The longitudinal dependence of the behavior of ionospheric parameters has been the subject of a number of works where significant variations are discovered.This also applies to the prediction of the ionospheric total ...The longitudinal dependence of the behavior of ionospheric parameters has been the subject of a number of works where significant variations are discovered.This also applies to the prediction of the ionospheric total electron content(TEC),which neural network methods have recently been widely used.However,the results are mainly presented for a limited set of meridians.This paper examines the longitudinal dependence of the TEC forecast accuracy in the equatorial zone.In this case,the methods are used that provided the best accuracy on three meridians:European(30°E),Southeastern(110°E)and American(75°W).Results for the stations considered are analyzed as a function of longitude using the Jet Propulsion Laboratory Global Ionosphere Map(JPL GIM)for 2015.These results are for 2 h ahead and 24 h ahead forecast.It was found that in this case,based on the metric values,three groups of architectures can be distinguished.The first group included long short-term memory(LSTM),gated recurrent unit(GRU),and temporal convolutional networks(TCN)models as a part of unidirectional deep learning models;the second group is based on the recurrent models from the first group,which were supplemented with a bidirectional algorithm,increasing the TEC forecasting accuracy by 2-3 times.The third group,which includes the bidirectional TCN architecture(BiTCN),provided the highest accuracy.For this architecture,according to data obtained for 9 equatorial stations,practical independence of the TEC prediction accuracy from longitude was observed under the following metrics(Mean Absolute Error MAE,Root Mean Square Error RMSE,Mean Absolute Percentage Error MAPE):MAE(2 h)is 0.2 TECU approximately;MAE(24 h)is 0.4 TECU approximately;RMSE(2 h)is less than 0.5 TECU except Niue station(RMSE(2 h)is 1 TECU approximately);RMSE(24 h)is in the range of 1.0-1.7 TECU;MAPE(2 h)<1%except Darwin station,MAPE(24 h)<2%.This result was confirmed by data from additional 5 stations that formed latitudinal chains in the equatorial part of the three meridians.The complete correspondence of the observational and predicted TEC values is illustrated using several stations for disturbed conditions on December 19-22,2015,which included the strongest magnetic storm in the second half of the year(min Dst=-155 nT).展开更多
Ionosphere delay is one of the main sources of noise affecting global navigation satellite systems, operation of radio detection and ranging systems and very-long-baseline-interferometry. One of the most important and...Ionosphere delay is one of the main sources of noise affecting global navigation satellite systems, operation of radio detection and ranging systems and very-long-baseline-interferometry. One of the most important and common methods to reduce this phase delay is to establish accurate nowcasting and forecasting ionospheric total electron content models. For forecasting models, compared to mid-to-high latitudes, at low latitudes, an active ionosphere leads to extreme differences between long-term prediction models and the actual state of the ionosphere. To solve the problem of low accuracy for long-term prediction models at low latitudes, this article provides a low-latitude, long-term ionospheric prediction model based on a multi-input-multi-output, long-short-term memory neural network. To verify the feasibility of the model, we first made predictions of the vertical total electron content data 24 and 48 hours in advance for each day of July 2020 and then compared both the predictions corresponding to a given day, for all days. Furthermore, in the model modification part, we selected historical data from June 2020 for the validation set, determined a large offset from the results that were predicted to be active, and used the ratio of the mean absolute error of the detected results to that of the predicted results as a correction coefficient to modify our multi-input-multi-output long short-term memory model. The average root mean square error of the 24-hour-advance predictions of our modified model was 4.4 TECU, which was lower and better than5.1 TECU of the multi-input-multi-output, long short-term memory model and 5.9 TECU of the IRI-2016 model.展开更多
Possible ionospheric disturbances relating to the May 12, 2008, MsS.0 Wenchuan earthquake were identified by Global Positioning System (GPS)-derived total electron content (TEC), ion- osonde observations, the glob...Possible ionospheric disturbances relating to the May 12, 2008, MsS.0 Wenchuan earthquake were identified by Global Positioning System (GPS)-derived total electron content (TEC), ion- osonde observations, the global ionospheric map (GIM), and electron density profiles detected by the Constellation Observation System for Meteorology Ionosphere and Climate (COSMIC). We applied a statistical test to detect anomalous TEC signals and found that a unique enhancement in TEC, recorded at 16 GPS stations, appeared on May 9, 2008. The critical fre- quency at F2 peak (foF2), observed by the Chinese ionosondes, and maximal plasma frequency, derived from COSMIC data, revealed a characteristic similar to GPS TEC variations. The GIM showed that the anomalous variations of May 9 were located southeast of the epicenter. Using GPS data from 13 stations near the epicenter, we analyzed the TEC variations of satellite orbit traces during 04:00-11:00 UT. We found that TEC decreased to the east and increased to the southeast of the epicenter during this period. Results showed that the abnormal disturbance on May 9 was probably an ionosphenc precursor of the Wenchuan earthquake of May 12, 2008.展开更多
