期刊文献+
共找到723篇文章
< 1 2 37 >
每页显示 20 50 100
Recent progress on electron-and magnon-mediated torques
1
作者 Jia-Min Lai Bingyue Bian +9 位作者 Zhonghai Yu Kaiwei Guo Yajing Zhang Pengnan Zhao Xiaoqian Zhang Chunyang Tang Jiasen Cao Zhiyong Quan Fei Wang Xiaohong Xu 《Chinese Physics B》 2025年第10期18-37,共20页
The growing demand for artificial intelligence and complex computing has underscored the urgent need for advanced data storage technologies.Spin-orbit torque(SOT)has emerged as a leading candidate for high-speed,high-... The growing demand for artificial intelligence and complex computing has underscored the urgent need for advanced data storage technologies.Spin-orbit torque(SOT)has emerged as a leading candidate for high-speed,high-density magnetic random-access memory due to its ultrafast switching speed and low power consumption.This review systematically explores the generation and switching mechanisms of electron-mediated torques(including both conventional SOTs and orbital torques)and magnon-mediated torques.We discuss key materials that enable these effects:heavy metals,topological insulators,low-crystal-symmetry materials,non-collinear antiferromagnets,and altermagnets for conventional SOTs;3d,4d,and 5d transition metals for orbital torques;and antiferromagnetic insulator Ni O-and multiferroic Bi Fe O_(3)-based sandwich structures for magnon torques.We emphasize that although key components of SOT devices have been demonstrated,numerous promising materials and critical questions regarding their underlying mechanisms remain to be explored.Therefore,this field represents a dynamic and rapidly evolving frontier in spintronics,offering significant potential for advancing next-generation information storage and computational technologies. 展开更多
关键词 spin-orbit torque orbital torque magnon torque altermagnet
原文传递
A Comprehensive Review of Torque and Speed Control Strategies for Switched Reluctance Motor Drives 被引量:1
2
作者 Sreeram K Preetha P K +1 位作者 Javier Rodríguez-García Carlosálvarez-Bel 《CES Transactions on Electrical Machines and Systems》 2025年第1期46-75,共30页
Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford... Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers. 展开更多
关键词 Electric vehicles Switched reluctance motor Speed control torque control Traction motor torque ripple
在线阅读 下载PDF
Analytical Method of Permanent Magnet Torque Machine with High Torque for Considering the Influence of Armature Magnetic Field
3
作者 Jiawei Chai Xianguo Gui +1 位作者 Qiang Gao Dianguo Xu 《CES Transactions on Electrical Machines and Systems》 2025年第3期289-299,共11页
Compared to the conventional permanent magnet synchronous machine(PMSM),the main characteristic of permanent magnet torque machine(PMTM)with high torque is that armature current is high,which has a great influence on ... Compared to the conventional permanent magnet synchronous machine(PMSM),the main characteristic of permanent magnet torque machine(PMTM)with high torque is that armature current is high,which has a great influence on magnetic circuit saturation,so this paper proposes a novel analytical method(AM)considering this problem.The key of this new AM is to consider armature reaction flux and armature leakage flux,which are closely related to output torque.Firstly,the expressions,including magnetomotive force(MMF)generated by permanent magnets(PMs)and armature windings are derived,and meanwhile slotting effect is considered by planning flux path.In addition,the expression of leakage flux density generated by armature windings are calculated,and flux density equivalence coefficient of tooth is calculated to be 2/3,which is used to solve the problem of uneven saturation of each tooth.Then,based on main flux factor and leakage flux factor proposed,an improved iteration process is proposed,and by this new process,the flux density of each yoke and tooth can be obtained,which is beneficial to obtain more accurate air-gap flux density and flux linkage.Finally,a prototype of 60-pole 54-slot is fabricated,and the performances of the electric machine,such as back electromotive force(EMF)and output torque,are calculated by this new AM and finite element method(FEM).The results of FEM and experimental test show that this new AM is good enough to calculate the performance of PMTM. 展开更多
