期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
An Upper Bound for Total Domination Number
1
作者 孙良 《Journal of Beijing Institute of Technology》 EI CAS 1995年第2期114+111-113,共4页
Let G=(V, E) be a simple graph without an isolate. A subset T of V is a total dominating set of G if for any there exists at least one vertex such that .The total domination number γ1(G) of G is the minimum order of... Let G=(V, E) be a simple graph without an isolate. A subset T of V is a total dominating set of G if for any there exists at least one vertex such that .The total domination number γ1(G) of G is the minimum order of a total dominating set of G. This paper proves that if G is a connected graph with n≥3 vertices and minimum degree at least two. 展开更多
关键词 graphs (mathematics) / domination total domination number
在线阅读 下载PDF
On Total Domination Polynomials of Certain Graphs
2
作者 S. Sanal H. E. Vatsalya 《Journal of Mathematics and System Science》 2016年第3期123-127,共5页
We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of... We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of G of size i, and yt(G) is the total domination number of G. In [7] We have obtained some properties of Dt(G, x) and its coefficients. Also, we have calculated the total domination polynomials of complete graph, complete bipartite graph, join of two graphs and a graph consisting of disjoint components. In this paper, we presented for any two isomorphic graphs the total domination polynomials are same, but the converse is not true. Also, we proved that for any n vertex transitive graph of order n and for any v ∈ V(G), dt(G, i) = 7 dt(V)(G, i), 1 〈 i 〈 n. And, for any k-regular graph of order n, dr(G, i) = (7), i 〉 n-k and d,(G, n-k) = (kn) - n. We have calculated the total domination polynomial of Petersen graph D,(P, x) = 10X4 + 72x5 + 140x6 + 110x7 + 45x8 + [ 0x9 + x10. Also, for any two vertices u and v of a k-regular graph Hwith N(u) ≠ N(v) and if Dr(G, x) = Dt( H, x ), then G is also a k-regular graph. 展开更多
关键词 total dominating set total domination number total domination polynomial
在线阅读 下载PDF
On the Total Domination Number of Graphs with Minimum Degree at Least Three
3
作者 刘海龙 孙良 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期217-219,共3页
Let G be a simple graph with no isolated vertices. A set S of vertices of G is a total dominating set if every vertex of G is adjacent to some vertex in S . The total domination number of G , den... Let G be a simple graph with no isolated vertices. A set S of vertices of G is a total dominating set if every vertex of G is adjacent to some vertex in S . The total domination number of G , denoted by γ t (G) , is the minimum cardinality of a total dominating set of G . It is shown that if G is a graph of order n with minimum degree at least 3, then γ t (G)≤n/2 . Thus a conjecture of Favaron, Henning, Mynhart and Puech is settled in the affirmative. 展开更多
关键词 simple graph domination total domination
在线阅读 下载PDF
Signed Total Domination in Graphs 被引量:3
4
作者 邢化明 孙良 陈学刚 《Journal of Beijing Institute of Technology》 EI CAS 2003年第3期319-321,共3页
Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such ... Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such that f(N(v)) ≥1 for every vertex v∈V . The signed total domination number of a graph G equals the minimum weight of a signed total dominating function on G . In this paper, some properties of the signed total domination number of a graph G are discussed. 展开更多
关键词 total dominating function signed total dominating function signed total domination number
在线阅读 下载PDF
Signed total domination in nearly regular graphs 被引量:2
5
作者 康丽英 单而芳 《Journal of Shanghai University(English Edition)》 CAS 2006年第1期4-8,共5页
A function f: V( G)→{1,1} defined on the vertices of a graph G is a signed total dominating function (STDF) if the sum of its function values over any open neighborhood is at least one. An STDF f is minimal if t... A function f: V( G)→{1,1} defined on the vertices of a graph G is a signed total dominating function (STDF) if the sum of its function values over any open neighborhood is at least one. An STDF f is minimal if there does not extst a STDF g: V(G)→{-1,1}, f≠g, for which g ( v )≤f( v ) for every v∈V( G ). The weight of a STDF is the sum of its function values over all vertices. The signed total domination number of G is the minimum weight of a STDF of G, while the upper signed domination number of G is the maximum weight of a minimal STDF of G, In this paper, we present sharp upper bounds on the upper signed total domination number of a nearly regular graph. 展开更多
关键词 signed total domination nearly regular graph bounds.