This research uses eigenvalue characteristics of nonlinear principal component analysis (NLPCA) and principal component analysis (PCA) to investigate total electron content (TEC) anomalies associated with Taiwan...This research uses eigenvalue characteristics of nonlinear principal component analysis (NLPCA) and principal component analysis (PCA) to investigate total electron content (TEC) anomalies associated with Taiwan's Chi-Chi earthquake of 21 September 1999 (LT) (M_w=7.6). The transforms are used for ionospheric TEC from 01 August to 20 September 1999 (local time) using data from 13 GPS receivers. The data were collected at 22°N-26°N Lat. and 120°E-122°E Long.. Applying the NLPCA to the multi-channel total electron content records of GPS receivers, the earthquake-associated TEC anomalies were represented by large principal eigenvalues of NLPCA (〉0.5 in a normalized set) on 14 August and 17, 18, and 20 September, with allowance given for the Dst index, which was quiet for the study period. Comparisons were then made with other researchers who also found TEC anomalies on September 17, 18, and 19 associated with the Chi-Chi earthquake, which cannot be detected by PCA.Consideration is also given for reported ground level geomagnetic field activity that occurred between mid-August and late October, leading up to and including the Chi-Chi and Chia-Yi earthquakes, which are associated with the same series of faults. It is possible that Aug. 14 is representative of an earthquake-associated TEC anomaly. This is an interesting result given how much earlier than the earthquake it occurred.展开更多
The International GNSS Service(IGS) has been providing reliable Global Ionospheric Maps(GIMs) since 1998. The Ionosphere Associate Analysis Centers(IAACs) model the global ionospheric Total Electron Content(TEC) and g...The International GNSS Service(IGS) has been providing reliable Global Ionospheric Maps(GIMs) since 1998. The Ionosphere Associate Analysis Centers(IAACs) model the global ionospheric Total Electron Content(TEC) and generate the daily GIM products within the context of the IGS. However, the rapid and final daily GIM products have a latency of at least one day and one week or so, respectively. This limits the value of GIM products in real-time GNSS applications.We propose and develop an approach for near real-time modeling of global ionospheric TEC by using the hourly IGS data. We perform an experiment in a real operating environment to generate near real-time GIM(named BUHG) products for more than two years. Final daily GIM products,Precise Point Positioning(PPP) based VTEC resources, and JASON-3 Vertical TEC(VTEC) measurements are collected for testing the performance of BUHG. The results show that the performance of BUHG is very close to that of the daily GIM products. Also, there is good agreement between BUHG and PPP-derived VTEC as well as with JASON-3 VTEC. It is possible that BUHG would be further improved with an increase in available hourly GNSS data.展开更多
In this paper, we studied the seasonal behavior of the total electron content (TEC) during a part of solar cycle 24 ascending, maximum and decreasing phases at Koudougou station (Latitude: 12°15'09"N Lon...In this paper, we studied the seasonal behavior of the total electron content (TEC) during a part of solar cycle 24 ascending, maximum and decreasing phases at Koudougou station (Latitude: 12°15'09"N Longitude: 2°21'45"W). Response of TEC to solar recurrent events is presented. The highest values of the TEC in 2014, 2015 and 2016 were recorded on March and October, while in 2013 they were recorded on April and November, corresponding to equinox months. This observation shows that TEC values at the equinoxes are higher than those of solstices. Moreover, the monthly TEC varies in phase with the sunspots number showing a linear dependence of the TEC on solar activity. The ionospheric electron contents are generally very low both before noon and during the night, but quite high at noon and after noon. This pattern of TEC variation is due to the fluctuation of incident solar radiation on the Earth’s equatorial ionosphere. During quiet periods, the number of free electrons generated is lower than that generated during recurrent periods, which shows a positive contribution of recurrent activity to the level of the TEC. Investigations have also highlighted a winter anomaly and equinoctial asymmetry in TEC behavior at Koudougou station.展开更多
