Topographical relief is a key factor that limits population distribution and economic development in mountainous areas. The limitation is especially apparent in the mountain-plain transition zone. Taking the transitio...Topographical relief is a key factor that limits population distribution and economic development in mountainous areas. The limitation is especially apparent in the mountain-plain transition zone. Taking the transition zone between the Qinling Mountains and the North China Plain(i.e. the mountainous area in western Henan Province) as an example and based on the 200-m resolution DEM data, we used the mean change-point analysis to determine the optimal statistical unit for topographical relief, and thereafter extracted the relief degree. Taking the 1:100,000 land use data, township population and county-level industrial data, population and economic spatial models were constructed, and 200-m resolution grid population and economic density maps were generated. Afterwards, statistical analysis was carried out to quantitatively reveal the impact of topographical relief on population and economy. In addition, the impacts of other topographical factors were discussed. The results showed the following.(1) The relief degree in western Henan is generally low, where 58.6% of the regional topography does not exceed half the height of a reference mountain(relative elevation ≤250 m). Spatially, the relief degree is high in the west while low in the east, and high in the middle while low in the north and south. There is a positive correlation between relief degree and elevation, and a much stronger correlation between relief degree and slope.(2) The linear fitting degree between the population and economic validation data and the corresponding simulation data are 0.943 and 0.909, respectively, indicating that the spatialized results can reflect the actual population and economic distribution.(3) The impact of topographical relief on population and economy was stronger than that of other topographical factors. The relief degree showed a good logarithmic fit relationship with population density(0.911) and economic density(0.874). Specifically, 88.65% of the population lives in areas where the topographical relief is ≤0.5 and 88.03% of the gross regional product was from areas where the relief is ≤0.3. Compared with the population distribution, the economic development showed an obvious agglomeration trend towards low relief areas.展开更多
Rubber plantation is the major land use type in Southeast Asia. Monitoring the spa- tial-temporal pattern of rubber plantation is significant for regional land resource development, eco-environmental protection, and m...Rubber plantation is the major land use type in Southeast Asia. Monitoring the spa- tial-temporal pattern of rubber plantation is significant for regional land resource development, eco-environmental protection, and maintaining border security. With remote sensing tech- nologies, we analyzed the rubber distribution pattern and spatial-temporal dynamic; with GIS and a newly proposed index of Planted Intensity (PI), we further quantified the impacts and limits of topographical factors on rubber plantation in the border region of China, Laos and Myanmar (BRCLM) between 1980 and 2010. The results showed that: (1) As the dominant land use type in this border region, the acreage of rubber plantation was 6014 km2 in 2010, accounting for 8.17% of the total area. Viewing from the rubber plantation structure, the ratio of mature- (〉10 year) and young rubber plantation (〈 10 year) was 5:7. (2) From 1980 to 2010, rubber plantation expanded significantly in BRCLM, from 705 km2 to 6014 km2, nearly nine times. The distribution characteristics of rubber plantation varied from concentrated toward dispersed, from border inside to outside, and expanded further in all directions with Jinghong City as the center. (3) Restricted by the topographical factors, more than 4/5 proportion of rubber plantation concentrated in the appropriate elevation gradients between 600 and 1000 m, rarely occurred in elevations beyond 1200 m in BRCLM. Nearly 2/3 of rubber plantation concentrated on slopes of 8^-25~, rarely distributed on slopes above 35~. Rubber plantation was primarily distributed in south and east aspects, relatively few in north and west aspects. Rubber planted intensity displayed the similar distribution trend. (4) Comparative studies of rubber plantation in different countries showed that there was a remarkable increase in area at higher elevations and steeper slopes in China, while there were large appropriate topog- raphical gradients for rubber plantation in Laos and Myanmar which benefited China for rubber trans-boundary expansion. (5) Rubber plantation in BRCLM will definitely expend cross borders of China to the territories of Laos and Myanmar, and the continuous expansion in the border region of China will be inevitable.展开更多
Terrain can influence the spatial distribution of settlements. Studies on the terrain characteristics of settlements can help to understand the effects of the environment on human activities. This paper provides a qua...Terrain can influence the spatial distribution of settlements. Studies on the terrain characteristics of settlements can help to understand the effects of the environment on human activities. This paper provides a quantitative analysis of the relationship between settlements and topographical factors. A statistically significant sample of residential locations and ASTER GDEM V2 were used to investigate terrain traits and settlements distributions. We selected eight topographical factors and introduced a practical concept, distributive entropy, into assessing the aggregation extent of the settlements' spatial distribution. The study showed that topography varies within the study area, and distributive entropy indicates that settlements have distinctive distribution tendency in statistic approach. According to the results of this study, mountain inhabitants prefer to settle in valleys. Additionally, with distributive entropy, residential suitability was divided to three levels: suitable, normal, and unsuited. The results showed that suitable area is small in Sichuan Province, accounting for 8.2%~29.9%; however, unsuited area is large, accounting for 33%~63.3%.展开更多
The prevailing mesoscale model MM5 (V3) is used to simulate a heavy rain case caused by interac- tion between a move-in front and topographical heterogeneities on Taiwan Island. It is found that both thermodynamic a...The prevailing mesoscale model MM5 (V3) is used to simulate a heavy rain case caused by interac- tion between a move-in front and topographical heterogeneities on Taiwan Island. It is found that both thermodynamic and dynamic ?elds along the front are heterogeneous in time and space. The heterogene- ity becomes more signi?cant as the e?ect of topography is added on. The heterogeneous distribution of physical variables along the front is the main reason for the heterogeneous frontal rain band; the optimum cooperation of the low level and upper level jet is another reason for the development of the rain band. Topography can strengthen the rainfall and causes extremely heavy rain cells. Updraft induced by topog- raphy extends to a rather low level, while the uplifted air by frontal circulation can reach to higher levels. The quasi-steady topographic circulation overlaps the frontal circulation when the front moves over Taiwan Island; the advantageous cooperation of various mesoscale conditions causes the large upward velocity on the windward side of the island.展开更多