关键词 Analytical method(AM) Permanent magnet torque machine(PMTM) High torque Leakage flux Equivalence coefficient
在线阅读 下载PDF
South American Breakup and Andean Torque Deformation
4
作者 Adolfo Antonio Gutiérrez 《Open Journal of Geology》 2025年第2期69-86,共18页
Geological deformations are generally attributed to compressional, extensional and strike-slip processes. Since the breakup of Gondwana, torque deformation has been responsible for the current configuration of the wes... Geological deformations are generally attributed to compressional, extensional and strike-slip processes. Since the breakup of Gondwana, torque deformation has been responsible for the current configuration of the western coasts of Africa and the eastern shore of South America and the morphotectonic geometry of the rift basins of South America, conditioning the morphostructure of the Andean chain and the current geoforms of the foreland. 展开更多
关键词 TECTONIC torque Deformation Continental Drift Rift Valley South America
在线阅读 下载PDF
Improvement of Torque and Loss Characteristics for an In-wheel Permanent Magnet Motor based on Dominant Airgap Harmonic
5
作者 Jiawei Ren Xiaoyong Zhu +1 位作者 Li Quan Zixuan Xiang 《CES Transactions on Electrical Machines and Systems》 2025年第3期313-319,共7页
In this paper,a 12/14-pole permanent magnet in-wheel motor is studied for potential in-wheel application,and the torque and loss are improved simultaneously based on designing and optimizing the corresponding dominant... In this paper,a 12/14-pole permanent magnet in-wheel motor is studied for potential in-wheel application,and the torque and loss are improved simultaneously based on designing and optimizing the corresponding dominant harmonics.The key of this study is to evaluate the contributions of harmonics on torque and loss,and further determines the harmonics related to them.Based on this,the torque enhancement factor and loss suppression factor are defined based on the selected dominant harmonics.And,the two factors are set as the optimization objectives,aiming at improving the characteristics of torque and loss.At the same time,to achieve an efficient optimization,a layered optimization method is presented,which includes magnet source layer and permeance layer.Based on the optimization,the motor torque is improved effectively,while the rotor iron loss is also reduced significantly.Then,a prototype motor is manufactured for experimental test.Finally,the simulation analysis and test results verify the validation of the studied motor and the proposed optimization method based on dominant harmonics. 展开更多
关键词 In-wheel motor Flux modulation Harmonic analysis torque Rotor loss
在线阅读 下载PDF
Largely tunable compensation temperature in a rare-earth ferrimagnetic metal and deterministic spin-orbit torque switching for artificial neural network application
6
作者 Li Liu Yuzhou He +13 位作者 Yifei Ma Peixin Qin Hongyu Chen Xiaoning Wang Xiaorong Zhou Ziang Meng Guojian Zhao Zhiyuan Duan Dazhuang Kang Yu Liu Shuai Ning Zhaochu Luo Qinghua Zhang Zhiqi Liu 《Journal of Materials Science & Technology》 2025年第31期15-23,共9页
Ferrimagnets are important for next-generation high-density ultrafast spintronic device applications.Magnetization compensation temperature(TM)is a fundamentally critical magnetic parameter for ferrimagnets besides th... Ferrimagnets are important for next-generation high-density ultrafast spintronic device applications.Magnetization compensation temperature(TM)is a fundamentally critical magnetic parameter for ferrimagnets besides their Curie temperature.Around TM,the spin-orbit switching efficiencies are extraordinarily high.Therefore,the accurate manipulation of TM from the material fabrication process is essential for the electrical steering of ferrimagnetic spins.In this work,CoTb thin films,with the 3 d and 4 f magnetic sublattices antiferromagnetically coupled to each other,are deposited at different temperatures.The magnetotransport and magnetic properties of these films are systematically investigated.It was found