The ability of human deciduous tooth dental pulp cells(HDDPCs) to differentiate into odontoblasts that generate mineralized tissue holds immense potential for therapeutic use in the field of tooth regenerative medic...The ability of human deciduous tooth dental pulp cells(HDDPCs) to differentiate into odontoblasts that generate mineralized tissue holds immense potential for therapeutic use in the field of tooth regenerative medicine. Realization of this potential depends on efficient and optimized protocols for the genetic manipulation of HDDPCs. In this study, we demonstrate the use of a Piggy Bac(PB)-based gene transfer system as a method for introducing nonviral transposon DNA into HDDPCs and HDDPC-derived inducible pluripotent stem cells. The transfection efficiency of the PB-based system was significantly greater than previously reported for electroporation-based transfection of plasmid DNA. Using the neomycin resistance gene as a selection marker, HDDPCs were stably transfected at a rate nearly 40-fold higher than that achieved using conventional methods. Using this system, it was also possible to introduce two constructs simultaneously into a single cell. The resulting stable transfectants, expressing td Tomato and enhanced green fluorescent protein, exhibited both red and green fluorescence. The established cell line did not lose the acquired phenotype over three months of culture. Based on our results, we concluded that PB is superior to currently available methods for introducing plasmid DNA into HDDPCs. There may be significant challenges in the direct clinical application of this method for human dental tissue engineering due to safety risks and ethical concerns. However, the high level of transfection achieved with PB may have significant advantages in basic scientific research for dental tissue engineering applications, such as functional studies of genes and proteins. Furthermore, it is a useful tool for the isolation of genetically engineered HDDPC-derived stem cells for studies in tooth regenerative medicine.展开更多
Intentional tooth replantation(ITR)is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions.ITR is defined as the deliberate extraction...Intentional tooth replantation(ITR)is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions.ITR is defined as the deliberate extraction of a tooth;evaluation of the root surface,endodontic manipulation,and repair;and placement of the tooth back into its original socket.Case reports,case series,cohort studies,and randomized controlled trials have demonstrated the efficacy of ITR in the retention of natural teeth that are untreatable or difficult to manage with root canal treatment or endodontic microsurgery.However,variations in clinical protocols for ITR exist due to the empirical nature of the original protocols and rapid advancements in the field of oral biology and dental materials.This heterogeneity in protocols may cause confusion among dental practitioners;therefore,guidelines and considerations for ITR should be explicated.This expert consensus discusses the biological foundation of ITR,the available clinical protocols and current status of ITR in treating teeth with refractory apical periodontitis or anatomical aberration,and the main complications of this treatment,aiming to refine the clinical management of ITR in accordance with the progress of basic research and clinical studies;the findings suggest that ITR may become a more consistent evidence-based option in dental treatment.展开更多
Tissue interactions play a crucial role in tooth development.Notably,extracellular vesicle-mediated interactions between the mandible and tooth germ are considered essential.Here,we revealed that mandible extracellula...Tissue interactions play a crucial role in tooth development.Notably,extracellular vesicle-mediated interactions between the mandible and tooth germ are considered essential.Here,we revealed that mandible extracellular vesicles could modulate the proliferation and differentiation of dental mesenchymal cells by regulating the histone demethylase KDM2B.Further investigation showed that mandible derived extracellular vesicles could deliver miR-206 to KDM2B,thereby regulating tooth development.An animal study demonstrated that the miR-206/KDM2B pathway affected tooth morphogenesis and mineralization after eight weeks of subcutaneous transplantation in nude mice.In conclusion,this study suggested that the mandible played a critical role in tooth morphogenesis and mineralization,which could be a potential therapeutic target for abnormal tooth development and an alternative model for tooth regeneration.展开更多
The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing character...The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing characteristics of planetary gear is studied.An improved three-dimensional(3 D)anisotropic tooth surface roughness fractal model is proposed based on the experimental parameters.Considering asperity contact and elastohydrodynamic lubrication(EHL),the contact load and flexibility deformation of the tooth surface are derived,and the deformation compatibility equation of the 3 D loaded tooth contact analysis(3 D-LTCA)method is improved.The asperity of the tooth surface changes the system from EHL to mixed lubrication and reduces the stiffness of the oil film.Compared with the sun planet gear,the asperity has a greater effect on the meshing characteristics of the ring-planet gear.Compared with the proposed method,the comprehensive stiffness obtained by the traditional calculation method considering the lubrication effect is smaller,especially for the ring-planet gear.Compared with roughness,speed and viscosity,the meshing characteristics of planetary gears are most sensitive to torque.展开更多
