A method for determination of tool-chip contact length is theoreticallypresented in orthogonal metal machining. By using computer simulation and based on the analyses ofthe elastro-plastic deformation with lagrangian ...A method for determination of tool-chip contact length is theoreticallypresented in orthogonal metal machining. By using computer simulation and based on the analyses ofthe elastro-plastic deformation with lagrangian finite element method in the deformation zone, theaccumulated representative length of the low layer, the tool-chip contact length of the chipcontacting the tool rake are calculated, experimental studies are also carried out with 0.2 percentcarbon steel. It is shown that the tool-chip contact lengths obtained from computer simulation havea good agreement with those of measured values.展开更多
In this work, the orthogonal cutting experiments on Ti-6Al-4V alloy were conducted at different cutting speeds(10—160 m/min)and feed rates(20—160 μm/rev). The tool-chip contact length was measured by the track of t...In this work, the orthogonal cutting experiments on Ti-6Al-4V alloy were conducted at different cutting speeds(10—160 m/min)and feed rates(20—160 μm/rev). The tool-chip contact length was measured by the track of tool rake face; meanwhile, the chip morphology caused by the localized and overall chip deformation was characterized by the degree of segmentation and the chip compression ratio, respectively. These parameters were analyzed and calculated according to the segmented chip morphology. In addition, three modified models considering the overall chip deformation and the localized deformation of adiabatic shear band were proposed, and the constants of the models were calculated by the genetic algorithm optimization. Considering the overall and localized chip deformation, the value and variation trend of the tool-contact length predicted by these three models agreed well with the experimental results.展开更多
The temperature distribution in the tool, chip and workpiece was studied during the orthogonal cuttingprocess Under several different cutting conditions. The temperature distribution is calculated by the finite differ...The temperature distribution in the tool, chip and workpiece was studied during the orthogonal cuttingprocess Under several different cutting conditions. The temperature distribution is calculated by the finite differencemethod. and the variation of the material properties with temperature was taken was taken into account The results obtained arecoincident with both previous published results and experimental measurements.展开更多
基金This project is supported by Provincial Natural Science Foundation of Heilongjiang(No.A9809).
文摘A method for determination of tool-chip contact length is theoreticallypresented in orthogonal metal machining. By using computer simulation and based on the analyses ofthe elastro-plastic deformation with lagrangian finite element method in the deformation zone, theaccumulated representative length of the low layer, the tool-chip contact length of the chipcontacting the tool rake are calculated, experimental studies are also carried out with 0.2 percentcarbon steel. It is shown that the tool-chip contact lengths obtained from computer simulation havea good agreement with those of measured values.
基金Supported by the National Natural Science Foundation of China(No.51205284 and No.51575384)
文摘In this work, the orthogonal cutting experiments on Ti-6Al-4V alloy were conducted at different cutting speeds(10—160 m/min)and feed rates(20—160 μm/rev). The tool-chip contact length was measured by the track of tool rake face; meanwhile, the chip morphology caused by the localized and overall chip deformation was characterized by the degree of segmentation and the chip compression ratio, respectively. These parameters were analyzed and calculated according to the segmented chip morphology. In addition, three modified models considering the overall chip deformation and the localized deformation of adiabatic shear band were proposed, and the constants of the models were calculated by the genetic algorithm optimization. Considering the overall and localized chip deformation, the value and variation trend of the tool-contact length predicted by these three models agreed well with the experimental results.
文摘The temperature distribution in the tool, chip and workpiece was studied during the orthogonal cuttingprocess Under several different cutting conditions. The temperature distribution is calculated by the finite differencemethod. and the variation of the material properties with temperature was taken was taken into account The results obtained arecoincident with both previous published results and experimental measurements.