Recent ionospheric observations report anomalous total electron content (TEC) deviations prior strong earthquakes. We discuss common fetures of the pre-earthquake TEC disturbances on the basis of statistics covering 5...Recent ionospheric observations report anomalous total electron content (TEC) deviations prior strong earthquakes. We discuss common fetures of the pre-earthquake TEC disturbances on the basis of statistics covering 50 strong seismic events during 2005-2006. The F2-layer ionospheric plasma drift under action of the electric fields of seismic origin is proposed as the main reason of producing TEC anomalies. The origin of such electric fields is discussed in terms of the lithosphere-atmosphere-ionosphere coupling system. This theory is supported by numerical simulations using global Upper Atmosphere Model (UAM). UAM calculations show that the vertical electric current with the density of about 20 - 40 nA/m2 flowing between the Earth and ionosphere over an area of about 200 by 2000 km is required to produce the TEC disturbances with the amplitude of about 30% - 50% relatively to the non-disturbed conditions. Ionosphere responses on the variations of the latitudinal position, direction and configuration of the vertical electric currents have been investigated. We show that not only the vertical component of the ionospheric plasma drift but also horizontal components play an important role in producing pre-earthquake TEC disturbances.展开更多
The analysis of existing method for calculation of total content of electrons (TEC) in ionosphere using GPS occultation method does show that due to different values of signal/noise ration in GPS signals ?and , the ne...The analysis of existing method for calculation of total content of electrons (TEC) in ionosphere using GPS occultation method does show that due to different values of signal/noise ration in GPS signals ?and , the new method of optimum measurements of relevant frequency components of TEC measured by phase and code methods should be developed. The optimum quantity of measurements of the above-mentioned frequency components is determined taking into account the limitation imposed on general number of necessary measurements.展开更多
In this work, the comparative study of total electron content (TEC) between recurrent and quiet geomagnetic periods of solar cycle 24 at Koudougou station with geographical coordinates 12°15'N;- 2°20'...In this work, the comparative study of total electron content (TEC) between recurrent and quiet geomagnetic periods of solar cycle 24 at Koudougou station with geographical coordinates 12°15'N;- 2°20'E was addressed. This study aims to analyze how geomagnetic variations influence the behavior of TEC in this specific region. The geomagnetic indices Kp and Dst were used to select quiet and recurrent days. Statistical analysis was used to interpret the graphs. The results show that the mean diurnal TEC has a minimum before dawn (around 0500 UT) and reaches a maximum value around 1400 UT, progressively decreasing after sunset. In comparison, the average diurnal TEC on recurrent days is slightly higher than on quiet days, with an average difference of 7 TECU. This difference increases with the level of geomagnetic disturbance, reaching 21 TECU during a moderate storm. The study also reveals significant monthly variations, with March and October showing the highest TEC values for quiet and recurrent days, respectively. Equinox months show the highest mean values, while solstice months show the lowest. Signatures of semi-annual, winter and equatorial ionization anomalies were observed. When analyzing annual variations, it was found that the TEC variation depends significantly on F10.7 solar flux, explaining up to 98% during recurrent geomagnetic activity and 92% during quiet geomagnetic activity.展开更多
In the present work we model the global ionospheric total electron content (TEC) with the analysis of empirical orthogonal functions (EOF). The obtained statistical eigen modes, which makeup the modeled TEC, consist o...In the present work we model the global ionospheric total electron content (TEC) with the analysis of empirical orthogonal functions (EOF). The obtained statistical eigen modes, which makeup the modeled TEC, consist of two factors: the eigen vectors mapping TEC patterns at latitude and longitude (or local time LT), and the corresponding coefficients displaying the TEC variations in different time scales, i.e., the solar cycle, the yearly (annual and semiannual) and the diurnal universal time variations. It is found that the EOF analysis can separate the TEC variations into chief processes and the first two modes illustrate the most of the ionospheric climate properties. The first mode contains both the semiannual component which shows the semiannual ionospheric anomaly and the annual component which shows the annual or non-seasonal ionospheric anomaly. The second mode contains mainly the annual component and shows the normal seasonal ionospheric variation at most latitudes and local time sectors. The annual component in the second mode also manifests seasonal anomaly of the ionosphere at higher mid-latitudes around noontime. It is concluded that the EOF analysis, as a statistical eigen mode method, is resultful in analyzing the ionospheric climatology hence can be used to construct the empirical model for the ionospheric climatology.展开更多