Tooth cracks may occur in spiral bevel gear transmission system of the aerospace equipment.In this study,an accurate and efficient loaded tooth contact analysis(LTCA)model is developed to predict the contact behavior ...Tooth cracks may occur in spiral bevel gear transmission system of the aerospace equipment.In this study,an accurate and efficient loaded tooth contact analysis(LTCA)model is developed to predict the contact behavior and time-varying meshing stiffness(TVMS)of spiral bevel gear pair with cracked tooth.The tooth is sliced,and the contact points on slices are computed using roll angle surfaces.Considering the geometric complexity of crack surface,a set of procedures is formulated to generate spatial crack and determine crack parameters for contact points.According to the positional relationship between contact point and crack path,each sliced tooth is modeled as a non-uniform cantilever beam with varying reduced effective load-bearing tooth thickness.Then the compliance model of the cracked tooth is established to perform contact analysis,along with TVMS calculations utilizing three different models.By employing spiral bevel gear pairs with distinct types of cracks as examples,the accuracy and efficiency of the developed approach are validated via comparative analyses with finite element analysis(FEA)outcomes.Furthermore,the investigation on effects of cracks shows that tooth cracks can induce alterations in meshing performance of both entire gear pair and individual tooth pairs,including not only cracked tooth pair but also adjacent non-cracked tooth pairs.Hence,the proposed model can serve as a useful tool for analyzing the variations in contact behavior and meshing stiffness of spiral bevel gears due to different cracks.展开更多
The regulatory processes in developmental biology research are significantly influenced by long non-coding RNAs(lncRNAs).However,the dynamics of lncRNA expression during human tooth development remain poorly understoo...The regulatory processes in developmental biology research are significantly influenced by long non-coding RNAs(lncRNAs).However,the dynamics of lncRNA expression during human tooth development remain poorly understood.In this research,we examined the lncRNAs present in the dental epithelium(DE)and dental mesenchyme(DM)at the late bud,cap,and early bell stages of human fetal tooth development through bulk RNA sequencing.Developmental regulators co-expressed with neighboring lncRNAs were significantly enriched in odontogenesis.Specific lncRNAs expressed in the DE and DM,such as PANCR,MIR205HG,DLX6-AS1,and DNM3OS,were identified through a combination of bulk RNA sequencing and single-cell analysis.Further subcluster analysis revealed lncRNAs specifically expressed in important regions of the tooth germ,such as the inner enamel epithelium and coronal dental papilla(CDP).Functionally,we demonstrated that CDP-specific DLX6-AS1 enhanced odontoblastic differentiation in human tooth germ mesenchymal cells and dental pulp stem cells.These findings suggest that lncRNAs could serve as valuable cell markers for tooth development and potential therapeutic targets for tooth regeneration.展开更多
Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon(RAP).Despite its therapeutic effects,the surgical risk and unclear mechanism hamper th...Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon(RAP).Despite its therapeutic effects,the surgical risk and unclear mechanism hamper the clinical application.Numerous evidences support macrophages as the key immune cells during bone remodeling.Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2;R26GFP lineage tracing system.Fluorescence staining,flow cytometry analysis,and western blot determined the significantly enhanced expression of binding immunoglobulin protein(BiP)and emphasized the activation of sensor activating transcription factor 6(ATF6)in macrophages.Then,we verified that macrophage specific ATF6 deletion(ATF6f/f;CX3CR1CreERT2 mice)decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy.In contrast,macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement.In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6.At the mechanism level,RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfαpromotor and augmenting its transcription.Additionally,molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element(ERSE).Taken together,ATF6 may aggravate orthodontic bone remodeling by promoting Tnfαtranscription in macrophages,suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.展开更多
Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF ...Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.展开更多
Background: Tooth loss results in impaired mastication, which in turn, makes it difficult to chew hard food, consequently leading to deteriorate dietary habits and to develop hypertension. The purpose of this study wa...Background: Tooth loss results in impaired mastication, which in turn, makes it difficult to chew hard food, consequently leading to deteriorate dietary habits and to develop hypertension. The purpose of this study was to examine the effect of tooth loss on blood pressure among Congolese population. Methods: A cross-sectional study was conducted from October 2019 until December 2023 among Congolese population aged at least 30 years reporting to the living in DR Congo. All participants were enrolled from Dental Clinic located in the DR Congo. To be eligible to participate in the study, were the willing to participate and having signed informed consent;had a missing tooth;had carried out blood pressure measurement (hypertension/normotensive). The exclusion criteria were determined: being less than 30 years old, being pregnant for women considering the risk of existing gestational hypertension, obesity, excessive alcohol consumption, smoking, and diabetes. Hypertension was defined as the mean of three measurements of systolic blood pressure (SBP) (140 mmHg or higher), diastolic blood pressure (DBP) (90 mm or higher) or physician diagnosed hypertension confirmed from medical records. We determined the number of tooth loss from oral examination. A multivariable logistic regression model was used to investigate the effect of tooth loss on blood pressure. Results: In all, 25,396 participants were enrolled among Congolese population for this study. After oral examination, 13,421 were excluded for no tooth loss and 11,975 participants were selected. The average number of tooth loss among study population was 11.06. Among the participants with hypertension had lost an average of 11 teeth, significantly higher than those without hypertension (6.09) (p = 0.001). After adjusting for covariates (socio-demographic characteristics), tooth loss (>10) was significantly associated with hypertension, with OR = 1.32 (95% CI 1.073 - 2.38). Conclusion: Tooth loss maybe associated with severe hypertension among Congolese population adults. Prevention of tooth loss is very important to the overall health of this population.展开更多