Growing public awareness of the importance of protecting biodiversity requires the development of forest practices that increase the complexity of stand structure.Understanding the ecological processes of different fo...Growing public awareness of the importance of protecting biodiversity requires the development of forest practices that increase the complexity of stand structure.Understanding the ecological processes of different forest vegetation provide insights into community coexistence mechanisms.In this paper,the spatial patterns of three different communities,evergreen broadleaf forest,deciduous broadleaf forest,and mixed needleleaf and broadleaf forest at Mt.Huangshan,China,were quantified with four structural parameters,the mingling index,the uniform angle index,the diameter dominance index and the crowdedness index.All trees with a diameter at breast height of more than 5 cm were measured.Our analyses highlighted that most trees in the three communities were extremely dense and slightly clumped,with a moderate size differentiation and high mixed structure.In mixed needleleaf and broadleaf forest,the distribution pattern of tree species was better than the other two forests.Overall,spatial patterns in mixed needleleaf and broadleaf forest exhibited a strong stability-effect,that is,the stand had a suitable environment for the stable survival of the forest.With the increasing of elevation,the degree of the mingling index and the crowdedness index increased,however,there was no influence on the uniform angle index and the diameter dominance index.Further,at the same elevation,four structural parameters of shady slope were larger than that of sunny slope.Then we found the relationship between stand spatial structure and environment factors had important influence on forest structure.Our work contributes to the knowledge of population structure,and further provide theoretical basis for the sustainable development of forest resources and protecting biodiversity of Huangshan Mountain.In future studies,it is necessary to explore the limiting factors of community spatial distribution by combining species diversity and functional traits.展开更多
As the second largest bay in Qingdao,the Aoshan Bay and its adjacent sea area play an important role in aquaculture development and urban land and sea coordination for the eastern gulf type of city in the Qingdao Blue...As the second largest bay in Qingdao,the Aoshan Bay and its adjacent sea area play an important role in aquaculture development and urban land and sea coordination for the eastern gulf type of city in the Qingdao Blue Silicon Valley Core Area(QBSVCA).Based on in-situ sedimentary dynamical observation and previous research results,the thermohaline structure,the transportation of suspended sediment and its mechanism,and the coastal geomorphic response were elaborated and analyzed in detail in this paper.The result indicated that the thermohaline and density distribution have obvious intra-tidal characteristics in the QBSVCA and the adjacent waters of the islands,during summer neap tide stage.The development of the bottom high suspended sediment concentration(SSC)layer was slightly enhanced in flood slack at each of the four stations.Suspended sediment transportation near the QBSVCA is related closely with the vertical mixing-stratification mechanism.Combined with previous research results,this study once again showed that submarine topography and the grain size of sea bed sediments would respond to hydrodynamic forces.The medians of the bottom E and D50 in the Aoshan Bay were the highest,followed by those in the Daguan Island and Xiaoguan Island,and the data in the Laoshan Bay were the lowest.This showed that the capacity of suspended sediment transportation in the bottom water layer of the Aoshan Bay was stronger than that of the adjacent sea area.The re-suspension and migration of fine sediments lead to the strong coarsening of sediments in this area.展开更多
Glacier response patterns at the catchment scale are highly heterogeneous and defined by a complex interplay of various dynamics and surface factors.Previous studies have explained heterogeneous responses in qualitati...Glacier response patterns at the catchment scale are highly heterogeneous and defined by a complex interplay of various dynamics and surface factors.Previous studies have explained heterogeneous responses in qualitative ways but quantitative assessment is lacking yet where an intrazone homogeneous climate assumption can be valid.Hence,in the current study,the reason for heterogeneous mass balance has been explained in quantitative methods using a multiple linear regression model in the Sikkim Himalayan region.At first,the topographical parameters are selected from previously published studies,then the most significant topographical and geomorphological parameters are selected with backward stepwise subset selection methods.Finally,the contributions of selected parameters are calculated by least square methods.The results show that,the magnitude of mass balance lies between-0.003±0.24 to-1.029±0.24 m.w.e.a^(-1) between 2000 and 2020 in the Sikkim Himalaya region.Also,the study shows that,out of the terminus type of the glacier,glacier area,debris cover,ice-mixed debris,slope,aspect,mean elevation,and snout elevation of the glaciers,only the terminus type and mean elevation of the glacier are significantly altering the glacier mass balance in the Sikkim Himalayan region.Mathematically,the mass loss is approximately 0.40 m.w.e.a^(-1) higher in the lake-terminating glaciers compared to the land-terminating glaciers in the same elevation zone.On the other hand,a thousand meters mean elevation drop is associated with 0.179 m.w.e.a-1of mass loss despite the terminus type of the glaciers.In the current study,the model using the terminus type of the glaciers and the mean elevation of the glaciers explains 76% of fluctuation of mass balance in the Sikkim Himalayan region.展开更多
The hypothesis, that the magnitude of the Froude number can represent the flow type around an obstacle was examined at several different topographical shapes in dust-laden environments. It was found that in most cases...The hypothesis, that the magnitude of the Froude number can represent the flow type around an obstacle was examined at several different topographical shapes in dust-laden environments. It was found that in most cases this hypothesis was true. Average of 16 May months AOT data extracted from the MODIS Terra satellite has shown that in case of Froude number less than one, the AOT isolines tend to follow the topographical contours of the mountain peak (the obstacle) along with a minimum AOT near the peak.展开更多
This article endeavours to analyse the recent deformation in the Enfidha region. This analysis has been carried out using the Residual Digital Elevation Model (DEM). It is the altimetric difference between two DEM gen...This article endeavours to analyse the recent deformation in the Enfidha region. This analysis has been carried out using the Residual Digital Elevation Model (DEM). It is the altimetric difference between two DEM generated from the contour lines of two topographical maps over a period of 100 years. This deformation has been studied by some authors who report the presence of recent ground movements by comparing contour lines with a downward trend in elevation from 1893 to 1985. In 2006, this study area was marked by the presence of two earthquakes that occurred in several coastal cities located in the northeastern part of Tunisia. Our study involves a quantitative estimation of altimetric variations under a Geographic Information System (GIS) environment. Our proposed methodology aims at the mapping of residual (DEM) and the extraction of parameters that have a morphological and morphostructural signature. The extraction of quantitative morphostructural parameters requires the integration of multi-source and multi-scale data. This can only be done if the problem of heterogeneity at the level of scale and coordinate system is solved through the use of GIS tools and the obtainment of the vectorial shapefile format. Then, in order to compare the DEM generation errors with reference to recent and old data, they must be projected in the same projection system and on the same scale. The available data are two topographic maps of Enfidha which represent two different epochs. The first one is an old topographic map of 1893 (type 1922) at a scale of 1:50,000 and the second one is a recent topographic map of 1985 at a scale of 1:25,000. These topographical maps have the Lambert (IGN) projection system. This methodological approach, based on residual (DEM), allows to highlight an estimated subsidence of 3 m/100years located in the Enfidha plain and extends to the south coast of Cap Bon area in Tunisia. The variation of the contour lines shape between the old and the recent map can be studied in correlation with a relay structure fault observed and recognized by some analysts in this area. These relay accidents remain active according to the results obtained by the residual (DEM) and validated by the field observations of two sites that we have carried out in the Enfidha endorheic basin.展开更多
