To quantify the genetic correlations between total body fat mass (TBFM) and femoral neck geometric parameters (FNGPs) and, if pos- sible, to detect the specific genomic regions shared by them, bivariate genetic an...To quantify the genetic correlations between total body fat mass (TBFM) and femoral neck geometric parameters (FNGPs) and, if pos- sible, to detect the specific genomic regions shared by them, bivariate genetic analysis and bivariate whole-genome linkage scan were carried out in a large Caucasian population. All the phenotypes studied were significantly controlled by genetic factors (P 〈 0.001) with the heritabilities ranging from 0.45 to 0.68. Significantly genetic correlations were found between TBFM and CSA (cross-section area), W (sub-periosteal diameter), Z (section modulus) and CT (cortical thickness) except between TBFM and BR (buckling ratio). The peak bivariate LOD scores were 3.23 (20q12), 2.47 (20p11), 3.19 (6q27), 1.68 (20p12), and 2.47 (7q11) for the five pairs of TBFM and BR, CSA, CT, W, and Z in the entire sample, respectively. Gender-specific bivariate linkage evidences were also found for the five pairs. 6p25 had complete pleiotropic effects on the variations of TBFM & Z in the female sub-population, and 6q27 and 17q11 had coincident link- ages for TBFM & CSA and TBFM & Z in the entire population. We identified moderate genetic correlations and several shared genomic regions between TBFM and FNGPs in a large Caucasian population.展开更多
OBJECTIVE: To assess whether dietary fat intake influences Parkinson’s disease risk. DATA SOURCES: We systematically surveyed the Embase and PubMed databases, reviewing manuscripts published prior to October 2018. Th...OBJECTIVE: To assess whether dietary fat intake influences Parkinson’s disease risk. DATA SOURCES: We systematically surveyed the Embase and PubMed databases, reviewing manuscripts published prior to October 2018. The following terms were used:(“Paralysis agitans” OR “Parkinson disease” OR “Parkinson” OR “Parkinson’s” OR “Parkinson’s disease”) AND (“fat” OR “dietary fat” OR “dietary fat intake”). DATA SELECTION: Included studies were those with both dietary fat intake and Parkinson’s disease risk as exposure factors. The Newcastle-Ottawa Scale was adapted to investigate the quality of included studies. Stata V12.0 software was used for statistical analysis. OUTCOME MEASURES: The primary outcomes included the relationship between high total energy intake, high total fat intake, and Parkinson’s disease risk. The secondary outcomes included the relationship between different kinds of fatty acids and Parkinson’s disease risk. RESULTS: Nine articles met the inclusion criteria and were incorporated into this meta-analysis. Four studies scored 7 and the other five studies scored 9 on the Newcastle-Ottawa Scale, meaning that all studies were of high quality. Meta-analysis results showed that high total energy intake was associated with an increased risk of Parkinson’s disease (P = 0.000, odds ratio (OR)= 1.49, 95% confidence interval (CI): 1.26–1.75);in contrast, high total fat intake was not associated with Parkinson’s disease risk (P = 0.123, OR = 1.07, 95% CI: 0.91–1.25). Subgroup analysis revealed that polyunsaturated fatty acid intake (P = 0.010, OR = 1.03, 95% CI: 0.88–1.20) reduced the risk of Parkinson’s disease, while arachidonic acid (P = 0.026, OR = 1.15, 95% CI: 0.97–1.37) and cholesterol (P = 0.002, OR = 1.09, 95% CI: 0.92–1.29) both increased the risk of Parkinson’s disease. Subgroup analysis also demonstrated that, although the results were not significant, consumption of n-3 polyunsaturated fatty acids (P = 0.071, OR = 0.88, 95% CI: 0.73–1.05),α-linolenic acid (P = 0.06, OR = 0.86, 95% CI: 0.72–1.02), and the n-3 to n-6 ratio (P = 0.458, OR = 0.89, 95% CI: 0.75–1.06) were all linked with a trend toward reduced Parkinson’s disease risk. Monounsaturated fatty acid (P = 0.450, OR = 1.06, 95% CI: 0.91–1.23), n-6 polyunsaturated fatty acids (P = 0.100, OR = 1.15, 95% CI: 0.96–1.36) and linoleic acid (P = 0.053, OR = 1.11, 95% CI: 0.94–1.32) intakes were associated with a non-significant trend toward higher PD risk. Saturated fatty acid (P = 0.619, OR = 1.01, 95% CI: 0.87–1.18) intake was not associated with Parkinson’s disease. CONCLUSION: Dietary fat intake affects Parkinson’s disease risk, although this depends on the fatty acid subtype. Higher intake of polyunsaturated fatty acids may reduce the risk of Parkinson’s disease, while higher cholesterol and arachidonic acid intakes may elevate Parkinson’s disease risk. However, further studies and evidence are needed to validate any link between dietary fat intake and Parkinson’s disease.展开更多