A new electrical toothed band brake is proposed based on the planetary gear shifting transmission.The corresponding mathematical model and the finite element model are established to investigate the braking dynamic ch...A new electrical toothed band brake is proposed based on the planetary gear shifting transmission.The corresponding mathematical model and the finite element model are established to investigate the braking dynamic characteristics and the stress distribution of brake components.According to the structural features and working principle of the brake,the braking process can be divided into a gap elimination stage,a sliding stage,a meshing stage,and a collision stage.The greater the initial speed of brake drum,the higher the impact torque in the collision stage,and the larger the stress of brake components.The ideal range of initial speed is 50-100 r/min,and the ultimate stress is 514 MPa appeared in the right brake band.This study present a wide range of possibilities for further investigation and application of the electrical toothed band brake.展开更多
Neurodegeneration involves a wide range of neuropathological alterations affecting the integrity,physiology,and architecture of neural cells.Many studies have demonstrated neurodegeneration in different animals.In the...Neurodegeneration involves a wide range of neuropathological alterations affecting the integrity,physiology,and architecture of neural cells.Many studies have demonstrated neurodegeneration in different animals.In the case of Alzheimer's disease(AD),spontaneous animal models should display two neurohistopathological hallmarks:the deposition ofβ-amyloid and the arrangement of neurofibrillary tangles.However,no natural animal models that fulfill these conditions have been reported and most research into AD has been performed using transgenic rodents.Recent studies have also demonstrated that toothed whales-homeothermic,long-lived,top predatory marine mammals-show neuropathological signs of AD-like pathology.The neuropathological hallmarks in these cetaceans could help to better understand their endangered health as well as neurodegenerative diseases in humans.This systematic review analyzes all the literature published to date on this trending topic and the proposed causes for neurodegeneration in these iconic marine mammals are approached in the context of One Health/Planetary Health and translational medicine.展开更多
Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycle...Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.展开更多
Forest structural complexity influences arthropod communities by shaping habitat availability,microclimatic conditions,and resource distribution.However,the extent to which structural complexity and specific structura...Forest structural complexity influences arthropod communities by shaping habitat availability,microclimatic conditions,and resource distribution.However,the extent to which structural complexity and specific structural components drive arthropod abundance and biomass remains poorly understood in temperate forests.This study examined how local and landscape-scale forest characteristics influence arthropod communities across vertical strata(forest floor(FF),herb layer(HL),and shrub layer(SL))in 19 temperate deciduous forests in Belgium,dominated by pedunculate oak,European beech,or Canadian poplar.At the local scale,we assessed dominant tree species identity,overall forest structural complexity,and its components(vertical and horizontal structure,woody layer,herbal layer,and deadwood).At the landscape scale,we evaluated forest area,edge length,forest cover,and vegetation greenness(normalized difference vegetation index(NDVI)).Contrary to expectation,arthropod biomass and abundance did not consistently increase with higher structural complexity.Instead,woody layer complexity,dominant tree species,and NDVI emerged as key drivers,with effects varying by context and stratum.Arthropod abundance and biomass were the highest in oak-and poplar-dominated forests and the lowest in beech forests,likely due to differences in litter quality,microhabitat availability,and understory development.Woody layer complexity positively influenced forest floor arthropods in poplar forests but had a negative effect in oak forests.At the landscape scale,NDVI unexpectedly showed negative relationships with arthropod abundance across strata and with arthropod biomass in the herb layer,likely reflecting dense canopy suppression of understory productivity.Arthropod biomass on the forest floor increased with forest cover,while abundance in the shrub layer decreased with forest cover but increased with forest area.These findings highlight the complex interplay between forest structural attributes,dominant tree species,and landscape factors in shaping arthropod communities.By identifying the key drivers of arthropod abundance and biomass,this study contributes to a better understanding of biodiversity patterns in temperate forests and their ecological dynamics.展开更多
Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was...Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was proposed,and the effects of conical tooth forward rake angle,rock temperature,and impact velocity on rock breaking characteristics and energy transfer laws were analyzed.The results show that during single impact rock breaking with conical tooth bits,merely 7.52%to 12.51%of the energy is utilized for rock breaking,while a significant 57.26%to 78.10%is dissipated as frictional loss.An insufficient forward rake angle increases tooth penetration depth and frictional loss,whereas an excessive forward rake angle reduces penetration capability,causing bit rebound and greater energy absorption by the drill rod.Thus,an optimal forward rake angle exists.Regarding environmental factors,high temperatures significantly enhance impact-induced rock breaking.Thermal damage from high temperatures reduces rock strength and inhibits its energy absorption.Finally,higher impact velocities intensify rock damage,yet excessively high velocities increase frictional loss and reduce the proportion of energy absorbed by the rock,thereby failing to substantially improve rock breaking efficiency.An optimal impact velocity exists.展开更多