that the TM of this rare-earth ferrimagnet largely depends on the growth temperature and it can be tuned by over 100 K.Accordingly,the spins of an optimized ferrimagnetic CoTb thin film with its TM close to room temperature can be efficiently switched by the current-pulse-induced spin-orbit torque.Moreover,an artificial neural network utilizing the spin-orbit torque device was constructed,demonstrating an image recognition accuracy of approximately 92.5%,which is comparable to that of conventional software solutions.Thus,this work demonstrates the large tunability of TM of a rare earth ferrimagnet by chemical ordering and the great potential of such a ferrimagnet for electrically operated spintronic devices. 展开更多
关键词 Ferrimagnetic metals CoTb Spin-orbit torque Compensation temperatures Artificial neural network
原文传递
AI-Enabled Piezoelectric Wearable for Joint Torque Monitoring
7
作者 Jinke Chang Jinchen Li +9 位作者 Jiahao Ye Bowen Zhang Jianan Chen Yunjia Xia Jingyu Lei Tom Carlson Rui Loureiro Alexander MKorsunsky Jin-Chong Tan Hubin Zhao 《Nano-Micro Letters》 2025年第10期453-472,共20页
Joint health is critical for musculoskeletal(MSK)conditions that are affecting approximately one-third of the global population.Monitoring of joint torque can offer an important pathway for the evaluation of joint hea... Joint health is critical for musculoskeletal(MSK)conditions that are affecting approximately one-third of the global population.Monitoring of joint torque can offer an important pathway for the evaluation of joint health and guided intervention.However,there is no technology that can provide the precision,effectiveness,low-resource setting,and longterm wearability to simultaneously achieve both rapid and accurate joint torque measurement to enable risk assessment of joint injury and long-term monitoring of joint rehabilitation in wider environments.Herein,we propose a piezoelectric boron nitride nanotubes(BNNTs)-based,AI-enabled wearable device for regular monitoring of joint torque.We first adopted an iterative inverse design to fabricate the wearable materials with a Poisson's ratio precisely matched to knee biomechanics.A highly sensitive piezoelectric film was constructed based on BNNTs and polydimethylsiloxane and applied to precisely capture the knee motion,while concurrently realizing self-sufficient energy harvesting.With the help of a lightweight on-device artificial neural network,the proposed wearable device was capable of accurately extracting targeted signals from the complex piezoelectric outputs and then effectively mapping these signals to their corresponding physical characteristics,including torque,angle,and loading.A real-time platform was constructed to demonstrate the capability of fine real-time torque estimation.This work offers a relatively low-cost wearable solution for effective,regular joint torque monitoring that can be made accessible to diverse populations in countries and regions with heterogeneous development levels,potentially producing wide-reaching global implications for joint health,MSK conditions,ageing,rehabilitation,personal health,and beyond. 展开更多
关键词 Artificial intelligence wearables Joint torque monitoring Boron nitride nanotubes Piezoelectric devices Inverse design
暂未订购
Enhanced Spin-Orbit Torque Induced by Interfacial Scattering in Ir/Pt Superlattice
8
作者 Jiahui Li Jing Dong +19 位作者 Yuqiang Wang Mingtong Zhu Yang Yao Ying Meng Jiyang Ou Guibin Lan Xuming Luo Jihao Xia Hongjun Xu Yizhan Wang Jiafeng Feng Hongxiang Wei Congli He Richeng Yu Junwei Zhang Yong Peng Nianpeng Lu Caihua Wan Xiufeng Han Guoqiang Yu 《Chinese Physics Letters》 2025年第5期140-150,共11页