基金supported by grants from NIH in USA (No. K01 AR02170-01, R01 AR45349-01, R01 GM60402-01 A1, R01 AG026564-01A2, and R21 AG027110-01A1)the Natural Science Foundation o China (NSFC) (No. 30600364)The genotyping experiment was performed by Marshfield Center for Medical Genetics and supported by NHLB Mammalian Genotyping Service (Contract No. HV48141)
文摘To quantify the genetic correlations between total body fat mass (TBFM) and femoral neck geometric parameters (FNGPs) and, if pos- sible, to detect the specific genomic regions shared by them, bivariate genetic analysis and bivariate whole-genome linkage scan were carried out in a large Caucasian population. All the phenotypes studied were significantly controlled by genetic factors (P 〈 0.001) with the heritabilities ranging from 0.45 to 0.68. Significantly genetic correlations were found between TBFM and CSA (cross-section area), W (sub-periosteal diameter), Z (section modulus) and CT (cortical thickness) except between TBFM and BR (buckling ratio). The peak bivariate LOD scores were 3.23 (20q12), 2.47 (20p11), 3.19 (6q27), 1.68 (20p12), and 2.47 (7q11) for the five pairs of TBFM and BR, CSA, CT, W, and Z in the entire sample, respectively. Gender-specific bivariate linkage evidences were also found for the five pairs. 6p25 had complete pleiotropic effects on the variations of TBFM & Z in the female sub-population, and 6q27 and 17q11 had coincident link- ages for TBFM & CSA and TBFM & Z in the entire population. We identified moderate genetic correlations and several shared genomic regions between TBFM and FNGPs in a large Caucasian population.
基金supported by the National Natural Science Foundation of China,No.31200868(to XC)
文摘OBJECTIVE: To assess whether dietary fat intake influences Parkinson’s disease risk. DATA SOURCES: We systematically surveyed the Embase and PubMed databases, reviewing manuscripts published prior to October 2018. The following terms were used:(“Paralysis agitans” OR “Parkinson disease” OR “Parkinson” OR “Parkinson’s” OR “Parkinson’s disease”) AND (“fat” OR “dietary fat” OR “dietary fat intake”). DATA SELECTION: Included studies were those with both dietary fat intake and Parkinson’s disease risk as exposure factors. The Newcastle-Ottawa Scale was adapted to investigate the quality of included studies. Stata V12.0 software was used for statistical analysis. OUTCOME MEASURES: The primary outcomes included the relationship between high total energy intake, high total fat intake, and Parkinson’s disease risk. The secondary outcomes included the relationship between different kinds of fatty acids and Parkinson’s disease risk. RESULTS: Nine articles met the inclusion criteria and were incorporated into this meta-analysis. Four studies scored 7 and the other five studies scored 9 on the Newcastle-Ottawa Scale, meaning that all studies were of high quality. Meta-analysis results showed that high total energy intake was associated with an increased risk of Parkinson’s disease (P = 0.000, odds ratio (OR)= 1.49, 95% confidence interval (CI): 1.26–1.75);in contrast, high total fat intake was not associated with Parkinson’s disease risk (P = 0.123, OR = 1.07, 95% CI: 0.91–1.25). Subgroup analysis revealed that polyunsaturated fatty acid intake (P = 0.010, OR = 1.03, 95% CI: 0.88–1.20) reduced the risk of Parkinson’s disease, while arachidonic acid (P = 0.026, OR = 1.15, 95% CI: 0.97–1.37) and cholesterol (P = 0.002, OR = 1.09, 95% CI: 0.92–1.29) both increased the risk of Parkinson’s disease. Subgroup analysis also demonstrated that, although the results were not significant, consumption of n-3 polyunsaturated fatty acids (P = 0.071, OR = 0.88, 95% CI: 0.73–1.05),α-linolenic acid (P = 0.06, OR = 0.86, 95% CI: 0.72–1.02), and the n-3 to n-6 ratio (P = 0.458, OR = 0.89, 95% CI: 0.75–1.06) were all linked with a trend toward reduced Parkinson’s disease risk. Monounsaturated fatty acid (P = 0.450, OR = 1.06, 95% CI: 0.91–1.23), n-6 polyunsaturated fatty acids (P = 0.100, OR = 1.15, 95% CI: 0.96–1.36) and linoleic acid (P = 0.053, OR = 1.11, 95% CI: 0.94–1.32) intakes were associated with a non-significant trend toward higher PD risk. Saturated fatty acid (P = 0.619, OR = 1.01, 95% CI: 0.87–1.18) intake was not associated with Parkinson’s disease. CONCLUSION: Dietary fat intake affects Parkinson’s disease risk, although this depends on the fatty acid subtype. Higher intake of polyunsaturated fatty acids may reduce the risk of Parkinson’s disease, while higher cholesterol and arachidonic acid intakes may elevate Parkinson’s disease risk. However, further studies and evidence are needed to validate any link between dietary fat intake and Parkinson’s disease.