Primary cilia function as critical sensory organelles that mediate multiple signaling pathways,including the Hedgehog(Hh)pathway,which is essential for organ patterning and morphogenesis.Disruptions in Hh signaling ha...Primary cilia function as critical sensory organelles that mediate multiple signaling pathways,including the Hedgehog(Hh)pathway,which is essential for organ patterning and morphogenesis.Disruptions in Hh signaling have been implicated in supernumerary tooth formation and molar fusion in mutant mice.Cilk1,a highly conserved serine/threonine-protein kinase localized within primary cilia,plays a critical role in ciliary transport.Loss of Cilk1 results in severe ciliopathy phenotypes,including polydactyly,edema,and cleft palate.However,the role of Cilk1 in tooth development remains unexplored.In this study,we investigated the role of Cilk1 in tooth development.Cilk1 was found to be expressed in both the epithelial and mesenchymal compartments of developing molars.Cilk1 deficiency resulted in altered ciliary dynamics,characterized by reduced frequency and increased length,accompanied by downregulation of Hh target genes,such as Ptch1 and Sostdc1,leading to the formation of diastemal supernumerary teeth.Furthermore,in Cilk1^(-/-);PCS1–MRCS1^(△/△)mice,which exhibit a compounded suppression of Hh signaling,we uncovered a novel phenomenon:diastemal supernumerary teeth can be larger than first molars.Based on these findings,we propose a progressive model linking Hh signaling levels to sequential changes in tooth patterning:initially inducing diastemal supernumerary teeth,then enlarging them,and ultimately leading to molar fusion.This study reveals a previously unrecognized role of Cilk1 in controlling tooth morphology via Hh signaling and highlights how Hh signaling levels shape tooth patterning in a gradient-dependent manner.展开更多
Positional information plays a crucial role in embryonic pattern formation,yet its role in tooth development remains unexplored.In this study,we investigated the regional specification of lingual and buccal dental mes...Positional information plays a crucial role in embryonic pattern formation,yet its role in tooth development remains unexplored.In this study,we investigated the regional specification of lingual and buccal dental mesenchyme during tooth development.Tooth germs at the cap stage were dissected from mouse mandibles,and their lingual and buccal mesenchymal regions were separated for bulk RNA sequencing.Gene ontology analysis revealed that odontogenesis,pattern specification,and proliferation-related genes were enriched in the lingual mesenchyme,whereas stem cell development,mesenchymal differentiation,neural crest differentiation,and regeneration-related genes were predominant in the buccal mesenchyme.Reaggregation experiments using Wnt1^(cre ERT/+);R26R^(td T/+)and WT mouse models demonstrated that lingual mesenchyme contributes to tooth formation,while buccal mesenchyme primarily supports surrounding tissues.Furthermore,only the lingual part of tooth germs exhibited odontogenic potential when cultured in vitro and transplanted under the kidney capsule.Bulk RNA transcriptomic analysis further validated the regional specification of the lingual and buccal mesenchyme.These findings provide novel insights into the molecular basis of positional information in tooth development and pattern formation.展开更多
Aviation spiral bevel gears are often generated by spiral generated modified(SGM) roll method.In this style,pinion tooth surface modified generation strategy has an important influence on the meshing and contact per...Aviation spiral bevel gears are often generated by spiral generated modified(SGM) roll method.In this style,pinion tooth surface modified generation strategy has an important influence on the meshing and contact performances.For the optimal contact pattern and transmission error function,local synthesis is applied to obtain the machine-tool settings of pinion.For digitized machine,four tooth surface generation styles of pinion are proposed.For every style,tooth contact analysis(TCA) is applied to obtain contact pattern and transmission error function.For the difference between TCA transmission error function and design objective curve,the degree of symmetry and agreement are defined and the corresponding sub-objective functions are established.Linear weighted combination method is applied to get an equivalent objective function to evaluate the shape of transmission error function.The computer programs for the process above are developed to analyze the meshing performances of the four pinion tooth surface generation styles for a pair of aviation spiral bevel gears with 38/43 teeth numbers.The four analytical results are compared with each other and show that the incomplete modified roll is optimal for this gear pair.This study is an expansion to generation strategy of spiral bevel gears,and offers new alternatives to computer numerical control(CNC) manufacture of spiral bevel gears.展开更多
基金supported in part by a Grant-in-Aid for Scientific Research (C) (grant no. 25463192) from the Ministry of Education, Science, Sports, Culture, and Technology of Japan
文摘The ability of human deciduous tooth dental pulp cells(HDDPCs) to differentiate into odontoblasts that generate mineralized tissue holds immense potential for therapeutic use in the field of tooth regenerative medicine. Realization of this potential depends on efficient and optimized protocols for the genetic manipulation of HDDPCs. In this study, we demonstrate the use of a Piggy Bac(PB)-based gene transfer system as a method for introducing nonviral transposon DNA into HDDPCs and HDDPC-derived inducible pluripotent stem cells. The transfection efficiency of the PB-based system was significantly greater than previously reported for electroporation-based transfection of plasmid DNA. Using the neomycin resistance gene as a selection marker, HDDPCs were stably transfected at a rate nearly 40-fold higher than that achieved using conventional methods. Using this system, it was also possible to introduce two constructs simultaneously into a single cell. The resulting stable transfectants, expressing td Tomato and enhanced green fluorescent protein, exhibited both red and green fluorescence. The established cell line did not lose the acquired phenotype over three months of culture. Based on our results, we concluded that PB is superior to currently available methods for introducing plasmid DNA into HDDPCs. There may be significant challenges in the direct clinical application of this method for human dental tissue engineering due to safety risks and ethical concerns. However, the high level of transfection achieved with PB may have significant advantages in basic scientific research for dental tissue engineering applications, such as functional studies of genes and proteins. Furthermore, it is a useful tool for the isolation of genetically engineered HDDPC-derived stem cells for studies in tooth regenerative medicine.