基于欧洲定轨中心(Center for Orbit Determination in Europe, CODE)发布的2008至2022年共5428 d的GIM格网数据,选取中国云南省区域数据,分析了电离层格网点总电子含量(TEC)时空变化特征分析,以及使用2005-01-01至2024-05-08共7064 d的...基于欧洲定轨中心(Center for Orbit Determination in Europe, CODE)发布的2008至2022年共5428 d的GIM格网数据,选取中国云南省区域数据,分析了电离层格网点总电子含量(TEC)时空变化特征分析,以及使用2005-01-01至2024-05-08共7064 d的10.7 cm射电辐射通量研究其与太阳活动的相关性。试验结果表明:在空间分布上,纬度方向相邻格网点TEC的变化范围小于4 TECU的频率为85.198%,经度方向相邻格网点TEC的变化范围小于4 TECU的频率为97.592%,表明沿着纬度方向TEC梯度变化更为显著。展开更多
基于时间序列方法能够对短时间的电离层总电子含量(Total Electron Content,TEC)进行较好预测,但由于电离层TEC受各种因素影响,直接使用原始TEC序列数据会受到各种噪声的干扰,影响其预测精度。本文利用小波方法的良好去噪效果,提出一种...基于时间序列方法能够对短时间的电离层总电子含量(Total Electron Content,TEC)进行较好预测,但由于电离层TEC受各种因素影响,直接使用原始TEC序列数据会受到各种噪声的干扰,影响其预测精度。本文利用小波方法的良好去噪效果,提出一种基于小波去噪和时间序列分析的电离层TEC组合模型预测方法,采用欧洲定轨中心(CODE)发布的2021年数据对其进行分析。结果表明,对于高、中低纬度,使用组合模型的预测精度分别为96.14%、92.34%和85.09%。与传统的时间序列方法预测的结果相比,在高、中纬度的精度都有所提高,而低纬度精度相当,实验结果可验证本方法的有效性。展开更多
电离层延迟是精密单点定位、时间同步等相关领域的重要误差来源之一,精确预测电离层总电子含量是补偿电离层延迟的重要前提。采用长短时记忆(Long Short-Term Memory,LSTM)网络预测算法进行电离层总电子含量(Total Electron Content,TEC...电离层延迟是精密单点定位、时间同步等相关领域的重要误差来源之一,精确预测电离层总电子含量是补偿电离层延迟的重要前提。采用长短时记忆(Long Short-Term Memory,LSTM)网络预测算法进行电离层总电子含量(Total Electron Content,TEC)预测模型构建,验证不同隐藏层数、神经元个数、训练数据个数、训练次数、及数据是否预处理对电离层数据预测的影响,并最终得到电离层预测的最佳参数。结果表明,当隐藏层数为2层,第1、2层隐藏神经元个数分别为200个、300个,输入神经元168个,输出神经元12个,模型迭代次数400次时,能达到最好的预测效果,此时对18个单站点TEC预测结果的均方根误差为43.87,相比于BP神经网络算法的预测均方根误差下降了275.58,有效地提高了预测精度,可以对钟差进行有效补偿。展开更多
Ionospheric disturbances caused by acoustic waves emitted during earthquakes were studied using the Global Navigation Satellite System(GNSS)to analyze the changes in total electron content(TEC)values.GNSS signals norm...Ionospheric disturbances caused by acoustic waves emitted during earthquakes were studied using the Global Navigation Satellite System(GNSS)to analyze the changes in total electron content(TEC)values.GNSS signals normally propagate from satellites to receivers through the ionosphere layer.The delayed signals can be used to obtain TEC values by passing through the layer.Therefore,this study aims to analyze Coseismic Ionospheric Disturbances(CIDs)in six earthquakes,including 2016 M7.8 New Zealand(about 0.49 TECU),2018 M7.9 Alaska(about 0.20 TECU),2005 M7.2 California(about 0.29 TECU),2023 M7.5 Turkey(about 0.49 TECU),2012 M8.6 Sumatra(about 2.98 TECU),and 2012 M8.2 Sumatra(about 1.49 TECU)earthquakes.The propagation speed of the wave from the earthquake epicenter,identified as an acoustic wave,was estimated to be between 0.6 and 1.0 km/s.The 3D tomography modeling was performed to analyze the TEC height variations in the ionosphere to obtain a more accurate spatial analysis of TEC due to earthquakes.Moreover,checkerboard accuracy tests were applied to test the resolution of the 3D tomography model.The maximum ionization correlation test was also conducted for the six earthquakes to determine variations in the maximum ionization height of the ionosphere.The correlation test results between magnitude and maximum CID height produced a moderate correlation.The greater the earthquake magnitude,the higher the maximum CID detected.This is because greater earthquake produces compressed energy,which reduces the ionospheric density and reaches the maximum height.In addition,the maximum CID height is higher at night than in the afternoon because the E layer disappears at night.展开更多
In recent years,GNSS-derived total electron content(TEC)measurements have emerged as an effective method for detecting natural hazards through their ionospheric manifestations.Seismo-atmospheric disturbances generated...In recent years,GNSS-derived total electron content(TEC)measurements have emerged as an effective method for detecting natural hazards through their ionospheric manifestations.Seismo-atmospheric disturbances generated by earthquakes,tsunamis,and volcanic eruptions propagate as traveling ionospheric disturbances(TIDs)that modify ionospheric electron density.Despite this potential,specialized open-source tools for such analyses remain limited.We present IonKit-NH,a MATLAB-based toolkit enabling systematic processing of multi-GNSS data(GPS,GLONASS,Galileo,BDS)through dual-frequency combination analysis for TEC derivation.The software implements automated generation of time-distance diagrams and 2D TEC perturbation maps,enabling quantitative characterization of TID propagation parameters associated with natural hazards.This toolkit enhances standardized analysis of ionospheric precursors and co-seismic signals across global navigation satellite systems.展开更多