This paper will explore the geotechnical engineering investigation technology under the complex topographical and geological conditions,and introduce how to construct the water supply tube wells faster and better unde...This paper will explore the geotechnical engineering investigation technology under the complex topographical and geological conditions,and introduce how to construct the water supply tube wells faster and better under the complex topographical and geological conditions by taking Inner Mongolia as an example,so as to provide reference for the relevant professionals.展开更多
Urban large-scale topographical maps can be renewed by means of overlapping the original digital line graph (DLG) and up-to-date remote sensitive images which have high precision and have been orthographically rectifi...Urban large-scale topographical maps can be renewed by means of overlapping the original digital line graph (DLG) and up-to-date remote sensitive images which have high precision and have been orthographically rectified precisely. Quick Bird panchromatic remote sensing image is used and an urban area with even terrain and dense buildings is selected as experimental area. Ground control points (GCPs) are selected on a new 1∶500 topographical map and multinomial model is applied for rectification. After rectification the absolute positional error of a single point of the image is less than 1m, therefore this method is suitable for renewing topographical maps of up to (1∶2 000) scale.展开更多
This paper makes astudy on the interactive digital gener-alization,where map generalizationcan be divided into intellective reason-ing procedure and operational proce-dure,which are done by human andcomputer,respectiv...This paper makes astudy on the interactive digital gener-alization,where map generalizationcan be divided into intellective reason-ing procedure and operational proce-dure,which are done by human andcomputer,respectively.And an inter-active map generalization environmentfor large scale topographic map is thendesigned and realized.This researchfocuses on:①the significance of re-searching an interactive map generali-zation environment,②the features oflarge scale topographic map and inter-active map generalization,③the con-struction of map generalization-orien-ted database platform.展开更多
Continuous and accurate monitoring of earth surface changes over rugged terrain Himalayas is important to manage natural resources and mitigate natural hazards.Conventional techniques generally focus on per-pixel base...Continuous and accurate monitoring of earth surface changes over rugged terrain Himalayas is important to manage natural resources and mitigate natural hazards.Conventional techniques generally focus on per-pixel based processing and overlook the sub-pixel variations occurring especially in case of low or moderate resolution remotely sensed data.However,the existing subpixel-based change detection(SCD)models are less effective to detect the mixed pixel information at its complexity level especially over rugged terrain regions.To overcome such issues,a topographically controlled SCD model has been proposed which is an improved version of widely used per-pixel based change vector analysis(CVA)and hence,named as a subpixel-based change vector analysis(SCVA).This study has been conducted over a part of the Western Himalayas using the advanced wide-field sensor(AWiFS)and Landsat-8 datasets.To check the effectiveness of the proposed SCVA,the cross-validation of the results has been done with the existing neural network-based SCD(NN-SCD)and per-pixel based models such as fuzzybasedCVA(FCVA)andpost-classification comparison(PCC).The results have shown that SCVA offered robust performance(85.6%-86.4%)as comparedtoNN-SCD(81.6%-82.4%),PCC(79.2%-80.4%),and FCVA(81.2%-83.6%).We concluded that SCVA helps in reducing the detection of spurious pixels and improve the efficacy of generating change maps.This study is beneficial for the accurate monitoring of glacier retreat and snow cover variability over rugged terrain regions using moderate resolution remotely sensed datasets.展开更多
Changes of subaqueous topography in shallow offshore water pose safety risks for embankments,navigation,and ports.This study conducted measurements of subaqueous topography between Datong and Xuliujing in the Yangtze ...Changes of subaqueous topography in shallow offshore water pose safety risks for embankments,navigation,and ports.This study conducted measurements of subaqueous topography between Datong and Xuliujing in the Yangtze River using a Sea Bat 7125 multi-beam echo sounder,and the channel change from 1998 to 2013 was calculated using historical bathymetry data.The study revealed several important results:(1)the overall pattern of changes through the studied stretch of the river was erosion–deposition–erosion.Erosion with a volume 700×10~6m^3occurred in the upper reach,deposition of about 204×10~6m^3occurred in the middle reach,and erosion of about 602×10~6m^3occurred in the lower reach.(2)Dunes are the most common microtopographic feature,accounting for 64.3%of the Datong to Xuliujing reach,followed by erosional topography and flat river topography,accounting for 27.6%and 6.6%,respectively.(3)Human activities have a direct impact on the development of the microtopography.For instance,the mining of sand formed holes on the surface of dunes with lengths of 20–35 m and depths of 3–5 m.We concluded that the overall trend of erosion(net erosion volume of 468×10~6m^3)occurred in the study area mainly because of the decreased sediment discharge following the closure of the Three Gorges Dam.However,other human activities were also impact factors of topographic change.Use of embankments and channel management reduced channel width,restricted river meandering,and exacerbated the erosion phenomenon.展开更多
Rangeland systems play an important role in ecological stabilization and the terrestrial carbon cycle in arid and semiarid regions. However, little is known about the vegetative carbon dynamics and climatic and topog-...Rangeland systems play an important role in ecological stabilization and the terrestrial carbon cycle in arid and semiarid regions. However, little is known about the vegetative carbon dynamics and climatic and topog- raphical factors that affect vegetative carbon stock in these rangelands. Our goal was to assess vegetative carbon stock by examining meteorological data in conjunction with NDVI (normalized difference vegetation index) time se- ries datasets from 2001-2012. An improved CASA (Carnegie Ames Stanford Approach) model was then applied to simulate the spatiotemporal dynamic variation of vegetative carbon stock, and analyze its response to climatic and topographical factors. We estimated the vegetative carbon stock of rangeland in Gansu province, China to be 4.4×10^14 gC, increasing linearly at an annual rate of 9.8×10^11 gC. The mean vegetative carbon density of the whole rangeland was 136.5 gC m-2. Vegetative carbon density and total carbon varied temporally and spatially and were highly associated with temperature, precipitation and solar radiation. Vegetative carbon density reached the maximal value on elevation at 2500-3500 m, a slope of 〉30°and easterly aspect. The effect of precipitation, tem- perature and solar radiation on the vegetative carbon density of five rangeland types (desert and salinized meadow, steppe, alpine meadow, shrub and tussock, and marginal grassland in the forest) depends on the acquired quantity of water and heat for rangeland plants at all spatial scales. The results of this study provide new evidence for ex- plaining spatiotemporal heterogeneity in vegetative carbon dynamics and responses to global change for rangeland vegetative carbon stock, and offer a theoretical and practical basis for grassland agriculture management in arid and semiarid regions.展开更多