The mechanisms of enhancing spin-orbit torque(SOT) have attracted significant attention, particularly regarding the influence of extrinsic scattering mechanisms on SOT efficiency, as they complement intrinsic contribu... The mechanisms of enhancing spin-orbit torque(SOT) have attracted significant attention, particularly regarding the influence of extrinsic scattering mechanisms on SOT efficiency, as they complement intrinsic contributions. In multilayer systems, extrinsic interfacial scattering, along with scattering from defects or impurities inside the materials, plays a crucial role in affecting the SOT efficiency. In this study, we successfully fabricated high-quality epitaxially grown [Ir/Pt]N superlattices with an increasing number of interfaces using a magnetron sputtering system to investigate the contribution of extrinsic interfacial scattering to SOT efficiency. We measured SOT efficiency through spin-torque ferromagnetic resonance methods and determined the spin Hall angle using the spin pumping technique. Additionally, we calculated spin transparency based on the SOT efficiency and spin Hall angle. Our findings indicate that the values of SOT efficiency, spin Hall angle, and spin transparency are enhanced in the superlattice structure compared to Pt, which we attribute to the increase in interfacial scattering.This research offers an effective strategy for designing and fabricating advanced spintronic devices. 展开更多
关键词 interfacial scattering spin transparency spin Hall angle extrinsic scattering mechanisms extrinsic interfacial scattering spin tronic devices ir pt superlattice spin orbit torque
原文传递
Real-time drilling torque prediction ahead of the bit with just-in-time learning
9
作者 Kan-Kan Bai Mao Sheng +2 位作者 Hong-Bao Zhang Hong-Hai Fan Shao-Wei Pan 《Petroleum Science》 2025年第1期430-441,共12页
The digital twin,as the decision center of the automated drilling system,incorporates physical or data-driven models to predict the system response(rate of penetration,down-hole circulating pressure,drilling torques,e... The digital twin,as the decision center of the automated drilling system,incorporates physical or data-driven models to predict the system response(rate of penetration,down-hole circulating pressure,drilling torques,etc.).Real-time drilling torque prediction aids in drilling parameter optimization,drill string stabilization,and comparing the discrepancy between observed signal and theoretical trend to detect down-hole anomalies.Due to their inability to handle huge amounts of time series data,current machine learning techniques are unsuitable for the online prediction of drilling torque.Therefore,a new way,the just-in-time learning(JITL)framework and local machine learning model,are proposed to solve the problem.The steps in this method are:(1)a specific metric is designed to measure the similarity between time series drilling data and scenarios to be predicted ahead of bit;(2)parts of drilling data are selected to train a local model for a specific prediction scenario separately;(3)the local machine learning model is used to predict drilling torque ahead of bit.Both the model data test results and the field data application results certify the advantages of the method over the traditional sliding window methods.Moreover,the proposed method has been proven to be effective in drilling parameter optimization and pipe sticking trend detection.Finally,we offer suggestions for the selection of local machine learning algorithms and real-time prediction with this approach based on the test results. 展开更多
关键词 Drilling torque prediction Just-in-time learning Digital twin Machine learning
原文传递
Distortion-Free Zeeman Torque Sampling for Detecting Terahertz Magnetic Field Pulse
10
作者 Chun-yan Geng Yi-chen Su +3 位作者 De-yin Kong Fei Dai Cheng-song Xiao-jun Wu 《Chinese Physics Letters》 2025年第11期383-392,共10页
Strong-field terahertz(THz) radiation holds significant potential in non-equilibrium state manipulation, electron acceleration, and biomedical effects. However, distortion-free detection of strong-field THz waveforms ... Strong-field terahertz(THz) radiation holds significant potential in non-equilibrium state manipulation, electron acceleration, and biomedical effects. However, distortion-free detection of strong-field THz waveforms remains an essential challenge in THz science and technology. To address this issue, we propose a ferromagnetic detection scheme based on Zeeman torque sampling, achieving distortion-free strong-field THz waveform detection in Py films. Thickness-dependent characterization(3–21 nm) identifies peak detection performance at 21 nm within the investigated range. Furthermore, by structurally engineering the Py ferromagnetic layer, we demonstrate strong-field THz detection in symmetric Ta(3 nm)/Py(9 nm)/Ta(3 nm) heterostructure while simultaneously resolving Zeeman torque responses and collective spin-wave dynamics in asymmetric W(4 nm)/Py(9 nm)/Pt(2 nm)heterostructure. We calculated spin wave excitations and spin orbit torque distributions in asymmetric heterostructures, along with spin wave excitations in symmetric modes. This approach overcomes the sensitivity limitations of conventional techniques in strong-field conditions. 展开更多