在线阅读 下载PDF
On Signed Edge Total Domination Numbers of Graphs 被引量:6
6
作者 Jin Feng ZHAO Bao Gen XU 《Journal of Mathematical Research and Exposition》 CSCD 2011年第2期209-214,共6页
Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination ... Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination number γ st (G) of G is defined as γ st (G) = min{ e∈E(G) f(e)|f is an SETDF of G}.In this paper we obtain some new lower bounds of γ st (G). 展开更多
关键词 signed edge total dominating function signed edge total domination number edge degree
在线阅读 下载PDF
Upper Minus Total Domination Number of Regular Graphs
7
作者 Zhen-lin LI Xin-zhong LV 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2017年第1期69-74,共6页
Let Гt-(G) be upper minus total domination number of G. In this paper, We establish an upper bound of the upper minus total domination number of a regular graph G and characterize the extremal graphs attaining the ... Let Гt-(G) be upper minus total domination number of G. In this paper, We establish an upper bound of the upper minus total domination number of a regular graph G and characterize the extremal graphs attaining the bound. Thus, we answer an open problem by Yan, Yang and Shan 展开更多
关键词 upper minus total domination regular graph
原文传递
Signed Roman (Total) Domination Numbers of Complete Bipartite Graphs and Wheels 被引量:4
8
作者 ZHAO YAN-CAI MIAO LIAN-YING Du Xian-kun 《Communications in Mathematical Research》 CSCD 2017年第4期318-326,共9页
A signed(res. signed total) Roman dominating function, SRDF(res.STRDF) for short, of a graph G =(V, E) is a function f : V → {-1, 1, 2} satisfying the conditions that(i)∑v∈N[v]f(v) ≥ 1(res.∑v∈N(v)f(v) ≥ 1) for ... A signed(res. signed total) Roman dominating function, SRDF(res.STRDF) for short, of a graph G =(V, E) is a function f : V → {-1, 1, 2} satisfying the conditions that(i)∑v∈N[v]f(v) ≥ 1(res.∑v∈N(v)f(v) ≥ 1) for any v ∈ V, where N [v] is the closed neighborhood and N(v) is the neighborhood of v, and(ii) every vertex v for which f(v) =-1 is adjacent to a vertex u for which f(u) = 2. The weight of a SRDF(res. STRDF) is the sum of its function values over all vertices.The signed(res. signed total) Roman domination number of G is the minimum weight among all signed(res. signed total) Roman dominating functions of G. In this paper,we compute the exact values of the signed(res. signed total) Roman domination numbers of complete bipartite graphs and wheels. 展开更多
关键词 signed Roman domination signed total Roman domination complete bipartite graph WHEEL
在线阅读 下载PDF
Paired, Total, and Connected Domination on the Queen’s Graph Revisited
9
作者 Paul A. Burchett 《Open Journal of Discrete Mathematics》 2016年第1期1-6,共6页
The question associated with total domination on the queen’s graph has a long and rich history, first having been posed by Ahrens in 1910 [1]. The question is this: What is the minimum number of queens needed so that... The question associated with total domination on the queen’s graph has a long and rich history, first having been posed by Ahrens in 1910 [1]. The question is this: What is the minimum number of queens needed so that every square of an n × n board is attacked? Beginning in 2005 with Amirabadi, Burchett, and Hedetniemi [2] [3], work on this problem, and two other related problems, has seen progress. Bounds have been given for the values of all three domination parameters on the queen’s graph. In this paper, formations of queens are given that provide new bounds for the values of total, paired, and connected domination on the queen’s graph, denoted , , and respectively. For any n × n board size, the new bound of is arrived at, along with the separate bounds of , for with , and , for with . 展开更多