Most research on carbon storage in forests has focused on qualitative studies of carbon storage and influ-encing factors rather than on quantifying the effect of the spatial distribution of carbon storage and of its i...Most research on carbon storage in forests has focused on qualitative studies of carbon storage and influ-encing factors rather than on quantifying the effect of the spatial distribution of carbon storage and of its influencing factors at different scales.Here we described the spatial dis-tribution of aboveground carbon storage(ACS)in a 20-ha plot in a subtropical evergreen broad-leaved forest to evalu-ate and quantify the relative effects of biotic factors(species diversity and structural diversity)and abiotic factors(soil and topographic factors)on ACS at different scales.Scale effects of the spatial distribution of ACS were significant,with higher variability at smaller scales,but less at larger scales.The distribution was also spatially heterogeneous,with more carbon storage on north-and east-facing slopes than on south-and west-facing slopes.At a smaller scale,species diversity and structural diversity each had a direct positive impact on ACS,but soil factors had no significant direct impact.At increasing scales,topographic and soil fac-tors gradually had a greater direct influence,whereas the influence of species diversity gradually decreased.Structural diversity had the greatest impact,followed by topographic factors and soil factors,while species diversity had a rela-tively smaller impact.These findings suggest studies on ACS in subtropical evergreen broadleaf forests in southern China should consider scale effects,specifically on the heterogene-ity of ACS distribution at small scales.Studies and conser-vation efforts need to focus on smaller habitat types with particular emphasis on habitat factors such as aspect and soil conditions,which have significant influences on community species diversity,structural diversity,and ACS distribution.展开更多
Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and di...Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.展开更多
Glacier dynamics in the Himalayan midlatitudes,particularly in regions like the Shishapangma,are not yet fully understood,especially the localized topographic and climatic impacts on glacier deformation.This study ana...Glacier dynamics in the Himalayan midlatitudes,particularly in regions like the Shishapangma,are not yet fully understood,especially the localized topographic and climatic impacts on glacier deformation.This study analyzes the spatiotemporal characteristics of glacier surface deformation in the Shishapangma region using the Small Baseline Subset(SBAS)Interferometric Synthetic Aperture Radar(In SAR)technique.The analysis reveals an average deformation rate of-4.02±17.65 mm/yr across the entire study area,with glacier regions exhibiting significantly higher rates of uplift(16.87±13.20 mm/yr)and subsidence(20.11±14.55 mm/yr)compared to non-glacier areas.It identifies significant surface lowering on the mountain flanks and localized uplift in certain catchments,emphasizing the higher deformation rates in glacial areas compared to non-glacial ones.We found a strong positive correlation between temperature and cumulative deformation(correlation coefficient of 0.63),particularly in glacier areas(0.82).The research highlights the role of temperature as the primary driver of glacier wastage,particularly at lower elevations,with strong correlations found between temperature and cumulative deformation.It also indicates the complex interactions between topographic features,notably,slope gradient,which shows a positive correlation with subsidence rates,especially for slopes below 35°.South-,southwest-,and west-facing slopes exhibit significant uplift,while north-,northeast-,and east-facing slopes predominantly subside.Additionally,we identified transition zones between debris-covered glaciers and clean ice as areas of most intense deformation,with average rates exceeding 30 mm/yr,highlighting these as potential high-risk zones for geohazards.This study comprehensively analyzes the deformation characteristics in both glacier and non-glacier areas in the Shishapangma region,revealing the complex interplay of topographic,climatic,and hydrological factors influencing glacier dynamics.展开更多
Exploring the worldwide patterns of endemism and the processes that lead to the formation of highendemism centers is crucial in biogeography.This study examines the geographic distribution and ecological influences on...Exploring the worldwide patterns of endemism and the processes that lead to the formation of highendemism centers is crucial in biogeography.This study examines the geographic distribution and ecological influences on the endemism of liverworts across 390 regions worldwide.We assess phylogenetic endemism and relative phylogenetic endemism in relation to eleven environmental factors,which represent current and Quaternary climate variations,as well as topographic and environmental heterogeneity.Areas with higher endemism in liverworts tend to have higher temperatures,precipitation,and environmental heterogeneity,but lower temperature seasonality and lesser impacts from Quaternary climate changes.Regions exhibiting notably high endemism are predominantly found in tropical Asia,Madagascar,eastern Australia,and the Andes,while those with notably low endemism are generally in temperate Eurasia and North America,parts of Africa,and eastern South America.Centers of neo-endemism are mainly in southern Africa,whereas centers of paleo-endemism are in southern South America,tropical Asia,and New Zealand.Environment variability is a more significant predictor of phylogenetic endemism than current climate conditions,which are themselves more predictive than variables related to Quaternary climate changes.Nevertheless,these three types of explanatory variables combined explain only about one-third of the variance in phylogenetic endemism.展开更多
The topographic factor(LS factor),derived from the multiplication of the slope length(L)and slope steepness(S)factors,is a vital parameter in soil erosion models.Generated from the digital elevation model(DEM),the LS ...The topographic factor(LS factor),derived from the multiplication of the slope length(L)and slope steepness(S)factors,is a vital parameter in soil erosion models.Generated from the digital elevation model(DEM),the LS factor always varies with the changing DEM resolution,i.e.,the LS factor scale effect.Previous studies have found the phenomenon of the LS factor scale effect,but the underlying causes of this phenomenon has not been well explored.Therefore,how the DEM resolution affects the LS factor and how the scale effect of the L and S factors influence the LS factor scale effect remains unclear.To address these problems,we collected 20 watersheds from the Guangdong Province with different topographic reliefs,and compared the corresponding L,S and LS factors at 10-m and 30-m resolution DEMs.Our results indicate that the S factor,heavily influenced by slope underestimation in coarse-resolution DEMs,makes a difference in the LS factor scale effect.In addition,the LS factor scale effect becomes less significant with increasing reliefs,suggesting the possibility of using 30-m DEM for LS calculation in rugged terrains.Our findings on the underlying mechanisms of the LS factor scale effect help to identify the uncertainty in the LS factor estimation,thereby enhancing the accuracy of soil erosion assessment,particularly in regions with different topographic characteristics and contribute to more effective soil conservation strategies and decision-making.展开更多
基金National Natural Science Foundation of China,No.41671090National Basic Research Program(973 Program),No.2015CB452702.