关键词 distortion free detection terahertz magnetic field ferromagnetic detection scheme py films strong field terahertz radiation zeeman torque sampling biomedical effects electron acceleration
原文传递
Initialization-Free Programmable Spin-Logic Gate in a Single Spin-Orbit Torque Device
11
作者 Jie Lin Shuai Zhang +13 位作者 Shihao Li Yan Xu Xin Li Wei Duan Jincheng Hou Chenxi Zhou Wei Zhan Zhe Guo Min Song Xiaofei Yang Yufeng Tian Xuecheng Zou Dan Feng Long You 《Engineering》 2025年第8期215-220,共6页
In-memory computing(IMC)based on spin-logic devices is regarded as an advantageous way to optimize the Von Neumann bottleneck.However,performing complete Boolean logic with spintronic devices typi-cally requires an in... In-memory computing(IMC)based on spin-logic devices is regarded as an advantageous way to optimize the Von Neumann bottleneck.However,performing complete Boolean logic with spintronic devices typi-cally requires an initialization operation,which can reduce processing speed.In this work,we conceptu-alize and experimentally demonstrate a programmable and initialization-free spin-logic gate,leveraging spin-orbit torque(SOT)to effectuate magnetization switching,assisted by in-plane Oersted field gener-ated by an integrated bias-field Au line.This spin-logic gate,fabricated as a Hall bar,allows complete Boolean logic operations without initialization.A current flowing through the bias-field line,which is electrically isolated from the device by a dielectric,generates an in-plane magnetic field that can invert the SOT-induced switching chirality,enabling on-the-fly complete Boolean logic operations.Additionally,the device demonstrated good reliability,repeatability,and reproducibility during logic operations.Our work demonstrates programmable and scalable spin-logic functions in a single device,offering a new approach for spin-logic operations in an IMC architecture. 展开更多
关键词 Spin logic Complete Boolean logic Spin-orbit torque Fully electrical operations Initialization-free
在线阅读 下载PDF
Linear Enhancement of Spin-Orbit Torque and Absence of Bulk Rashba Spin Splitting in Perpendicularly Magnetized[Pt/Co/W]_(n)Superlattices
12
作者 Zhihao Yan Zhengxiao Li +2 位作者 Lujun Zhu Xin Lin Lijun Zhu 《Chinese Physics Letters》 2025年第9期126-131,共6页
The development of magnetic heterostructures with strong perpendicular magnetic anisotropy(PMA),strong spin-orbit torques(SOTs),low impedance,and good integration compatibility at the same time is central for high-per... The development of magnetic heterostructures with strong perpendicular magnetic anisotropy(PMA),strong spin-orbit torques(SOTs),low impedance,and good integration compatibility at the same time is central for high-performance spintronic memory and computing applications.Here,we report the development of the PMA superlattice[Pt/Co/W]_(n)that can be sputtered-deposited on commercial oxidized silicon substrates and has giant SOTs,strong uniaxial PMA of≈9.2 Merg/cm^(3),and rigid macrospin performance.The damping-like and field-like SOTs of the[Pt/Co/W]_(n)superlattices exhibit a linear increase with the repeat number n and reach the giant values of 225%and-33%(two orders of magnitude greater than that in clean-limit Pt)at n=12,respectively.The damping-like SOT is also of the opposite sign and much greater in magnitude than the field-like SOT,regardless of the number n.These results clarify that the spin current that generates SOTs in the[Pt/Co/W]_(n)superlattices arises predominantly from the spin Hall effect rather than bulk Rashba spin splitting,providing a unified understanding of the SOTs in these superlattices.We also demonstrate deterministic switching in thickerthan-50-nm PMA[Pt/Co/W]_(12)superlattices at a low current density.This work establishes the[Pt/Co/W]_(n)superlattice as a compelling material candidate for ultra-fast,low-power,long-retention nonvolatile spintronic memory and computing technologies. 展开更多