关键词 CHESS total Dominating Set Paired Dominating Set Connected Dominating Set
在线阅读 下载PDF
Signed total domatic number of a graph 被引量:1
10
作者 管梅 单而芳 《Journal of Shanghai University(English Edition)》 CAS 2008年第1期31-34,共4页
Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on ... Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on G. A set {fl, f2,… fd} of signed d total dominating functions on G with the property that ∑i=1^d fi(x) ≤ 1 for each x ∈ V, is called a signed total dominating family (of functions) on G. The maximum number of functions in a signed total dominating family on G is the signed total domatic number on G, denoted by dt^s(G). The properties of the signed total domatic number dt^s(G) are studied in this paper. In particular, we give the sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs and complete graphs. 展开更多
关键词 signed total domatic number signed total dominating function signed total domination number
在线阅读 下载PDF
Bounds on Fractional Domination of Some Products of Graphs
11
作者 陈学刚 孙良 邢化明 《Journal of Beijing Institute of Technology》 EI CAS 2004年第1期90-93,共4页
Let γ f(G) and γ~t f(G) be the fractional domination number and fractional total domination number of a graph G respectively. Hare and Stewart gave some exact fractional domination number of P n... Let γ f(G) and γ~t f(G) be the fractional domination number and fractional total domination number of a graph G respectively. Hare and Stewart gave some exact fractional domination number of P n×P m (grid graph) with small n and m . But for large n and m , it is difficult to decide the exact fractional domination number. Motivated by this, nearly sharp upper and lower bounds are given to the fractional domination number of grid graphs. Furthermore, upper and lower bounds on the fractional total domination number of strong direct product of graphs are given. 展开更多
关键词 fractional domination number fractional total domination number grid graph strong direct product
在线阅读 下载PDF
Dominating functions with integer values in graphs a survey 被引量:2
12
作者 康丽英 单而芳 《Journal of Shanghai University(English Edition)》 CAS 2007年第5期437-448,共12页
For an arbitrary subset P of the reals, a function f : V →P is defined to be a P-dominating function of a graph G = (V, E) if the sum of its function values over any closed neighbourhood is at least 1. That is, fo... For an arbitrary subset P of the reals, a function f : V →P is defined to be a P-dominating function of a graph G = (V, E) if the sum of its function values over any closed neighbourhood is at least 1. That is, for every v ∈ V, f(N[v]) ≥ 1. The definition of total P-dominating function is obtained by simply changing ‘closed' neighborhood N[v] in the definition of P-dominating function to ‘open' neighborhood N(v). The (total) P-domination number of a graph G is defined to be the infimum of weight w(f) = ∑v ∈ V f(v) taken over all (total) P-dominating function f. Similarly, the P-edge and P-star dominating functions can be defined. In this paper we survey some recent progress on the topic of dominating functions in graph theory. Especially, we are interested in P-, P-edge and P-star dominating functions of graphs with integer values. 展开更多
关键词 P-dominating function signed domination signed total domination minus domination minus total domination.
