期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Intelligent tool setting for vibration cutting process using machine vision and hearing
1
作者 Zhihao Ma Junhao Zhao +2 位作者 Jiahui Liu Peiyuan Ding Jianjian Wang 《Nanotechnology and Precision Engineering》 2025年第3期1-7,共7页
Vibration cutting has emerged as a promising method for creating surface functional microstructures.However,achieving precise tool setting is a time-consuming process that significantly impacts process efficiency.This... Vibration cutting has emerged as a promising method for creating surface functional microstructures.However,achieving precise tool setting is a time-consuming process that significantly impacts process efficiency.This study proposes an intelligent approach for tool setting in vibration cutting using machine vision and hearing,divided into two steps.In the first step,machine vision is employed to achieve rough precision in tool setting within tens of micrometers.Subsequently,in the second step,machine hearing utilizes sound pickup to capture vibration audio signals,enabling fine tool adjustment within 1μm precision.The relationship between the spectral intensity of vibration audio and cutting depth is analyzed to establish criteria for tool–workpiece contact.Finally,the efficacy of this approach is validated on an ultra-precision platform,demonstrating that the automated tool-setting process takes no more than 74 s.The total cost of the vision and hearing sensors is less than$1500. 展开更多
关键词 Vibration cutting Automatic tool setting Machine vision Machine hearing
在线阅读 下载PDF
Method of Precise Auto Tool Setting for Micro Milling 被引量:2
2
作者 赵孟 何宁 +1 位作者 李亮 黄逊彬 《Transactions of Tianjin University》 EI CAS 2011年第4期284-287,共4页
Based on microscope and image processing, a new method of auto tool setting for micro milling was presented. Firstly, a realtime image of tool setting area was obtained by microscope and CCD camera, then image process... Based on microscope and image processing, a new method of auto tool setting for micro milling was presented. Firstly, a realtime image of tool setting area was obtained by microscope and CCD camera, then image processing was carried out on this image and the gap between the tool and workpiece was calculated. The gap measurement was sent to motion controlling card to make the tool approach to the surface of workpiece. These steps were repeated until the gap is zero, which means that tool setting was finished. Moreover, a reliability verification test was conducted. Results indicated that the precision of tool setting is satisfactory. 展开更多
关键词 micro milling tool setting image processing
在线阅读 下载PDF
A methodology for laser tool setters calibration and its precise mathematical model
3
作者 Tao FANG Zixi FANG +1 位作者 Ze Zhong CHEN Zhiyong CHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期564-581,共18页
On-machine tool setting is a pivotal approach in achieving intelligent manufacturing,and laser tool setters have become a crucial component of smart machine tools.Laser tool setters play a crucial role in precisely me... On-machine tool setting is a pivotal approach in achieving intelligent manufacturing,and laser tool setters have become a crucial component of smart machine tools.Laser tool setters play a crucial role in precisely measuring the dimensions of cutting tools during the part machining process,focusing on tool length and diameter.As a measuring instrument,the positions of the laser axis of the laser tool setter need to be accurately calibrated before use.However,in actual calibration scenarios,traditional calibration methods face challenges due to installation errors in the tool setter and geometric errors in the measuring rod.To address this issue,this study proposes a novel calibration method.Initially,the calibration mechanism of the laser beam axis is established.Based on the accurate mathematical model of the laser beam and the measuring rod,and using the polygon clipping algorithm,the mathematical mechanism of the laser tool setter’s work is established.Then,a novel method is introduced to calculate the compensation distance between the laser beam reference point and the rod bottom center point at each moment during calibration.Furthermore,by utilizing the kinematic chain of the tool setter calibration system,a new calibration method is developed to accurately calibrate the position of the laser beam axis in the machine tool coordinate system.Finally,the accuracy of the calibration method is verified through simulation experiments and calibration tests.This method improves the calibration accuracy of the tool setter,and the mathematical model of the laser tool setter can be extended to the measurement of tools,thereby improving the precision of tool measurements.This research significantly improves the efficient production performance of smart machine tools. 展开更多
关键词 On-machine tool setting Smart machine tools Mathematical model Calibration method Laser tool sette
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部