This paper demonstrates that the spatial distribution of the ionospheric TEC over the Indian region can be reconstructed with appreciable accuracy using minimal numbers of empirical orthogonal functions as a basis.The...This paper demonstrates that the spatial distribution of the ionospheric TEC over the Indian region can be reconstructed with appreciable accuracy using minimal numbers of empirical orthogonal functions as a basis.These basis functions were derived using the Singular Value Decomposition of a matrix composed of pragmatic vertical Total Electron Content(VTEC)values collected across varied ionospheric conditions and measured over the region of interest.The reconstruction was achieved by linearly combining the appropriately chosen significant bases with corresponding weight factors.The reconstruction accuracy of the algorithm was found to be better than 4 TECU(TECU=1016electrons/m2)for more than 99.9%of the time when tested over the complete year of 2016 with only eight basis vectors.The containment factor,defined here,indicates the goodness of the chosen bases in representing the arbitrary VTEC distributions and is found to remain typically high,aiding in improved algorithm performance.The performance,however,was found to be sensitive to the seasons and geomagnetic conditions.Deteriorated performance was observed when tested for the St.Patrick's Day storm data.The deterioration was attributed to the structural alteration of the ionospheric plasma density and the presence of atypical modes during the storm.The results ascertain the prospect of a faithful representation of the spatial distribution of the ionospheric VTEC using limited parametric variables,which may find utility in navigation,radar,and various other applications.展开更多
基金financially supported by the Ministry of Science and Higher Education of the Russian Federation(State contract GZ0110/23-10-IF)。
文摘The longitudinal dependence of the behavior of ionospheric parameters has been the subject of a number of works where significant variations are discovered.This also applies to the prediction of the ionospheric total electron content(TEC),which neural network methods have recently been widely used.However,the results are mainly presented for a limited set of meridians.This paper examines the longitudinal dependence of the TEC forecast accuracy in the equatorial zone.In this case,the methods are used that provided the best accuracy on three meridians:European(30°E),Southeastern(110°E)and American(75°W).Results for the stations considered are analyzed as a function of longitude using the Jet Propulsion Laboratory Global Ionosphere Map(JPL GIM)for 2015.These results are for 2 h ahead and 24 h ahead forecast.It was found that in this case,based on the metric values,three groups of architectures can be distinguished.The first group included long short-term memory(LSTM),gated recurrent unit(GRU),and temporal convolutional networks(TCN)models as a part of unidirectional deep learning models;the second group is based on the recurrent models from the first group,which were supplemented with a bidirectional algorithm,increasing the TEC forecasting accuracy by 2-3 times.The third group,which includes the bidirectional TCN architecture(BiTCN),provided the highest accuracy.For this architecture,according to data obtained for 9 equatorial stations,practical independence of the TEC prediction accuracy from longitude was observed under the following metrics(Mean Absolute Error MAE,Root Mean Square Error RMSE,Mean Absolute Percentage Error MAPE):MAE(2 h)is 0.2 TECU approximately;MAE(24 h)is 0.4 TECU approximately;RMSE(2 h)is less than 0.5 TECU except Niue station(RMSE(2 h)is 1 TECU approximately);RMSE(24 h)is in the range of 1.0-1.7 TECU;MAPE(2 h)<1%except Darwin station,MAPE(24 h)<2%.This result was confirmed by data from additional 5 stations that formed latitudinal chains in the equatorial part of the three meridians.The complete correspondence of the observational and predicted TEC values is illustrated using several stations for disturbed conditions on December 19-22,2015,which included the strongest magnetic storm in the second half of the year(min Dst=-155 nT).
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0302101)the Initiative Program of State Key Laboratory of Precision Measurement Technology and Instrument。
文摘Ionosphere delay is one of the main sources of noise affecting global navigation satellite systems, operation of radio detection and ranging systems and very-long-baseline-interferometry. One of the most important and common methods to reduce this phase delay is to establish accurate nowcasting and forecasting ionospheric total electron content models. For forecasting models, compared to mid-to-high latitudes, at low latitudes, an active ionosphere leads to extreme differences between long-term prediction models and the actual state of the ionosphere. To solve the problem of low accuracy for long-term prediction models at low latitudes, this article provides a low-latitude, long-term ionospheric prediction model based on a multi-input-multi-output, long-short-term memory neural network. To verify the feasibility of the model, we first made predictions of the vertical total electron content data 24 and 48 hours in advance for each day of July 2020 and then compared both the predictions corresponding to a given day, for all days. Furthermore, in the model modification part, we selected historical data from June 2020 for the validation set, determined a large offset from the results that were predicted to be active, and used the ratio of the mean absolute error of the detected results to that of the predicted results as a correction coefficient to modify our multi-input-multi-output long short-term memory model. The average root mean square error of the 24-hour-advance predictions of our modified model was 4.4 TECU, which was lower and better than5.1 TECU of the multi-input-multi-output, long short-term memory model and 5.9 TECU of the IRI-2016 model.