在线阅读 下载PDF
On the Ratio Between 2-Domination and Total Outer-Independent Domination Numbers of Trees
13
作者 Marcin KRZYWKOWSKI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2013年第5期765-776,共12页
A 2-dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)\D has at least two neighbors in D.A total outer-independent dominating set of a graph G is a set D of vertices of G such that ... A 2-dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)\D has at least two neighbors in D.A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D,and the set V(G)\D is independent.The 2-domination(total outer-independent domination,respectively)number of a graph G is the minimum cardinality of a 2-dominating(total outer-independent dominating,respectively)set of G.We investigate the ratio between2-domination and total outer-independent domination numbers of trees. 展开更多
关键词 2-domination total domination total outer-independent domination Tree
原文传递
A lower bound on the total signed domination numbers of graphs 被引量:8
14
作者 Xin-zhong LU Department of Mathematics,Zhejiang Normal University,Jinhua 321004,China 《Science China Mathematics》 SCIE 2007年第8期1157-1162,共6页
Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x... Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x). For an element x ∈ V (G) ∪ E(G), we define $f[x] = \sum\nolimits_{y \in N_T [x]} {f(y)} $ . A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1} such that f[x] ? 1 for all x ∈ V (G) ∪ E(G). The total signed domination number γ s * (G) of G is the minimum weight of a total signed domination function on G.In this paper, we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values of γ s * (G) when G is C n and P n . 展开更多
关键词 total signed domination function total signed domination number 26A33
原文传递
Inequality of Nordhaus-Gaddum Type for Total Outer-connected Domination in Graphs
15
作者 Hong Xing JIANG Li Ying KANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第3期607-616,共10页
A set S of vertices in a graph G = (V, E) without isolated vertices is a total outer-connected dominating set (TCDS) of G if S is a total dominating set of G and G[V - S] is connected. The total outer-connected do... A set S of vertices in a graph G = (V, E) without isolated vertices is a total outer-connected dominating set (TCDS) of G if S is a total dominating set of G and G[V - S] is connected. The total outer-connected domination number of G, denoted by γtc(G), is the minimum cardinality of a TCDS of G. For an arbitrary graph without isolated vertices, we obtain the upper and lower bounds on γtc(G) + γytc(G), and characterize the extremal graphs achieving these bounds. 展开更多
关键词 GRAPH domination number total outer-connected domination Nordhaus-Gaddum inequality
原文传递
EXISTENCE OF 0-1 UNIVERSAL MINIMAL TOTAL DOMINATING FUNCTIONS
16
作者 FANGQizhi 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2004年第4期485-491,共7页
In this paper, we study the existence of 0-1 universal minimal total dominating functions in a graph. We establish a formulation of linear inequalities to characterize universal minimal total dominating functions and ... In this paper, we study the existence of 0-1 universal minimal total dominating functions in a graph. We establish a formulation of linear inequalities to characterize universal minimal total dominating functions and show that for a kind of graphs whose adjacent matrices are balanced, the existence of universal minimal total dominating functions coincides with that of 0-1 ones. It is also proved that for general graphs, the problem of testing the existence of 0-1 universal minimal total dominating functions is NP-hard. 展开更多
关键词 total dominating function (TDF) minimal total dominating function (MTDF) universal mtdf BALANCED NP-HARD
原文传递
Total Restrained Bondage in Graphs
17
作者 Nader JAFARI RAD Roslan HASNI +1 位作者 Joanna RACZEK Lutz VOLKMANN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第6期1033-1042,共10页
A subset S of vertices of a graph G with no isolated vertex is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex in V (G) S is also adjacent to a vertex in V (G) S. Th... A subset S of vertices of a graph G with no isolated vertex is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex in V (G) S is also adjacent to a vertex in V (G) S. The total restrained domination number of G is the minimum cardinality of a total restrained dominating set of G. In this paper we initiate the study of total restrained bondage in graphs. The total restrained bondage number in a graph G with no isolated vertex, is the minimum cardinality of a subset of edges E such that G E has no isolated vertex and the total restrained domination number of G E is greater than the total restrained domination number of G. We obtain several properties, exact values and bounds for the total restrained bondage number of a graph. 展开更多
关键词 domination total restrained domination bondage
原文传递
SOME RESULTS ON UNIVERSAL MINIMAL TOTAL DOMINATING FUNCTIONS
18
作者 方奇志 蔡茂诚 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2001年第2期165-172,共8页
In this paper, we introduce the concepts of redundant constraint and exceptional vertex which play an important role in the characterization of universal minimal total dominating functions (universal MTDFs), and estab... In this paper, we introduce the concepts of redundant constraint and exceptional vertex which play an important role in the characterization of universal minimal total dominating functions (universal MTDFs), and establish some further results on universal MTDFs in general graphs. By extending these results to trees, we get a necessary and sufficient condition for universal MTDFs and show that there is a good algorithm for deciding whether a given tree has a universal MTDF. 展开更多
关键词 total dominating function (TDF) minimal TDF (MTDF) universal MTDF redundant constraint exceptional vertex
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部