文摘Intentional tooth replantation(ITR)is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions.ITR is defined as the deliberate extraction of a tooth;evaluation of the root surface,endodontic manipulation,and repair;and placement of the tooth back into its original socket.Case reports,case series,cohort studies,and randomized controlled trials have demonstrated the efficacy of ITR in the retention of natural teeth that are untreatable or difficult to manage with root canal treatment or endodontic microsurgery.However,variations in clinical protocols for ITR exist due to the empirical nature of the original protocols and rapid advancements in the field of oral biology and dental materials.This heterogeneity in protocols may cause confusion among dental practitioners;therefore,guidelines and considerations for ITR should be explicated.This expert consensus discusses the biological foundation of ITR,the available clinical protocols and current status of ITR in treating teeth with refractory apical periodontitis or anatomical aberration,and the main complications of this treatment,aiming to refine the clinical management of ITR in accordance with the progress of basic research and clinical studies;the findings suggest that ITR may become a more consistent evidence-based option in dental treatment.
基金supported by the National Natural Science Foundation of China(No.82071078,82370939)the Shaanxi Provincial High-level Talent Program and Young Talent Support Plan of Xi’an Jiaotong University.
文摘Tissue interactions play a crucial role in tooth development.Notably,extracellular vesicle-mediated interactions between the mandible and tooth germ are considered essential.Here,we revealed that mandible extracellular vesicles could modulate the proliferation and differentiation of dental mesenchymal cells by regulating the histone demethylase KDM2B.Further investigation showed that mandible derived extracellular vesicles could deliver miR-206 to KDM2B,thereby regulating tooth development.An animal study demonstrated that the miR-206/KDM2B pathway affected tooth morphogenesis and mineralization after eight weeks of subcutaneous transplantation in nude mice.In conclusion,this study suggested that the mandible played a critical role in tooth morphogenesis and mineralization,which could be a potential therapeutic target for abnormal tooth development and an alternative model for tooth regeneration.
基金Project(2024A1515240020)supported by the Guangdong Basic and Applied Basic Research Foundation,China。
文摘The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing characteristics of planetary gear is studied.An improved three-dimensional(3 D)anisotropic tooth surface roughness fractal model is proposed based on the experimental parameters.Considering asperity contact and elastohydrodynamic lubrication(EHL),the contact load and flexibility deformation of the tooth surface are derived,and the deformation compatibility equation of the 3 D loaded tooth contact analysis(3 D-LTCA)method is improved.The asperity of the tooth surface changes the system from EHL to mixed lubrication and reduces the stiffness of the oil film.Compared with the sun planet gear,the asperity has a greater effect on the meshing characteristics of the ring-planet gear.Compared with the proposed method,the comprehensive stiffness obtained by the traditional calculation method considering the lubrication effect is smaller,especially for the ring-planet gear.Compared with roughness,speed and viscosity,the meshing characteristics of planetary gears are most sensitive to torque.