文摘Topographical relief is a key factor that limits population distribution and economic development in mountainous areas. The limitation is especially apparent in the mountain-plain transition zone. Taking the transition zone between the Qinling Mountains and the North China Plain(i.e. the mountainous area in western Henan Province) as an example and based on the 200-m resolution DEM data, we used the mean change-point analysis to determine the optimal statistical unit for topographical relief, and thereafter extracted the relief degree. Taking the 1:100,000 land use data, township population and county-level industrial data, population and economic spatial models were constructed, and 200-m resolution grid population and economic density maps were generated. Afterwards, statistical analysis was carried out to quantitatively reveal the impact of topographical relief on population and economy. In addition, the impacts of other topographical factors were discussed. The results showed the following.(1) The relief degree in western Henan is generally low, where 58.6% of the regional topography does not exceed half the height of a reference mountain(relative elevation ≤250 m). Spatially, the relief degree is high in the west while low in the east, and high in the middle while low in the north and south. There is a positive correlation between relief degree and elevation, and a much stronger correlation between relief degree and slope.(2) The linear fitting degree between the population and economic validation data and the corresponding simulation data are 0.943 and 0.909, respectively, indicating that the spatialized results can reflect the actual population and economic distribution.(3) The impact of topographical relief on population and economy was stronger than that of other topographical factors. The relief degree showed a good logarithmic fit relationship with population density(0.911) and economic density(0.874). Specifically, 88.65% of the population lives in areas where the topographical relief is ≤0.5 and 88.03% of the gross regional product was from areas where the relief is ≤0.3. Compared with the population distribution, the economic development showed an obvious agglomeration trend towards low relief areas.
基金National Natural Science Foundation of China, No.41271117 Strategy of Science and Technology Planning Project of Institute of Geographic Sciences and Natural Resources Research, CAS, No.2012SJ008
文摘Rubber plantation is the major land use type in Southeast Asia. Monitoring the spa- tial-temporal pattern of rubber plantation is significant for regional land resource development, eco-environmental protection, and maintaining border security. With remote sensing tech- nologies, we analyzed the rubber distribution pattern and spatial-temporal dynamic; with GIS and a newly proposed index of Planted Intensity (PI), we further quantified the impacts and limits of topographical factors on rubber plantation in the border region of China, Laos and Myanmar (BRCLM) between 1980 and 2010. The results showed that: (1) As the dominant land use type in this border region, the acreage of rubber plantation was 6014 km2 in 2010, accounting for 8.17% of the total area. Viewing from the rubber plantation structure, the ratio of mature- (〉10 year) and young rubber plantation (〈 10 year) was 5:7. (2) From 1980 to 2010, rubber plantation expanded significantly in BRCLM, from 705 km2 to 6014 km2, nearly nine times. The distribution characteristics of rubber plantation varied from concentrated toward dispersed, from border inside to outside, and expanded further in all directions with Jinghong City as the center. (3) Restricted by the topographical factors, more than 4/5 proportion of rubber plantation concentrated in the appropriate elevation gradients between 600 and 1000 m, rarely occurred in elevations beyond 1200 m in BRCLM. Nearly 2/3 of rubber plantation concentrated on slopes of 8^-25~, rarely distributed on slopes above 35~. Rubber plantation was primarily distributed in south and east aspects, relatively few in north and west aspects. Rubber planted intensity displayed the similar distribution trend. (4) Comparative studies of rubber plantation in different countries showed that there was a remarkable increase in area at higher elevations and steeper slopes in China, while there were large appropriate topog- raphical gradients for rubber plantation in Laos and Myanmar which benefited China for rubber trans-boundary expansion. (5) Rubber plantation in BRCLM will definitely expend cross borders of China to the territories of Laos and Myanmar, and the continuous expansion in the border region of China will be inevitable.
基金funded by the National Natural Science Foundation of China(Grant No.41871294)
文摘Terrain can influence the spatial distribution of settlements. Studies on the terrain characteristics of settlements can help to understand the effects of the environment on human activities. This paper provides a quantitative analysis of the relationship between settlements and topographical factors. A statistically significant sample of residential locations and ASTER GDEM V2 were used to investigate terrain traits and settlements distributions. We selected eight topographical factors and introduced a practical concept, distributive entropy, into assessing the aggregation extent of the settlements' spatial distribution. The study showed that topography varies within the study area, and distributive entropy indicates that settlements have distinctive distribution tendency in statistic approach. According to the results of this study, mountain inhabitants prefer to settle in valleys. Additionally, with distributive entropy, residential suitability was divided to three levels: suitable, normal, and unsuited. The results showed that suitable area is small in Sichuan Province, accounting for 8.2%~29.9%; however, unsuited area is large, accounting for 33%~63.3%.
基金National Natural Science Foundation of China(Grant Nos.40175012 , 90302015)The Innovation Program of Chincse Academy of Sciences(Grant No.ZKCX2-sw-210) the National Key Basic Research Development Progran of MSTC(Grant No.G1999043400).
文摘The prevailing mesoscale model MM5 (V3) is used to simulate a heavy rain case caused by interac- tion between a move-in front and topographical heterogeneities on Taiwan Island. It is found that both thermodynamic and dynamic ?elds along the front are heterogeneous in time and space. The heterogene- ity becomes more signi?cant as the e?ect of topography is added on. The heterogeneous distribution of physical variables along the front is the main reason for the heterogeneous frontal rain band; the optimum cooperation of the low level and upper level jet is another reason for the development of the rain band. Topography can strengthen the rainfall and causes extremely heavy rain cells. Updraft induced by topog- raphy extends to a rather low level, while the uplifted air by frontal circulation can reach to higher levels. The quasi-steady topographic circulation overlaps the frontal circulation when the front moves over Taiwan Island; the advantageous cooperation of various mesoscale conditions causes the large upward velocity on the windward side of the island.