基金supported financially by Science for Earthquake Resilience(XH14064Y)the open foundation of the State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2014-5-2-E)
文摘Possible ionospheric disturbances relating to the May 12, 2008, MsS.0 Wenchuan earthquake were identified by Global Positioning System (GPS)-derived total electron content (TEC), ion- osonde observations, the global ionospheric map (GIM), and electron density profiles detected by the Constellation Observation System for Meteorology Ionosphere and Climate (COSMIC). We applied a statistical test to detect anomalous TEC signals and found that a unique enhancement in TEC, recorded at 16 GPS stations, appeared on May 9, 2008. The critical fre- quency at F2 peak (foF2), observed by the Chinese ionosondes, and maximal plasma frequency, derived from COSMIC data, revealed a characteristic similar to GPS TEC variations. The GIM showed that the anomalous variations of May 9 were located southeast of the epicenter. Using GPS data from 13 stations near the epicenter, we analyzed the TEC variations of satellite orbit traces during 04:00-11:00 UT. We found that TEC decreased to the east and increased to the southeast of the epicenter during this period. Results showed that the abnormal disturbance on May 9 was probably an ionosphenc precursor of the Wenchuan earthquake of May 12, 2008.
文摘This research uses eigenvalue characteristics of nonlinear principal component analysis (NLPCA) and principal component analysis (PCA) to investigate total electron content (TEC) anomalies associated with Taiwan's Chi-Chi earthquake of 21 September 1999 (LT) (M_w=7.6). The transforms are used for ionospheric TEC from 01 August to 20 September 1999 (local time) using data from 13 GPS receivers. The data were collected at 22°N-26°N Lat. and 120°E-122°E Long.. Applying the NLPCA to the multi-channel total electron content records of GPS receivers, the earthquake-associated TEC anomalies were represented by large principal eigenvalues of NLPCA (〉0.5 in a normalized set) on 14 August and 17, 18, and 20 September, with allowance given for the Dst index, which was quiet for the study period. Comparisons were then made with other researchers who also found TEC anomalies on September 17, 18, and 19 associated with the Chi-Chi earthquake, which cannot be detected by PCA.Consideration is also given for reported ground level geomagnetic field activity that occurred between mid-August and late October, leading up to and including the Chi-Chi and Chia-Yi earthquakes, which are associated with the same series of faults. It is possible that Aug. 14 is representative of an earthquake-associated TEC anomaly. This is an interesting result given how much earlier than the earthquake it occurred.
基金funded by the National Natural Science Foundation of China (Nos. 41804026, 41804024 and 41931075)。
文摘The International GNSS Service(IGS) has been providing reliable Global Ionospheric Maps(GIMs) since 1998. The Ionosphere Associate Analysis Centers(IAACs) model the global ionospheric Total Electron Content(TEC) and generate the daily GIM products within the context of the IGS. However, the rapid and final daily GIM products have a latency of at least one day and one week or so, respectively. This limits the value of GIM products in real-time GNSS applications.We propose and develop an approach for near real-time modeling of global ionospheric TEC by using the hourly IGS data. We perform an experiment in a real operating environment to generate near real-time GIM(named BUHG) products for more than two years. Final daily GIM products,Precise Point Positioning(PPP) based VTEC resources, and JASON-3 Vertical TEC(VTEC) measurements are collected for testing the performance of BUHG. The results show that the performance of BUHG is very close to that of the daily GIM products. Also, there is good agreement between BUHG and PPP-derived VTEC as well as with JASON-3 VTEC. It is possible that BUHG would be further improved with an increase in available hourly GNSS data.
文摘In this paper, we studied the seasonal behavior of the total electron content (TEC) during a part of solar cycle 24 ascending, maximum and decreasing phases at Koudougou station (Latitude: 12°15'09"N Longitude: 2°21'45"W). Response of TEC to solar recurrent events is presented. The highest values of the TEC in 2014, 2015 and 2016 were recorded on March and October, while in 2013 they were recorded on April and November, corresponding to equinox months. This observation shows that TEC values at the equinoxes are higher than those of solstices. Moreover, the monthly TEC varies in phase with the sunspots number showing a linear dependence of the TEC on solar activity. The ionospheric electron contents are generally very low both before noon and during the night, but quite high at noon and after noon. This pattern of TEC variation is due to the fluctuation of incident solar radiation on the Earth’s equatorial ionosphere. During quiet periods, the number of free electrons generated is lower than that generated during recurrent periods, which shows a positive contribution of recurrent activity to the level of the TEC. Investigations have also highlighted a winter anomaly and equinoctial asymmetry in TEC behavior at Koudougou station.
文摘Recent ionospheric observations report anomalous total electron content (TEC) deviations prior strong earthquakes. We discuss common fetures of the pre-earthquake TEC disturbances on the basis of statistics covering 50 strong seismic events during 2005-2006. The F2-layer ionospheric plasma drift under action of the electric fields of seismic origin is proposed as the main reason of producing TEC anomalies. The origin of such electric fields is discussed in terms of the lithosphere-atmosphere-ionosphere coupling system. This theory is supported by numerical simulations using global Upper Atmosphere Model (UAM). UAM calculations show that the vertical electric current with the density of about 20 - 40 nA/m2 flowing between the Earth and ionosphere over an area of about 200 by 2000 km is required to produce the TEC disturbances with the amplitude of about 30% - 50% relatively to the non-disturbed conditions. Ionosphere responses on the variations of the latitudinal position, direction and configuration of the vertical electric currents have been investigated. We show that not only the vertical component of the ionospheric plasma drift but also horizontal components play an important role in producing pre-earthquake TEC disturbances.