基金co-supported by the National Natural Science Foundation of China (No. 52175104)the Postdoctoral Fellowship Program of CPSF (No. GZC20233008)
文摘Tooth cracks may occur in spiral bevel gear transmission system of the aerospace equipment.In this study,an accurate and efficient loaded tooth contact analysis(LTCA)model is developed to predict the contact behavior and time-varying meshing stiffness(TVMS)of spiral bevel gear pair with cracked tooth.The tooth is sliced,and the contact points on slices are computed using roll angle surfaces.Considering the geometric complexity of crack surface,a set of procedures is formulated to generate spatial crack and determine crack parameters for contact points.According to the positional relationship between contact point and crack path,each sliced tooth is modeled as a non-uniform cantilever beam with varying reduced effective load-bearing tooth thickness.Then the compliance model of the cracked tooth is established to perform contact analysis,along with TVMS calculations utilizing three different models.By employing spiral bevel gear pairs with distinct types of cracks as examples,the accuracy and efficiency of the developed approach are validated via comparative analyses with finite element analysis(FEA)outcomes.Furthermore,the investigation on effects of cracks shows that tooth cracks can induce alterations in meshing performance of both entire gear pair and individual tooth pairs,including not only cracked tooth pair but also adjacent non-cracked tooth pairs.Hence,the proposed model can serve as a useful tool for analyzing the variations in contact behavior and meshing stiffness of spiral bevel gears due to different cracks.
基金supported by the National Key Research and Development Program(2022YFA1104401)Beijing Municipal Government grant(Beijing Laboratory of Oral Health,PXM2021-014226-000041)+3 种基金Beijing Municipal Govemment(Beijing Scholar Program,PXM2021-014226-000020)National Natural Science Foundation of China(82030031,92149301,81991504,L2224038,82270945)Innovation Research Team Project of Beijing Stomatological Hospital,Capital Medical University(CXTD202201)Chinese Research Unit of Tooth Development and Regeneration,Academy of Medical Sciences(2019-12M-5-031).
文摘The regulatory processes in developmental biology research are significantly influenced by long non-coding RNAs(lncRNAs).However,the dynamics of lncRNA expression during human tooth development remain poorly understood.In this research,we examined the lncRNAs present in the dental epithelium(DE)and dental mesenchyme(DM)at the late bud,cap,and early bell stages of human fetal tooth development through bulk RNA sequencing.Developmental regulators co-expressed with neighboring lncRNAs were significantly enriched in odontogenesis.Specific lncRNAs expressed in the DE and DM,such as PANCR,MIR205HG,DLX6-AS1,and DNM3OS,were identified through a combination of bulk RNA sequencing and single-cell analysis.Further subcluster analysis revealed lncRNAs specifically expressed in important regions of the tooth germ,such as the inner enamel epithelium and coronal dental papilla(CDP).Functionally,we demonstrated that CDP-specific DLX6-AS1 enhanced odontoblastic differentiation in human tooth germ mesenchymal cells and dental pulp stem cells.These findings suggest that lncRNAs could serve as valuable cell markers for tooth development and potential therapeutic targets for tooth regeneration.
基金supported by the National Natural Science Foundation of China(82071143,82371000,82270361)Key Research and Development Program of Jiangsu Province(BE2022795)+2 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_1801)the Jiangsu Province Capability Improvement Project through the Science,Technology and Education-Jiangsu Provincial Research Hospital Cultivation Unit(YJXYYJSDW4)Jiangsu Provincial Medical Innovation Center(CXZX202227).
文摘Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon(RAP).Despite its therapeutic effects,the surgical risk and unclear mechanism hamper the clinical application.Numerous evidences support macrophages as the key immune cells during bone remodeling.Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2;R26GFP lineage tracing system.Fluorescence staining,flow cytometry analysis,and western blot determined the significantly enhanced expression of binding immunoglobulin protein(BiP)and emphasized the activation of sensor activating transcription factor 6(ATF6)in macrophages.Then,we verified that macrophage specific ATF6 deletion(ATF6f/f;CX3CR1CreERT2 mice)decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy.In contrast,macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement.In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6.At the mechanism level,RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfαpromotor and augmenting its transcription.Additionally,molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element(ERSE).Taken together,ATF6 may aggravate orthodontic bone remodeling by promoting Tnfαtranscription in macrophages,suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.
基金the National Science and Technology Major Project of China(No.2019-VII0017e0158)the National Natural Science Foundation of China(No.U21A20131)+1 种基金the Industry-University Research Cooperation Project,China(No.HFZL2020CXY025)the National Key Laboratory of Science and Technology on Helicopter Transmission,China(No.HTL-O-21G05).
文摘Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.
文摘Background: Tooth loss results in impaired mastication, which in turn, makes it difficult to chew hard food, consequently leading to deteriorate dietary habits and to develop hypertension. The purpose of this study was to examine the effect of tooth loss on blood pressure among Congolese population. Methods: A cross-sectional study was conducted from October 2019 until December 2023 among Congolese population aged at least 30 years reporting to the living in DR Congo. All participants were enrolled from Dental Clinic located in the DR Congo. To be eligible to participate in the study, were the willing to participate and having signed informed consent;had a missing tooth;had carried out blood pressure measurement (hypertension/normotensive). The exclusion criteria were determined: being less than 30 years old, being pregnant for women considering the risk of existing gestational hypertension, obesity, excessive alcohol consumption, smoking, and diabetes. Hypertension was defined as the mean of three measurements of systolic blood pressure (SBP) (140 mmHg or higher), diastolic blood pressure (DBP) (90 mm or higher) or physician diagnosed hypertension confirmed from medical records. We determined the number of tooth loss from oral examination. A multivariable logistic regression model was used to investigate the effect of tooth loss on blood pressure. Results: In all, 25,396 participants were enrolled among Congolese population for this study. After oral examination, 13,421 were excluded for no tooth loss and 11,975 participants were selected. The average number of tooth loss among study population was 11.06. Among the participants with hypertension had lost an average of 11 teeth, significantly higher than those without hypertension (6.09) (p = 0.001). After adjusting for covariates (socio-demographic characteristics), tooth loss (>10) was significantly associated with hypertension, with OR = 1.32 (95% CI 1.073 - 2.38). Conclusion: Tooth loss maybe associated with severe hypertension among Congolese population adults. Prevention of tooth loss is very important to the overall health of this population.