基金supported by The Special Foundation for National Science and Technology Basic Resources Investigation of China(2019FY202300)the Biodiversity Investigation,Observation and Assessment Program of Ministry of Ecology and Environment of China(2110404).
文摘Growing public awareness of the importance of protecting biodiversity requires the development of forest practices that increase the complexity of stand structure.Understanding the ecological processes of different forest vegetation provide insights into community coexistence mechanisms.In this paper,the spatial patterns of three different communities,evergreen broadleaf forest,deciduous broadleaf forest,and mixed needleleaf and broadleaf forest at Mt.Huangshan,China,were quantified with four structural parameters,the mingling index,the uniform angle index,the diameter dominance index and the crowdedness index.All trees with a diameter at breast height of more than 5 cm were measured.Our analyses highlighted that most trees in the three communities were extremely dense and slightly clumped,with a moderate size differentiation and high mixed structure.In mixed needleleaf and broadleaf forest,the distribution pattern of tree species was better than the other two forests.Overall,spatial patterns in mixed needleleaf and broadleaf forest exhibited a strong stability-effect,that is,the stand had a suitable environment for the stable survival of the forest.With the increasing of elevation,the degree of the mingling index and the crowdedness index increased,however,there was no influence on the uniform angle index and the diameter dominance index.Further,at the same elevation,four structural parameters of shady slope were larger than that of sunny slope.Then we found the relationship between stand spatial structure and environment factors had important influence on forest structure.Our work contributes to the knowledge of population structure,and further provide theoretical basis for the sustainable development of forest resources and protecting biodiversity of Huangshan Mountain.In future studies,it is necessary to explore the limiting factors of community spatial distribution by combining species diversity and functional traits.
基金the National Natu-ral Science Foundation of China(No.41606082)the China Geological Survey(Nos.DD20189230,DD20160148).
文摘As the second largest bay in Qingdao,the Aoshan Bay and its adjacent sea area play an important role in aquaculture development and urban land and sea coordination for the eastern gulf type of city in the Qingdao Blue Silicon Valley Core Area(QBSVCA).Based on in-situ sedimentary dynamical observation and previous research results,the thermohaline structure,the transportation of suspended sediment and its mechanism,and the coastal geomorphic response were elaborated and analyzed in detail in this paper.The result indicated that the thermohaline and density distribution have obvious intra-tidal characteristics in the QBSVCA and the adjacent waters of the islands,during summer neap tide stage.The development of the bottom high suspended sediment concentration(SSC)layer was slightly enhanced in flood slack at each of the four stations.Suspended sediment transportation near the QBSVCA is related closely with the vertical mixing-stratification mechanism.Combined with previous research results,this study once again showed that submarine topography and the grain size of sea bed sediments would respond to hydrodynamic forces.The medians of the bottom E and D50 in the Aoshan Bay were the highest,followed by those in the Daguan Island and Xiaoguan Island,and the data in the Laoshan Bay were the lowest.This showed that the capacity of suspended sediment transportation in the bottom water layer of the Aoshan Bay was stronger than that of the adjacent sea area.The re-suspension and migration of fine sediments lead to the strong coarsening of sediments in this area.
文摘Glacier response patterns at the catchment scale are highly heterogeneous and defined by a complex interplay of various dynamics and surface factors.Previous studies have explained heterogeneous responses in qualitative ways but quantitative assessment is lacking yet where an intrazone homogeneous climate assumption can be valid.Hence,in the current study,the reason for heterogeneous mass balance has been explained in quantitative methods using a multiple linear regression model in the Sikkim Himalayan region.At first,the topographical parameters are selected from previously published studies,then the most significant topographical and geomorphological parameters are selected with backward stepwise subset selection methods.Finally,the contributions of selected parameters are calculated by least square methods.The results show that,the magnitude of mass balance lies between-0.003±0.24 to-1.029±0.24 m.w.e.a^(-1) between 2000 and 2020 in the Sikkim Himalaya region.Also,the study shows that,out of the terminus type of the glacier,glacier area,debris cover,ice-mixed debris,slope,aspect,mean elevation,and snout elevation of the glaciers,only the terminus type and mean elevation of the glacier are significantly altering the glacier mass balance in the Sikkim Himalayan region.Mathematically,the mass loss is approximately 0.40 m.w.e.a^(-1) higher in the lake-terminating glaciers compared to the land-terminating glaciers in the same elevation zone.On the other hand,a thousand meters mean elevation drop is associated with 0.179 m.w.e.a-1of mass loss despite the terminus type of the glaciers.In the current study,the model using the terminus type of the glaciers and the mean elevation of the glaciers explains 76% of fluctuation of mass balance in the Sikkim Himalayan region.
文摘The hypothesis, that the magnitude of the Froude number can represent the flow type around an obstacle was examined at several different topographical shapes in dust-laden environments. It was found that in most cases this hypothesis was true. Average of 16 May months AOT data extracted from the MODIS Terra satellite has shown that in case of Froude number less than one, the AOT isolines tend to follow the topographical contours of the mountain peak (the obstacle) along with a minimum AOT near the peak.
文摘This article endeavours to analyse the recent deformation in the Enfidha region. This analysis has been carried out using the Residual Digital Elevation Model (DEM). It is the altimetric difference between two DEM generated from the contour lines of two topographical maps over a period of 100 years. This deformation has been studied by some authors who report the presence of recent ground movements by comparing contour lines with a downward trend in elevation from 1893 to 1985. In 2006, this study area was marked by the presence of two earthquakes that occurred in several coastal cities located in the northeastern part of Tunisia. Our study involves a quantitative estimation of altimetric variations under a Geographic Information System (GIS) environment. Our proposed methodology aims at the mapping of residual (DEM) and the extraction of parameters that have a morphological and morphostructural signature. The extraction of quantitative morphostructural parameters requires the integration of multi-source and multi-scale data. This can only be done if the problem of heterogeneity at the level of scale and coordinate system is solved through the use of GIS tools and the obtainment of the vectorial shapefile format. Then, in order to compare the DEM generation errors with reference to recent and old data, they must be projected in the same projection system and on the same scale. The available data are two topographic maps of Enfidha which represent two different epochs. The first one is an old topographic map of 1893 (type 1922) at a scale of 1:50,000 and the second one is a recent topographic map of 1985 at a scale of 1:25,000. These topographical maps have the Lambert (IGN) projection system. This methodological approach, based on residual (DEM), allows to highlight an estimated subsidence of 3 m/100years located in the Enfidha plain and extends to the south coast of Cap Bon area in Tunisia. The variation of the contour lines shape between the old and the recent map can be studied in correlation with a relay structure fault observed and recognized by some analysts in this area. These relay accidents remain active according to the results obtained by the residual (DEM) and validated by the field observations of two sites that we have carried out in the Enfidha endorheic basin.