文摘The analysis of existing method for calculation of total content of electrons (TEC) in ionosphere using GPS occultation method does show that due to different values of signal/noise ration in GPS signals ?and , the new method of optimum measurements of relevant frequency components of TEC measured by phase and code methods should be developed. The optimum quantity of measurements of the above-mentioned frequency components is determined taking into account the limitation imposed on general number of necessary measurements.
文摘In this work, the comparative study of total electron content (TEC) between recurrent and quiet geomagnetic periods of solar cycle 24 at Koudougou station with geographical coordinates 12°15'N;- 2°20'E was addressed. This study aims to analyze how geomagnetic variations influence the behavior of TEC in this specific region. The geomagnetic indices Kp and Dst were used to select quiet and recurrent days. Statistical analysis was used to interpret the graphs. The results show that the mean diurnal TEC has a minimum before dawn (around 0500 UT) and reaches a maximum value around 1400 UT, progressively decreasing after sunset. In comparison, the average diurnal TEC on recurrent days is slightly higher than on quiet days, with an average difference of 7 TECU. This difference increases with the level of geomagnetic disturbance, reaching 21 TECU during a moderate storm. The study also reveals significant monthly variations, with March and October showing the highest TEC values for quiet and recurrent days, respectively. Equinox months show the highest mean values, while solstice months show the lowest. Signatures of semi-annual, winter and equatorial ionization anomalies were observed. When analyzing annual variations, it was found that the TEC variation depends significantly on F10.7 solar flux, explaining up to 98% during recurrent geomagnetic activity and 92% during quiet geomagnetic activity.
基金supported by the Special Fund for State Seismology Bureau (Grant No. 201008007)the KIP Pilot Project of CAS (Grant No. YYYT-1110-02)+1 种基金the National Natural Science Foundation of China (Grant Nos. 40974090, 41131066)the National Basic Research Program of China ("973" Project) (Grant No. 2011CB811405)
文摘In the present work we model the global ionospheric total electron content (TEC) with the analysis of empirical orthogonal functions (EOF). The obtained statistical eigen modes, which makeup the modeled TEC, consist of two factors: the eigen vectors mapping TEC patterns at latitude and longitude (or local time LT), and the corresponding coefficients displaying the TEC variations in different time scales, i.e., the solar cycle, the yearly (annual and semiannual) and the diurnal universal time variations. It is found that the EOF analysis can separate the TEC variations into chief processes and the first two modes illustrate the most of the ionospheric climate properties. The first mode contains both the semiannual component which shows the semiannual ionospheric anomaly and the annual component which shows the annual or non-seasonal ionospheric anomaly. The second mode contains mainly the annual component and shows the normal seasonal ionospheric variation at most latitudes and local time sectors. The annual component in the second mode also manifests seasonal anomaly of the ionosphere at higher mid-latitudes around noontime. It is concluded that the EOF analysis, as a statistical eigen mode method, is resultful in analyzing the ionospheric climatology hence can be used to construct the empirical model for the ionospheric climatology.
文摘利用全球导航卫星系统(Global Navigation Satellite System,GNSS)双频差分信号进行电离层电子含量反演是一种常用的电离层探测手段,但GNSS信号在强电磁干扰环境下,被淹没于电磁噪声中而无法被提取,影响电离层总电子含量(total electron content,TEC)反演系统的可靠性。采用传统调零抗干扰阵列天线方案能解决干扰源剥离的问题,但调零信号的天线相位中心不稳定导致高精度的相位平滑伪距和精密单点定位(precise point positioning,PPP)算法无法收敛。针对强干扰环境下的电离层监测需求,本文提出一种抗干扰TEC数据反演手段,通过对阵列天线通道幅相一致性进行校正,保证相位中心的稳定性,从而推算出准确的电离层TEC信息,提高了系统的可靠性和抗干扰能力。
文摘基于时间序列方法能够对短时间的电离层总电子含量(Total Electron Content,TEC)进行较好预测,但由于电离层TEC受各种因素影响,直接使用原始TEC序列数据会受到各种噪声的干扰,影响其预测精度。本文利用小波方法的良好去噪效果,提出一种基于小波去噪和时间序列分析的电离层TEC组合模型预测方法,采用欧洲定轨中心(CODE)发布的2021年数据对其进行分析。结果表明,对于高、中低纬度,使用组合模型的预测精度分别为96.14%、92.34%和85.09%。与传统的时间序列方法预测的结果相比,在高、中纬度的精度都有所提高,而低纬度精度相当,实验结果可验证本方法的有效性。
文摘电离层延迟是精密单点定位、时间同步等相关领域的重要误差来源之一,精确预测电离层总电子含量是补偿电离层延迟的重要前提。采用长短时记忆(Long Short-Term Memory,LSTM)网络预测算法进行电离层总电子含量(Total Electron Content,TEC)预测模型构建,验证不同隐藏层数、神经元个数、训练数据个数、训练次数、及数据是否预处理对电离层数据预测的影响,并最终得到电离层预测的最佳参数。结果表明,当隐藏层数为2层,第1、2层隐藏神经元个数分别为200个、300个,输入神经元168个,输出神经元12个,模型迭代次数400次时,能达到最好的预测效果,此时对18个单站点TEC预测结果的均方根误差为43.87,相比于BP神经网络算法的预测均方根误差下降了275.58,有效地提高了预测精度,可以对钟差进行有效补偿。
基金supported by the Master's Thesis Research Program of the Ministry of Education and Culture of the Republic of Indonesia,Sepuluh Nopember Institute of Technology with grant number 2002/PKS/ITS/2023 contract number 112/E5/PG.02.00.PL/2023.