关键词 development magnetic heterostructures perpendicular magnetic anisotropy oxidized silicon substrates perpendicular magnetic anisotropy pma strong spin orbit torque spin Hall effect Pt Co W superlattice macrospin performance
原文传递
High-Velocity Magnetic Domain Wall Motion Driven by Acoustic Spin Transfer Torque
13
作者 Jiacheng Lu Fa Chen +6 位作者 Yiming Shu Yukang Wen Hang Zou Yuhao Liu Shiheng Liang Wei Luo Yue Zhang 《Chinese Physics Letters》 2025年第6期229-238,共10页
We predict high-velocity magnetic domain wall(DW)motion driven by out-of-plane acoustic spin in surface acoustic waves(SAWs).We demonstrate that the SAW propagating at a 30-degree angle relative to the x-axis of a 128... We predict high-velocity magnetic domain wall(DW)motion driven by out-of-plane acoustic spin in surface acoustic waves(SAWs).We demonstrate that the SAW propagating at a 30-degree angle relative to the x-axis of a 128∘Y-LiNbO_(3) substrate exhibits uniform out-of-plane spin angular momentum.This acoustic spin triggers the DW motion at a velocity exceeding 50 m/s in a way that is similar to the spin-transfer-torque effect.This phenomenon highlights the potential of acoustic spin in enabling rapid DW displacement,offering an innovative approach to developing energy-efficient spintronic devices. 展开更多
关键词 acoustic spin rapid dw displacemen high velocity magnetic domain wall motion acoustic spin transfer torque plane spin angular momentum energy efficient spintronic devices surface acoustic waves
原文传递
Interlayer exchange coupling effects on the spin-orbit torque in synthetic magnets
14
作者 Haodong Fan Zhongshu Feng +11 位作者 Tingwei Chen Xiaofeng Han Xinyu Shu Mingzhang Wei Shiqi Liu Mengxi Wang Shengru Chen Xuejian Tang Menghao Jin Yungui Ma Bo Liu Tiejun Zhou 《Chinese Physics B》 2025年第9期654-661,共8页
Interlayer exchange coupling(IEC)plays a critical role in spin-orbit torque(SOT)switching in synthetic magnets.This work establishes a fundamental correlation between IEC and SOT dynamics within Co/Pt-based synthetic ... Interlayer exchange coupling(IEC)plays a critical role in spin-orbit torque(SOT)switching in synthetic magnets.This work establishes a fundamental correlation between IEC and SOT dynamics within Co/Pt-based synthetic antiferromagnets and synthetic ferromagnets.The antiferromagnetic and ferromagnetic coupling states are precisely engineered through Ruderman-Kittel-Kasuya-Yosida(RKKY)interactions by modulating the Ir spacer thickness.Experimental results reveal that the critical switching current density exhibits a strong positive correlation with the IEC strength,regardless of the coupling type.A comprehensive theoretical framework based on the Landau-Lifshitz-Gilbert equation elucidates how IEC contributes to the effective energy barrier that must be overcome during SOT-induced magnetization switching.Significantly,the antiferromagnetically coupled samples demonstrate enhanced SOT efficiency,with the spin Hall angle being directly proportional to the antiferromagnetic exchange coupling field.These insights establish a coherent physical paradigm for understanding IEC-dependent SOT dynamics and provide strategic design principles for the development of energy-efficient next-generation spintronic devices. 展开更多
关键词 interlayer exchange coupling spin-orbit torque synthetic antiferromagnet
原文传递
Toroidal torques due to n=1 magnetic perturbations in ITER baseline scenario
15
作者 Jingwei LI Li LI +5 位作者 Yueqiang LIU Yunfeng LIANG Yanfei WANG Lu TIAN Zhongqing LIU Fangchuan ZHONG 《Plasma Science and Technology》 2025年第1期39-51,共13页