基金funded by the National Natural Science Foundation of China(Nos.52205047,52175037)China Postdoctoral Science Foundation(No.2021M700422)Beijing Key Laboratory Foundation(No.KF20212223201).
文摘A new electrical toothed band brake is proposed based on the planetary gear shifting transmission.The corresponding mathematical model and the finite element model are established to investigate the braking dynamic characteristics and the stress distribution of brake components.According to the structural features and working principle of the brake,the braking process can be divided into a gap elimination stage,a sliding stage,a meshing stage,and a collision stage.The greater the initial speed of brake drum,the higher the impact torque in the collision stage,and the larger the stress of brake components.The ideal range of initial speed is 50-100 r/min,and the ultimate stress is 514 MPa appeared in the right brake band.This study present a wide range of possibilities for further investigation and application of the electrical toothed band brake.
文摘Neurodegeneration involves a wide range of neuropathological alterations affecting the integrity,physiology,and architecture of neural cells.Many studies have demonstrated neurodegeneration in different animals.In the case of Alzheimer's disease(AD),spontaneous animal models should display two neurohistopathological hallmarks:the deposition ofβ-amyloid and the arrangement of neurofibrillary tangles.However,no natural animal models that fulfill these conditions have been reported and most research into AD has been performed using transgenic rodents.Recent studies have also demonstrated that toothed whales-homeothermic,long-lived,top predatory marine mammals-show neuropathological signs of AD-like pathology.The neuropathological hallmarks in these cetaceans could help to better understand their endangered health as well as neurodegenerative diseases in humans.This systematic review analyzes all the literature published to date on this trending topic and the proposed causes for neurodegeneration in these iconic marine mammals are approached in the context of One Health/Planetary Health and translational medicine.
基金Supported by National Key R&D Program of China(Grant No.2019YFE0121300)。
文摘Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.
基金supported by the UGent GOA project“Forest biodiversity and multifunctionality drive chronic stress-mediated dynamics in pathogen reservoirs(FORESTER)”(No.BOF20/GOA/009).
文摘Forest structural complexity influences arthropod communities by shaping habitat availability,microclimatic conditions,and resource distribution.However,the extent to which structural complexity and specific structural components drive arthropod abundance and biomass remains poorly understood in temperate forests.This study examined how local and landscape-scale forest characteristics influence arthropod communities across vertical strata(forest floor(FF),herb layer(HL),and shrub layer(SL))in 19 temperate deciduous forests in Belgium,dominated by pedunculate oak,European beech,or Canadian poplar.At the local scale,we assessed dominant tree species identity,overall forest structural complexity,and its components(vertical and horizontal structure,woody layer,herbal layer,and deadwood).At the landscape scale,we evaluated forest area,edge length,forest cover,and vegetation greenness(normalized difference vegetation index(NDVI)).Contrary to expectation,arthropod biomass and abundance did not consistently increase with higher structural complexity.Instead,woody layer complexity,dominant tree species,and NDVI emerged as key drivers,with effects varying by context and stratum.Arthropod abundance and biomass were the highest in oak-and poplar-dominated forests and the lowest in beech forests,likely due to differences in litter quality,microhabitat availability,and understory development.Woody layer complexity positively influenced forest floor arthropods in poplar forests but had a negative effect in oak forests.At the landscape scale,NDVI unexpectedly showed negative relationships with arthropod abundance across strata and with arthropod biomass in the herb layer,likely reflecting dense canopy suppression of understory productivity.Arthropod biomass on the forest floor increased with forest cover,while abundance in the shrub layer decreased with forest cover but increased with forest area.These findings highlight the complex interplay between forest structural attributes,dominant tree species,and landscape factors in shaping arthropod communities.By identifying the key drivers of arthropod abundance and biomass,this study contributes to a better understanding of biodiversity patterns in temperate forests and their ecological dynamics.
基金Supported by Major Instrument Project of National Natural Science Foundation of China(52327803)Major Project of National Natural Science Foundation of China(52192622).