文摘Ionospheric disturbances caused by acoustic waves emitted during earthquakes were studied using the Global Navigation Satellite System(GNSS)to analyze the changes in total electron content(TEC)values.GNSS signals normally propagate from satellites to receivers through the ionosphere layer.The delayed signals can be used to obtain TEC values by passing through the layer.Therefore,this study aims to analyze Coseismic Ionospheric Disturbances(CIDs)in six earthquakes,including 2016 M7.8 New Zealand(about 0.49 TECU),2018 M7.9 Alaska(about 0.20 TECU),2005 M7.2 California(about 0.29 TECU),2023 M7.5 Turkey(about 0.49 TECU),2012 M8.6 Sumatra(about 2.98 TECU),and 2012 M8.2 Sumatra(about 1.49 TECU)earthquakes.The propagation speed of the wave from the earthquake epicenter,identified as an acoustic wave,was estimated to be between 0.6 and 1.0 km/s.The 3D tomography modeling was performed to analyze the TEC height variations in the ionosphere to obtain a more accurate spatial analysis of TEC due to earthquakes.Moreover,checkerboard accuracy tests were applied to test the resolution of the 3D tomography model.The maximum ionization correlation test was also conducted for the six earthquakes to determine variations in the maximum ionization height of the ionosphere.The correlation test results between magnitude and maximum CID height produced a moderate correlation.The greater the earthquake magnitude,the higher the maximum CID detected.This is because greater earthquake produces compressed energy,which reduces the ionospheric density and reaches the maximum height.In addition,the maximum CID height is higher at night than in the afternoon because the E layer disappears at night.
基金supported by National Natural Science Foundation of China(Grant No.42274017)Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515030184).
文摘In recent years,GNSS-derived total electron content(TEC)measurements have emerged as an effective method for detecting natural hazards through their ionospheric manifestations.Seismo-atmospheric disturbances generated by earthquakes,tsunamis,and volcanic eruptions propagate as traveling ionospheric disturbances(TIDs)that modify ionospheric electron density.Despite this potential,specialized open-source tools for such analyses remain limited.We present IonKit-NH,a MATLAB-based toolkit enabling systematic processing of multi-GNSS data(GPS,GLONASS,Galileo,BDS)through dual-frequency combination analysis for TEC derivation.The software implements automated generation of time-distance diagrams and 2D TEC perturbation maps,enabling quantitative characterization of TID propagation parameters associated with natural hazards.This toolkit enhances standardized analysis of ionospheric precursors and co-seismic signals across global navigation satellite systems.
文摘This paper demonstrates that the spatial distribution of the ionospheric TEC over the Indian region can be reconstructed with appreciable accuracy using minimal numbers of empirical orthogonal functions as a basis.These basis functions were derived using the Singular Value Decomposition of a matrix composed of pragmatic vertical Total Electron Content(VTEC)values collected across varied ionospheric conditions and measured over the region of interest.The reconstruction was achieved by linearly combining the appropriately chosen significant bases with corresponding weight factors.The reconstruction accuracy of the algorithm was found to be better than 4 TECU(TECU=1016electrons/m2)for more than 99.9%of the time when tested over the complete year of 2016 with only eight basis vectors.The containment factor,defined here,indicates the goodness of the chosen bases in representing the arbitrary VTEC distributions and is found to remain typically high,aiding in improved algorithm performance.The performance,however,was found to be sensitive to the seasons and geomagnetic conditions.Deteriorated performance was observed when tested for the St.Patrick's Day storm data.The deterioration was attributed to the structural alteration of the ionospheric plasma density and the presence of atypical modes during the storm.The results ascertain the prospect of a faithful representation of the spatial distribution of the ionospheric VTEC using limited parametric variables,which may find utility in navigation,radar,and various other applications.