Toroidal torques,generated by the resonant magnetic perturbation(RMP)and acting on the plasma column,are numerically systematically investigated for an ITER baseline scenario.The neoclassical toroidal viscosity(NTV),i... Toroidal torques,generated by the resonant magnetic perturbation(RMP)and acting on the plasma column,are numerically systematically investigated for an ITER baseline scenario.The neoclassical toroidal viscosity(NTV),in particular the resonant portion,is found to provide the dominant contribution to the total toroidal torque under the slow plasma flow regime in ITER.While the electromagnetic torque always opposes the plasma flow,the toroidal torque associated with the Reynolds stress enhances the plasma flow independent of the flow direction.A peculiar double-peak structure for the net NTV torque is robustly computed for ITER,as the toroidal rotation frequency is scanned near the zero value.This structure is found to be ultimately due to a non-monotonic behavior of the wave-particle resonance integral(over the particle pitch angle)in the superbanana plateau NTV regime in ITER.These findings are qualitatively insensitive to variations of a range of factors including the wall resistivity,the plasma pedestal flow and the assumed frequency of the rotating RMP field. 展开更多
关键词 toroidal torques resonant magnetic perturbation fieds plasma flow ITER baseline scenario
在线阅读 下载PDF
Powertrain Torque Control Based on Torque Observer 被引量:1
16
作者 甘海云 赵长禄 +2 位作者 孙业保 葛蕴珊 张付军 《Journal of Beijing Institute of Technology》 EI CAS 2001年第2期220-224,共5页
To reduce shock during transmission gear shift, a transmission torque feedback closed loop control system is proposed based on the powertrain system model and a torque observer. The ignition time of engine was delaye... To reduce shock during transmission gear shift, a transmission torque feedback closed loop control system is proposed based on the powertrain system model and a torque observer. The ignition time of engine was delayed to reduce transmission output shaft torque during gear shift. In contrast to traditional control method, the closed loop control system based on torque observer can obviously reduce the transmission output shaft torque during gear shift. It can be concluded that by way of torque feedback closed loop control, transmission shift shock can be reduced. 展开更多
关键词 integrated powertrain control system torque observer automatic trasmission output shaft torque
在线阅读 下载PDF
Permanent Magnet Assisted Synchronous Reluctance Motor with Asymmetric Rotor for High Torque Performance 被引量:1
17
作者 Chengwu Diao Wenliang Zhao +1 位作者 Yan Liu Xiuhe Wang 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第2期179-186,共8页
Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel ... Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel PMA-SynRM of asymmetric rotor with position-biased magnet is proposed.The asymmetric rotor design with position-biased magnet realizes the concentration of magnetic field lines in the motor air gap to obtain higher electromagnetic torque,and makes both of magnetic and reluctance torque obtain the peak value at the same current phase angle.The asymmetric rotor configuration is theoretically illustrated by space vector diagram,and the feasibility of high torque performance of the motor is verified.Through the finite element simulation,the effect of the side barrier on output torque and the Mises stress under the rotor asymmetrical design are analyzed.Then the motor characteristics including airgap flux density,back EMF,magnetic torque,reluctance torque,torque ripple,losses,and efficiency are calculated for both the basic and proposed PMA-SynRMs.The results show that the proposed PMA-SynRM has higher torque and efficiency than the basic topology.Moreover,the torque ripple of the proposed PMA-SynRM is reduced by the method with harmonic current injection,and the torque characteristics in the whole current cycle are analyzed.Finally,the endurance to avoid PM demagnetization is confirmed based on the PM remanence calculation. 展开更多
关键词 Permanent magnet assisted synchronous reluctance motor Asymmetric rotor Magnetic torque Reluctance torque torque ripple
在线阅读 下载PDF
Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
18
作者 Wenqiang Wang Gengkuan Zhu +10 位作者 Kaiyuan Zhou Xiang Zhan Zui Tao Qingwei Fu Like Liang Zishuang Li Lina Chen Chunjie Yan Haotian Li Tiejun Zhou Ronghua Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期146-151,共6页