文摘Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was proposed,and the effects of conical tooth forward rake angle,rock temperature,and impact velocity on rock breaking characteristics and energy transfer laws were analyzed.The results show that during single impact rock breaking with conical tooth bits,merely 7.52%to 12.51%of the energy is utilized for rock breaking,while a significant 57.26%to 78.10%is dissipated as frictional loss.An insufficient forward rake angle increases tooth penetration depth and frictional loss,whereas an excessive forward rake angle reduces penetration capability,causing bit rebound and greater energy absorption by the drill rod.Thus,an optimal forward rake angle exists.Regarding environmental factors,high temperatures significantly enhance impact-induced rock breaking.Thermal damage from high temperatures reduces rock strength and inhibits its energy absorption.Finally,higher impact velocities intensify rock damage,yet excessively high velocities increase frictional loss and reduce the proportion of energy absorbed by the rock,thereby failing to substantially improve rock breaking efficiency.An optimal impact velocity exists.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korean government(MSIT)(NRF-2020R1A2C2005790,NRF2023R1A2C1007510,RS-2023-00269830,RS-2024-00438542)。
文摘Primary cilia function as critical sensory organelles that mediate multiple signaling pathways,including the Hedgehog(Hh)pathway,which is essential for organ patterning and morphogenesis.Disruptions in Hh signaling have been implicated in supernumerary tooth formation and molar fusion in mutant mice.Cilk1,a highly conserved serine/threonine-protein kinase localized within primary cilia,plays a critical role in ciliary transport.Loss of Cilk1 results in severe ciliopathy phenotypes,including polydactyly,edema,and cleft palate.However,the role of Cilk1 in tooth development remains unexplored.In this study,we investigated the role of Cilk1 in tooth development.Cilk1 was found to be expressed in both the epithelial and mesenchymal compartments of developing molars.Cilk1 deficiency resulted in altered ciliary dynamics,characterized by reduced frequency and increased length,accompanied by downregulation of Hh target genes,such as Ptch1 and Sostdc1,leading to the formation of diastemal supernumerary teeth.Furthermore,in Cilk1^(-/-);PCS1–MRCS1^(△/△)mice,which exhibit a compounded suppression of Hh signaling,we uncovered a novel phenomenon:diastemal supernumerary teeth can be larger than first molars.Based on these findings,we propose a progressive model linking Hh signaling levels to sequential changes in tooth patterning:initially inducing diastemal supernumerary teeth,then enlarging them,and ultimately leading to molar fusion.This study reveals a previously unrecognized role of Cilk1 in controlling tooth morphology via Hh signaling and highlights how Hh signaling levels shape tooth patterning in a gradient-dependent manner.
基金The National Research Foundation of Korea(NRF)Grant funded by the Korea Government(MSIP)(RS-2024-00459728,RS-2025-00553972)supported this work。
文摘Positional information plays a crucial role in embryonic pattern formation,yet its role in tooth development remains unexplored.In this study,we investigated the regional specification of lingual and buccal dental mesenchyme during tooth development.Tooth germs at the cap stage were dissected from mouse mandibles,and their lingual and buccal mesenchymal regions were separated for bulk RNA sequencing.Gene ontology analysis revealed that odontogenesis,pattern specification,and proliferation-related genes were enriched in the lingual mesenchyme,whereas stem cell development,mesenchymal differentiation,neural crest differentiation,and regeneration-related genes were predominant in the buccal mesenchyme.Reaggregation experiments using Wnt1^(cre ERT/+);R26R^(td T/+)and WT mouse models demonstrated that lingual mesenchyme contributes to tooth formation,while buccal mesenchyme primarily supports surrounding tissues.Furthermore,only the lingual part of tooth germs exhibited odontogenic potential when cultured in vitro and transplanted under the kidney capsule.Bulk RNA transcriptomic analysis further validated the regional specification of the lingual and buccal mesenchyme.These findings provide novel insights into the molecular basis of positional information in tooth development and pattern formation.
文摘Aviation spiral bevel gears are often generated by spiral generated modified(SGM) roll method.In this style,pinion tooth surface modified generation strategy has an important influence on the meshing and contact performances.For the optimal contact pattern and transmission error function,local synthesis is applied to obtain the machine-tool settings of pinion.For digitized machine,four tooth surface generation styles of pinion are proposed.For every style,tooth contact analysis(TCA) is applied to obtain contact pattern and transmission error function.For the difference between TCA transmission error function and design objective curve,the degree of symmetry and agreement are defined and the corresponding sub-objective functions are established.Linear weighted combination method is applied to get an equivalent objective function to evaluate the shape of transmission error function.The computer programs for the process above are developed to analyze the meshing performances of the four pinion tooth surface generation styles for a pair of aviation spiral bevel gears with 38/43 teeth numbers.The four analytical results are compared with each other and show that the incomplete modified roll is optimal for this gear pair.This study is an expansion to generation strategy of spiral bevel gears,and offers new alternatives to computer numerical control(CNC) manufacture of spiral bevel gears.