretion.
文摘A spectrometric setup to perform total internal reflection fluorescence (TIRF) and synchronous TIRF measurements at solid/liquid interfaces is presented. The combination of TIRF and synchronous fluorescence was proposed to analyze simultaneously different components at interfaces. The TIRF excitation, emission and synchronous spectra of a watersoluble porphyrin were obtained from water/glass interface using this setup without the existence of a surfactant.
文摘Total internal reflection fluorescence spectroscopy (TIRF) and synchronous scanning technique were combined to study the adsorption behavior of the meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS) at the glass-water interface without any surfactant. The pH dependence of synchronous fluorescence signal at the interface was analyzed. Both unprotonated (TPPS4-) and diprotonated (H2TPPS2-) forms of TPPS were observed at the interface. But the interface favored the adsorption of. The apparent estimated pKa2 value shifted from 5.00 in the bulk solution to 2.7 at the interface. STIRF provides a good technique to study multi-component systems at the interface.
基金This work was supported by the National Science Foundation of China(21925205,22072145,22102172,21721003)。
文摘Fluorescence microscopy has evolved from a purely biological tool to a powerful chemical instrument for imaging and kinetics research into nanocatalysis.And the demand for high signal-to-noise ratio and temporal–spatial resolution detection has encouraged rapid growth in total internal reflection fluorescence microscopy(TIRFM).By producing an evanescent wave on the glass–water interface,excitation can be limited to a thin plane to ensure the measured accuracy of kinetics and image contrast of TIRFM.Thus,this unique physical principle of TIRFM makes it suitable for chemical research.This review outlines applications of TIRFM in the field of chemistry,including imaging and kinetics research.Hence,this review could provide guidance for beginners employing TIRFM to solve current challenges creatively in chemistry.
基金Project supported by the National Natural Science Foundation ofChina (No. 30770596)the Key Laboratory for Biomedical En-gineering of Ministry of Education of China
文摘TIRF microscopy has provided a means to view mobile granules within 100 nm in size in two dimensions.However quantitative analysis of the position and motion of those granules requires an appropriate tracking method.In this paper,we present a new tracking algorithm combined with the unique features of TIRF.Firstly a fluorescence correction procedure was processed to solve the problem of fluorescence bleaching over time.Mobile granules were then segmented from a time-lapse image stack by an adaptive background subtraction method.Kalman filter was introduced to estimate and track the granules that allowed reducing searching range and hence greater reliability in tracking process.After the tracked granules were located in x-y plane,the z-position was indirectly inferred from the changes in their intensities.In the experiments the algorithm was applied in tracking GLUT4 vesicles in living adipose cells.The results indicate that the algorithm has achieved robust estimation and tracking of the vesicles in three dimensions.
基金supported by the National Natural Science Foundation of China (Nos. 22074088, 21622507, 21904083)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R43)+1 种基金the Innovation Capability Support Program of Shaanxi (No. 2021TD-42)the Fundamental Research Funds for the Central Universities (Nos. GK202101001 and GK202201009)。
文摘T4 polynucleotide kinase(T4 PNK) is a pivotal enzyme for DNA replication, recombination, and DNA damage repair. Herein, a robust single particle counting-based assay has been developed for the high-sensitive determination of T4 PNK activity through only a simple one-step reaction. Taking benefit of the exceptional space-confined enzymatic property of T4 PNK towards DNA substrates on a single nanoparticle,the T4 PNK activity can be precisely determined by counting the fluorescence-positive nanoparticles in a digital manner with a total internal reflection fluorescent microscope(TIRFM). Due to the featured spatial-confined enzymatic property of T4 PNK and the single particle counting-based signal readout, T4PNK can be effectively differentiated from other interfering enzymes. This facile strategy has been also successfully applied to screen T4 PNK inhibitor and accurately determine T4 PNK activity in complex biological samples, paving a potential avenue for the digital analysis of biomarkers.
基金supported by the National Basic Research Program of China(Grant No. 2010CB833701)the National Natural Science Foundation of China(Grant Nos. 30870564 and 90913022)the CAS Project(Grant No.KSCX2-SW-224)
文摘The molecular mechanisms by which dense core vesicles(DCVs) translocate,tether,dock and prime are poorly understood.In this study,Caenorhabditis elegans was used as a model organism to study the function of Rab proteins and their effectors in DCV exocytosis.RAB-27/AEX-6,but not RAB-3,was found to be required for peptide release from neurons.By analyzing the movement of DCVs approaching the plasma membrane using total internal reflection fluorescence microscopy,we demonstrated that RAB-27/AEX-6 is involved in the tethering of DCVs and that its effector rabphilin/RBF-1 is required for the initial tethering and subsequent stabilization by docking.
基金supported by the National Natural Science Foundation of China (31371264)CAS Interdisciplinary Innovation Team and the Newton Advanced Fellowship (NA140085) from the Royal Society
文摘In eukaryotic cells,the smallest subunit of chromatin is the nucleosome,which consists of a segment of DNA wound on histone protein cores. Despite many years of effort,the process of nucleosome assembly and disassembly is still not very clear. Here,we present a convenient method to investigate the process of nucleosome assembly at the single molecule level. We invented a novel system derived from the yeast nucleoplasmic extracts(YNPE),and demonstrated that the YNPE supports the nucleosome assembly under physiological condition. By combining the total internal reflection fluorescence microscopy with microfluidic flow-cell technique,the dynamic process of nucleosome assembly in YNPE was visualized at single-molecule level. Our system provides a novel in vitro single-molecule tool to investigate the dynamics of nucleosome assembly under physiological conditions.
基金the National Natural Science Foundation of China(Nos.22074088 and 21904083)the Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R43)the Fundamental Research Funds for the Central Universities(Nos.GK202003038,GK201901003,2020TS089,GK202101001).
文摘MicroRNAs(miRNAs),especially exosomal miRNAs,are promising noninvasive biomarkers in early-stage cancer diagnosis and disease treatment monitoring.However,their precise and sensitive quantification remains challenging due to their small size and low abundance.Herein,we have developed a nanoparticle-confined DNA walker strategy for the specific detection of miRNA.In the existence of the target miRNA;the on-particle DNA walking reaction will be initiated,providing a fluorescence-positive nanoparticle.Otherwise,the nanoparticle would be fluorescence-negative.Utilizing the total internal reflection fluorescent microscope(TIRFM)to digitally count the fluorescence-positive nanoparticles,the proposed method possesses a detection limit of 0.2 pmol/L miRNA and can accurately distinguish the single-base mismatched target.This design combines the merits of the DNA walker for signal amplification and the TIRFM for highly sensitive detection,paving a new way for the digital counting-based analysis of exosomal miRNAs.