文摘This paper will explore the geotechnical engineering investigation technology under the complex topographical and geological conditions,and introduce how to construct the water supply tube wells faster and better under the complex topographical and geological conditions by taking Inner Mongolia as an example,so as to provide reference for the relevant professionals.
文摘Urban large-scale topographical maps can be renewed by means of overlapping the original digital line graph (DLG) and up-to-date remote sensitive images which have high precision and have been orthographically rectified precisely. Quick Bird panchromatic remote sensing image is used and an urban area with even terrain and dense buildings is selected as experimental area. Ground control points (GCPs) are selected on a new 1∶500 topographical map and multinomial model is applied for rectification. After rectification the absolute positional error of a single point of the image is less than 1m, therefore this method is suitable for renewing topographical maps of up to (1∶2 000) scale.
文摘This paper makes astudy on the interactive digital gener-alization,where map generalizationcan be divided into intellective reason-ing procedure and operational proce-dure,which are done by human andcomputer,respectively.And an inter-active map generalization environmentfor large scale topographic map is thendesigned and realized.This researchfocuses on:①the significance of re-searching an interactive map generali-zation environment,②the features oflarge scale topographic map and inter-active map generalization,③the con-struction of map generalization-orien-ted database platform.
文摘Continuous and accurate monitoring of earth surface changes over rugged terrain Himalayas is important to manage natural resources and mitigate natural hazards.Conventional techniques generally focus on per-pixel based processing and overlook the sub-pixel variations occurring especially in case of low or moderate resolution remotely sensed data.However,the existing subpixel-based change detection(SCD)models are less effective to detect the mixed pixel information at its complexity level especially over rugged terrain regions.To overcome such issues,a topographically controlled SCD model has been proposed which is an improved version of widely used per-pixel based change vector analysis(CVA)and hence,named as a subpixel-based change vector analysis(SCVA).This study has been conducted over a part of the Western Himalayas using the advanced wide-field sensor(AWiFS)and Landsat-8 datasets.To check the effectiveness of the proposed SCVA,the cross-validation of the results has been done with the existing neural network-based SCD(NN-SCD)and per-pixel based models such as fuzzybasedCVA(FCVA)andpost-classification comparison(PCC).The results have shown that SCVA offered robust performance(85.6%-86.4%)as comparedtoNN-SCD(81.6%-82.4%),PCC(79.2%-80.4%),and FCVA(81.2%-83.6%).We concluded that SCVA helps in reducing the detection of spurious pixels and improve the efficacy of generating change maps.This study is beneficial for the accurate monitoring of glacier retreat and snow cover variability over rugged terrain regions using moderate resolution remotely sensed datasets.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51761135023 & 41476075)the China Geological Survey (Grant No. DD20160246)
文摘Changes of subaqueous topography in shallow offshore water pose safety risks for embankments,navigation,and ports.This study conducted measurements of subaqueous topography between Datong and Xuliujing in the Yangtze River using a Sea Bat 7125 multi-beam echo sounder,and the channel change from 1998 to 2013 was calculated using historical bathymetry data.The study revealed several important results:(1)the overall pattern of changes through the studied stretch of the river was erosion–deposition–erosion.Erosion with a volume 700×10~6m^3occurred in the upper reach,deposition of about 204×10~6m^3occurred in the middle reach,and erosion of about 602×10~6m^3occurred in the lower reach.(2)Dunes are the most common microtopographic feature,accounting for 64.3%of the Datong to Xuliujing reach,followed by erosional topography and flat river topography,accounting for 27.6%and 6.6%,respectively.(3)Human activities have a direct impact on the development of the microtopography.For instance,the mining of sand formed holes on the surface of dunes with lengths of 20–35 m and depths of 3–5 m.We concluded that the overall trend of erosion(net erosion volume of 468×10~6m^3)occurred in the study area mainly because of the decreased sediment discharge following the closure of the Three Gorges Dam.However,other human activities were also impact factors of topographic change.Use of embankments and channel management reduced channel width,restricted river meandering,and exacerbated the erosion phenomenon.
基金National Natural Science Foundation of China(30960264 and 31160475)Science and technology program of Gansu province(1107RJYA058)+1 种基金open project of Key Laboratory of Grassland Ecosystem(Gansu Agricultural University),Ministry of Education(CYZS–2011014)Fund of technology innovation commemorated Sheng Tongsheng in Gansu Agricultural University(GSAU-STS-1304 and GSAU-STS-1505)
文摘Rangeland systems play an important role in ecological stabilization and the terrestrial carbon cycle in arid and semiarid regions. However, little is known about the vegetative carbon dynamics and climatic and topog- raphical factors that affect vegetative carbon stock in these rangelands. Our goal was to assess vegetative carbon stock by examining meteorological data in conjunction with NDVI (normalized difference vegetation index) time se- ries datasets from 2001-2012. An improved CASA (Carnegie Ames Stanford Approach) model was then applied to simulate the spatiotemporal dynamic variation of vegetative carbon stock, and analyze its response to climatic and topographical factors. We estimated the vegetative carbon stock of rangeland in Gansu province, China to be 4.4×10^14 gC, increasing linearly at an annual rate of 9.8×10^11 gC. The mean vegetative carbon density of the whole rangeland was 136.5 gC m-2. Vegetative carbon density and total carbon varied temporally and spatially and were highly associated with temperature, precipitation and solar radiation. Vegetative carbon density reached the maximal value on elevation at 2500-3500 m, a slope of 〉30°and easterly aspect. The effect of precipitation, tem- perature and solar radiation on the vegetative carbon density of five rangeland types (desert and salinized meadow, steppe, alpine meadow, shrub and tussock, and marginal grassland in the forest) depends on the acquired quantity of water and heat for rangeland plants at all spatial scales. The results of this study provide new evidence for ex- plaining spatiotemporal heterogeneity in vegetative carbon dynamics and responses to global change for rangeland vegetative carbon stock, and offer a theoretical and practical basis for grassland agriculture management in arid and semiarid regions.