We study inserting Co layer thickness-dependent spin transport and spin-orbit torques(SOTs)in the Pt/Co/Py trilayers by spin-torque ferromagnetic resonance.The interfacial perpendicular magnetic anisotropy(IPMA)energy... We study inserting Co layer thickness-dependent spin transport and spin-orbit torques(SOTs)in the Pt/Co/Py trilayers by spin-torque ferromagnetic resonance.The interfacial perpendicular magnetic anisotropy(IPMA)energy density(Ks=2.7 erg/cm^(2),1 erg=10^(-7) J),which is dominated by interfacial spin-orbit coupling(ISOC)in the Pt/Co interface,total effective spin-mixing conductance(G↑↓eff,tot=0.42×10^(15) Ω^(-1)·m^(-2))and two-magnon scattering(βTMS=0.46 nm2)are first characterized,and the damping-like torque(ξDL=0.103)and field-like torque(ξFL=-0.017)efficiencies are also calculated quantitatively by varying the thickness of the inserting Co layer.The significant enhancement of ξDL and ξFL in Pt/Co/Py than Pt/Py bilayer system originates from the interfacial Rashba-Edelstein effect due to the strong ISOC between Co-3d and Pt-5d orbitals at the Pt/Co interface.Additionally,we find a considerable out-of-plane spin polarization SOT,which is ascribed to the spin anomalous Hall effect and possible spin precession effect due to IPMA-induced perpendicular magnetization at the Pt/Co interface.Our results demonstrate that the ISOC of the Pt/Co interface plays a vital role in spin transport and SOTs-generation.Our finds offer an alternative approach to improve the conventional SOTs efficiencies and generate unconventional SOTs with out-of-plane spin polarization to develop low power Pt-based spintronic via tailoring the Pt/FM interface. 展开更多
关键词 spin-orbit torque interfacial Rashba-Edelstein effect spin-torque efficiency spin-torque ferromagnetic resonance
原文传递
Analysis of an Axial-flux Slotted Limited-angle Torque Motor with Quasi-Halbach Array for Torque Performance Improvement
19
作者 Mingjie Wang Dawei Li Ronghai Qu 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第3期266-274,共9页
Better torque performance and higher reliability have long been the focus of research for slotted limited-angle torque motors(LATMs),which are primarily used to position first-stage valves in electrohydraulic servosys... Better torque performance and higher reliability have long been the focus of research for slotted limited-angle torque motors(LATMs),which are primarily used to position first-stage valves in electrohydraulic servosystems.This paper presents a high reliability axial-flux slotted LATM with quasi-Halbach array for torque performance improvement including constant torque range(CTR)and output torque.Firstly,the structure with two sets of windings and the operation principle of the proposed slotted LATM is analyzed.Secondly,a brief design procedure is presented,the structure selections of open slot and double-stator single-rotor(DSSR)interior rotor with surface mounted quasi-Halbach permanent magnet(PM)array are illustrated,and the geometric parameters are optimized to obtain the optimal design of the proposed slotted LATM.Then,3-D finite-element method(FEM)is employed to compare the proposed slotted LATM with the conventional surface mounted PM slotted LATM in terms of cogging torque,no-load back EMF,and output torque,and the results show that the proposed LATM with quasi-Halbach array has a 10%improvement in output torque and a 25%improvement in CTR.Meanwhile,the flux linkages and torque performance of the two sets of windings under various conditions verify good magnetic isolation.Finally,prototypes of two different rotor types are manufactured and a series of experiments are performed to validate the analysis. 展开更多
关键词 Limited-angle torque motor(LATM) Axial-flux machine Quasi-Halbach array Finite-element method(FEM) Cogging torque torque performance
在线阅读 下载PDF
高性能集群作业管理系统TORQUE分析与应用实现 被引量:6
20
作者 张洋 陈文波 +3 位作者 李廉 李兵 程应娥 燕昊 《计算机工程与科学》 CSCD 2007年第10期132-134,141,共4页
本文介绍了高性能集群的发展和特点,以及目前流行的高性能集群的作业管理系统;分析了TORQUE作业管理系统组成及作业提交过程,并通过一个具体实现纳米材料分析的MPI并行程序在高性能集群上运行。
关键词 高性能集群 作业管理 PBS torque
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部