基金supported by the Guangxi Natural Science Foundation Program(2022GXNSFAA035583,2021GXNSFBA196052)the National Natural Science Foundation of China(32060305,32460270).
文摘Most research on carbon storage in forests has focused on qualitative studies of carbon storage and influ-encing factors rather than on quantifying the effect of the spatial distribution of carbon storage and of its influencing factors at different scales.Here we described the spatial dis-tribution of aboveground carbon storage(ACS)in a 20-ha plot in a subtropical evergreen broad-leaved forest to evalu-ate and quantify the relative effects of biotic factors(species diversity and structural diversity)and abiotic factors(soil and topographic factors)on ACS at different scales.Scale effects of the spatial distribution of ACS were significant,with higher variability at smaller scales,but less at larger scales.The distribution was also spatially heterogeneous,with more carbon storage on north-and east-facing slopes than on south-and west-facing slopes.At a smaller scale,species diversity and structural diversity each had a direct positive impact on ACS,but soil factors had no significant direct impact.At increasing scales,topographic and soil fac-tors gradually had a greater direct influence,whereas the influence of species diversity gradually decreased.Structural diversity had the greatest impact,followed by topographic factors and soil factors,while species diversity had a rela-tively smaller impact.These findings suggest studies on ACS in subtropical evergreen broadleaf forests in southern China should consider scale effects,specifically on the heterogene-ity of ACS distribution at small scales.Studies and conser-vation efforts need to focus on smaller habitat types with particular emphasis on habitat factors such as aspect and soil conditions,which have significant influences on community species diversity,structural diversity,and ACS distribution.
基金Deep-time Digital Earth(DDE)Big Science Program(No.GJ-C03-SGF-2025-004)National Natural Science Foundation of China(No.42394063)Sichuan Science and Technology Program(No.2025ZNSFSC0325).
文摘Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.
基金funded by The Natural Science Foundation of Chongqing(CSTB2023NSCQMSX0990)the Humanities and Social Sciences research project of Chongqing Municipal Education Commission(22SKSZ030)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K202400510)。
文摘Glacier dynamics in the Himalayan midlatitudes,particularly in regions like the Shishapangma,are not yet fully understood,especially the localized topographic and climatic impacts on glacier deformation.This study analyzes the spatiotemporal characteristics of glacier surface deformation in the Shishapangma region using the Small Baseline Subset(SBAS)Interferometric Synthetic Aperture Radar(In SAR)technique.The analysis reveals an average deformation rate of-4.02±17.65 mm/yr across the entire study area,with glacier regions exhibiting significantly higher rates of uplift(16.87±13.20 mm/yr)and subsidence(20.11±14.55 mm/yr)compared to non-glacier areas.It identifies significant surface lowering on the mountain flanks and localized uplift in certain catchments,emphasizing the higher deformation rates in glacial areas compared to non-glacial ones.We found a strong positive correlation between temperature and cumulative deformation(correlation coefficient of 0.63),particularly in glacier areas(0.82).The research highlights the role of temperature as the primary driver of glacier wastage,particularly at lower elevations,with strong correlations found between temperature and cumulative deformation.It also indicates the complex interactions between topographic features,notably,slope gradient,which shows a positive correlation with subsidence rates,especially for slopes below 35°.South-,southwest-,and west-facing slopes exhibit significant uplift,while north-,northeast-,and east-facing slopes predominantly subside.Additionally,we identified transition zones between debris-covered glaciers and clean ice as areas of most intense deformation,with average rates exceeding 30 mm/yr,highlighting these as potential high-risk zones for geohazards.This study comprehensively analyzes the deformation characteristics in both glacier and non-glacier areas in the Shishapangma region,revealing the complex interplay of topographic,climatic,and hydrological factors influencing glacier dynamics.
文摘Exploring the worldwide patterns of endemism and the processes that lead to the formation of highendemism centers is crucial in biogeography.This study examines the geographic distribution and ecological influences on the endemism of liverworts across 390 regions worldwide.We assess phylogenetic endemism and relative phylogenetic endemism in relation to eleven environmental factors,which represent current and Quaternary climate variations,as well as topographic and environmental heterogeneity.Areas with higher endemism in liverworts tend to have higher temperatures,precipitation,and environmental heterogeneity,but lower temperature seasonality and lesser impacts from Quaternary climate changes.Regions exhibiting notably high endemism are predominantly found in tropical Asia,Madagascar,eastern Australia,and the Andes,while those with notably low endemism are generally in temperate Eurasia and North America,parts of Africa,and eastern South America.Centers of neo-endemism are mainly in southern Africa,whereas centers of paleo-endemism are in southern South America,tropical Asia,and New Zealand.Environment variability is a more significant predictor of phylogenetic endemism than current climate conditions,which are themselves more predictive than variables related to Quaternary climate changes.Nevertheless,these three types of explanatory variables combined explain only about one-third of the variance in phylogenetic endemism.
基金funded by the Guangdong Major Project of Basic and Applied Basic Research(2021B0301030007)the Supplemental Funds for Major Scientific Research Projects of Beijing Normal University,Zhuhai(ZHPT2023013)+1 种基金the National Natural Science Foundation of China(42301387)the Science and Technology Program of Guangdong(No.2024B1212070012)。
文摘The topographic factor(LS factor),derived from the multiplication of the slope length(L)and slope steepness(S)factors,is a vital parameter in soil erosion models.Generated from the digital elevation model(DEM),the LS factor always varies with the changing DEM resolution,i.e.,the LS factor scale effect.Previous studies have found the phenomenon of the LS factor scale effect,but the underlying causes of this phenomenon has not been well explored.Therefore,how the DEM resolution affects the LS factor and how the scale effect of the L and S factors influence the LS factor scale effect remains unclear.To address these problems,we collected 20 watersheds from the Guangdong Province with different topographic reliefs,and compared the corresponding L,S and LS factors at 10-m and 30-m resolution DEMs.Our results indicate that the S factor,heavily influenced by slope underestimation in coarse-resolution DEMs,makes a difference in the LS factor scale effect.In addition,the LS factor scale effect becomes less significant with increasing reliefs,suggesting the possibility of using 30-m DEM for LS calculation in rugged terrains.Our findings on the underlying mechanisms of the LS factor scale effect help to identify the uncertainty in the LS factor estimation,thereby enhancing the accuracy of soil erosion assessment,particularly in regions with different topographic characteristics and contribute to more effective soil conservation strategies and decision-making.